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Abstract 

In this paper, we propose a simple method for constructing interval forecast for 

smooth transition autoregressive (STAR) model. This interval forecast is based on 

bootstrapping the residual error of the estimated STAR model for each forecast horizon 

and computing various Akaike information criterion (AIC) function. This new interval 

forecast suggest definite and better coverage to the future sample path than the 

conventional method of using a multiple of standard error of the forecast distribution 

using bootstrap method. Simulation studies are used to illustrate the proposed method. 
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1. Introduction 

One of the major reasons for time series modelling is to forecast future values. 

Forecasting future values of time series data may take the form of point forecast or an 

interval forecast. For non-linear time series model, the construction of point and 

interval forecast is problematic. It is known that in linear autoregressive moving 

average (ARMA(p, q)) model, forecast interval can be constructed theoretically using 

a weight function derived from the estimated model, see Box and Jenkins (1976). In 

non-linear time series models, a theoretical forecast interval is not easy to construct. 

Chatfield (1993) presented a road map for constructing interval forecast for stationary 

and non-stationary models and Christofferson (1998) gave a general method for 

evaluating interval forecast while other work on interval forecast was done using Sieve 

bootstrap method, see Bühlmann (1997), Alonso et.al (2002, 2003) for examples. 

These authors only achieve good prediction interval results for linear ARMA models 

whereas their prediction intervals failed for non-linear models. The simple reason for 

this is that linear ARMA model can be represented as an infinite linear process while 

non-linear model cannot be represented so.  Giordano et.al (2007) used a neural 

network sieve bootstrap to construct interval forecast for STAR model. This was also 

made possible by using a class of neural network to approximate the original non-linear 

model. Their approach is rather complicated since the neural network requires training. 

At the moment, there is no standard method of obtaining interval forecast for non-linear 

time series model. In this study we propose a simple forecast interval for non-linear 

time series model with particular attention given to logistic smooth transition 

autoregressive (LSTAR) model. Our method makes use of bootstrapping the residuals 

generated from the estimated STAR model and computing various AIC function, due 

to Akaike (1969).  

The rest of this work is organized as follows. In Section 2, we describe briefly the basic 

representation of STAR model and point forecast. In Section 3, we present the proposed 

methodology for constructing interval forecast for STAR model. Section 4 is on 

simulation experiments and results to illustrate the proposed method. In Section 5, the 

results of the simulation studies are presented. Section 6 concludes the paper.  

2. Representation of the basic STAR model and point forecast 

We first consider the autoregressive (AR(p)) model of order p before considering the 

basic STAR model. An AR(p) model of order p, for some positive integer p  1, can 

be written as:  

 
ttt wy   '        (2.1) 
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where 
'

21 ),,,,1( ptttt yyyw    and 
'

10 ),,,( p   are real parameters such 

that the zeroes of 
p

p zzz   11)(  lie outside the unit disk and t  is 

normally distributed with mean zero and variance .2

  
The smooth transition 

autoregressive (STAR) model for a univariate time series ty  which is observed at 

nt ,,2,1   is given by: 

 
ttttt csGwwy   ),;('

2

'

1
    (2.2) 

where 2,1,),,( '

,0,  ipiii   , ,0 tw  and t  are as defined in (2.1). 

),;( csG t   is called the transition function and lies between 0 and 1.The transition 

function could either be of the logistic type or the exponential type. The variable ts  is 

called the transition variable which could be assumed to be a lagged endogenous 

variable that is dtt ys   for certain integer 0d  or linear trend )( tst  , which 

gives rise to smoothly changing parameters.  

If the transition function is of the Logistic type, we have  

 
)})(exp{1(

1
);,(

cs
scG

t

t





     (2.4) 

After estimation of the parameters of any of the model given by (2.1) and (2.2) and the 

model found to be adequate, then it can be used for forecasting. We illustrate how to 

generate point forecast using a general model of order 1,  

,);( 1 ttt yFy          
(2.5)  

for some linear or non-linear function of ).;( 1 tyF
 
The optimal point forecast of 

future values of the time series are given by their conditional expectations. See Box 

and Jenkins (1976), Franses and Van Dijk (2000) for exposition. The h-step-ahead 

forecast of the future values hty   at time t is given by: 

   
 ]/[ˆ

ththt yEy        (2.6)  

where t denotes the past history of the time series up to and including the observation 

at time t. An optimal 1-step-ahead forecast, using the fact that 0]/[ 1  ttE   is 

obtained as:
 

 );(]/[ˆ
11 tttt yFyEy        (2.7)  
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This optimal 1-step-ahead forecast for );( tyF is the same for linear and non-linear 

model.  For h-step-ahead greater than or equal 2 forecasts can be generated recursively 

without difficult for linear model, while this is no longer easy to handle for non-linear 

model. In fact, an optimal 2-step-ahead forecast using (2.6) and (2.7) for non-linear 

model is given by: 

 ]/);([]/[ˆ
122 ttttt yFEyEy       (2.8) 

The linear conditional expectation operator E cannot be interchanged with the non-

linear operator F; hence (2.8) can be expressed using the relationship that exists 

between 1- and-2 -steps ahead forecasts which is now written as: 

 ]/);ˆ([]/););(([ˆ
1112 ttttttt yFEyFFEy     (2.9) 

The exact method of forecast from (2.9), is 

 




   ddyFy tt )();(ˆ
12      (2.10) 

(2.10) requires numerical integration and the dimension of integration increases as the 

forecast horizon increases. As a result of this, this exact method is usually replaced by 

simulation method, given by: 

  


 
M

i

itt yFMy
1

12 );()/1(ˆ 
    

(2.11) 

(2.11) is called the Monte-Carlo method if an assumed error distribution is used or the 

bootstrap method if the error generated from the fitted method such as the one in (2.2) 

is used. 

3 Methodology for Constructing Interval Forecast for STAR Model 

Given a time series ntyt ,...,2,1},{  ; Franses and Van Dijk (2000) listed 

three methods of constructing interval forecast for STAR models. These are: 

3.1  An interval symmetric around the mean, it is defined by:  

),ˆ,ˆ( wywyS htht    

where w  is chosen such that
 ,1)/(    tht SyP  hty 

ˆ  is forecast made at time 

origin t  for a specific horizon h , and hty   is the expected future value. 
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For linear models, w  is given by ,))(( 2/1

2/ hFMSEzw   while for non-linear 

models, )(sdeMw   where sde  is the standard error of the forecast distribution at 

each forecast horizon, 0M is an integer. Thus, we must generate the forecast before 

we can construct the forecast interval as suggested by Hyndman (1995).  

3.2 An interval between 2/  and )2/1(   quantiles of the forecast distribution 

denoted  

 by 2/q  and 2/1 q  respectively. This interval is given by: 

),( 2/12/   qqQ  

3.3 The highest density region (HDR) that is,  

})/(/{  gygyHDR ththt     

where g  is such that    1)/( tht HDRyP
 

Hyndman (1996), asserted that the three methods of constructing forecast region using 

(3.1)-(3.3) has been found to be the same when the forecast distribution is normal. That 

for non-normal forecast distributions; the regions are all different and recommend that 

highest-density forecast regions be used. For linear models, w  is given by 

,))(( 2/1

2/ hFMSEzw 
 
where )(hFMSE can be obtained theoretically. For non-

linear models, )(sdeMw   where sde  is the standard error given by 

2/1))(( hFMSEsde   which
 
cannot be obtained theoretically and 2M (an integer) 

is used to construct interval forecast. For non-linear model w  is set equal to a multiple 

of standard error of the forecast distribution. This method of interval forecast in non-

linear model does not suggest an appropriate or optimal interval forecast.   

Now, for any forecast made there exists a forecast error or prediction error 
hte 

 

given by: 

 
hththt yye   ˆ       (3.4) 

where 
hty 
 is the future values and 

hty 
ˆ is the forecast made at time t . Franses and 

Van Dijk (2000) stated that it is desirable to choose the forecast 
hty 

ˆ  that minimizes 

the forecast mean squared error (FMSE) given by: 

 ])ˆ[()()( 22

hththt yyEeEhFMSE       (3.5) 
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It has been showed in Box-Jenkins (1976) that the forecast that minimizes (3.5) is the 

conditional expectation of  
hty 
 at time t , that is, 

 ]/[ˆ
ththt yEy   . 

Assuming normality, a )%1(100   forecasting interval for 
hty 

ˆ  in ARMA(p, q) is 

given by the following interval: 

 2/1

2/ ))(.(ˆ hFMSEZy ht 
 and 

2/1

2/ ))(.(ˆ hFMSEZy ht   (3.6) 

where )(hFMSE  can be obtained theoretically and it is given by: 







1

0

22)(
h

j

jhFMSE         (3.7) 

where 10  , j  for 1,...,2,1  hj  are the forecast weights which can be 

computed recursively from infinite representation of ARMA(p, q) model  and 
2

  is 

the residual error variance estimated from a fitted ARMA(p, q) model.  

The AIC  function may be given by any of the following: 

 knkAIC 2)ˆlog()( 2         (3.8) 

 knkAIC 2)ˆlog()( 2        (3.9) 

The expressions for AIC  in (3.8) and (3.9) can either be positive or negative. These 

values are used indiscriminately in the literature. In order to obtain positive values for 

AIC , Ekhosuehi (2010) adopted the following expression:  

 










0)ˆlog(,2)ˆlog(

0)ˆlog(,2)ˆlog(
)(

22

22









kn

kn
kAIC    (3.10) 

where k  denote the number of parameters in the model, n  is the sample size and





n

t

tn
1

212 ˆˆ  
, where 

t̂  is the residuals generated from the fitted model. Ekhosuehi 

and Omosigho (2012), show that the sampling distribution of the AIC  function 

represented by (3.8) and (3.9) has the normal distribution, while the one given by (3.10) 

has a Chi-square distribution. The specification given by (3.10) is that it permits 

positive values of AIC  at all times. In a simulation experiment, Ekhosuehi and 
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Omosigho (2010) established a close relationship between )(hFMSE given in (3.7) 

and the AIC given in (3.10) namely: 

 n

kAIC
hFMSE

)(
))(( 2/1        (3.11) 

Our method for obtaining w  is based on the bootstrap method to estimate the 

FMSE for LSTAR model. This method is achieved by constructing B number of AIC 

function from the re-sampled error sequence, and then computes the standard error.  

The idea is similar to the Sieve bootstrap for times series proposed by Bühlmann (1997) 

and Sieve bootstrap interval by Alonso et.al (2002, 2003). The AIC function that is 

used in this regard is the one defined by (3.8) or (3.9) since they yield the same variance 

when their bootstrap is conducted.  

The procedure for constructing the AIC  prediction interval is given by the following 

steps: 

Step1. Given a time series observations }{ ty , use JMULTI (a time series software 

package) to model an appropriate LSTAR model. 

Step2. Generate the residuals t̂  from the fitted LSTAR model for npt ,,1  

Step4. Compute the empirical distribution function of the standardized residuals,   

             ,1)()(ˆ

1

}*{

1

* 





n

pt

xpnxF   where 





ˆ

~
* t

t  , 



n

pt

ttt pn
1

1 ˆ)(ˆ~   

and     

             



n

pt

tpn
1

212 ˆ)(   

Step5. Draw a resample 
*

t  of i.i.d observations from the standardized residuals to 

obtain  

            forecast values of length h  using the bootstrap method and also compute the 

AIC             

            function for each bootstrap replication. 

Step6. Compute the standard error of the bootstrap AIC.  Where the standard error is 

given as: 



 

 

Copyright ©IAARR, 2012-2016: www.afrrevjo.net/stech | Indexed African Journals Online: www.ajol.info 

 

34 STECH VOL 5 (1) FEBRUARY, 2016 

2/1

1

2*

)( *)(
)1(

1
ˆ 











 



B

b

b

AICB CAIAIC
B

es    (3.12) 

where 



B

b

bAIC
B

CAI
1

*1
*   

Step7. Construct the interval forecast using )ˆ,ˆ( wywyS htht    
where 

)ˆ(3 )( AICBesw 
 

4 Simulation Experiment 

We consider the following data generating process (DGP) using the logistic 

smooth transition autoregressive (LSTAR) model. Model (I) is an LSTAR(1) model 

while Model (II) is an LSTAR(2) model. 

Model (I) 
ttttt yyyy  



1

111 ))10exp(1(8.08.0    

  

Model (II) 
ttttttt yGyyyyy   )()795.09.002.0(06.18.1 12121
 

  

where 
1

11 )})02.0(20exp{1()( 

  tt yyG . 

 The sequence of error, ,t which is normally distributed with mean 0 and 

variance 1, was generated using the random number generator in MATLAB 7.5.0. We 

generated )300( n  sample sizes using Models (I) and (II). Only the last n  

observations are kept, while the first 300 are discarded to minimize initialization effect. 

Among the n  generated artificial time series observations, the first )0( hn   

observations were used for modeling while the remaining 0h  observations are kept for 

out-of-sample performance. The modeling cycle which involves testing for non-

linearity, model specification and evaluation such as in Luukonnen et al. (1988a), 

Luukonnen et al. (1988b), Teräsvirta (1994), Eitrheim and Teräsvirta (1996), Van Dijk 

et al. (2002) were executed using a Time series software package called JMULTI. After 

estimation of the model, it is then used for forecasting and for constructing forecast 

intervals. The forecasting method employed is the bootstrap method using the idea of 

Efron and Tibshirani (1998), Martinez and Martinez (2002). This stage of computing 

point forecast and constructing forecast interval in non-linear LSTAR model was 

written and executed in MATLAB7.5.0, since JMULTI does not provide forecast 

option in their package. The forecasting horizon ( h ) is taken from 1h  to 100 h , 

so as to agree with the number of observations kept for the out-of-sample performance. 
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This process was replicated many times. We however, present few results in the next 

section to illustrate this new interval forecast.   

Figures 1 and 2 shows the upper and lower forecast limits using the AIC 

bootstrap with a multiple of the standard error computed from the forecast mean square 

error using Model (I) for sample size n = 100 and 200 respectively, while Figures 3 and 

4 shows the upper and lower forecast limits using the AIC bootstrap with a multiple of 

the standard error computed from the forecast mean square error using Model (II) for 

sample size n = 100 and 200 respectively. All the graphs also contain the actual 

observations kept for out-of-sample performance and the point forecast made.  The 

multiple of the standard error of the forecast distribution used for constructing the 

interval forecast for the bootstrap method ranges from 2 to 5. 

              

 

 Figure 1: Represent forecast interval using plus or minus a multiple of  standard 

deviation as forecast interval and the proposed AIC forecast interval using thrice 

bootstrap standard error  for  model (I) for sample size n- 0h  = 100, 0h = 10. 
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         Figure 2: Represent forecast interval using plus or minus a multiple of standard 

deviation as forecast interval and the proposed AIC forecast interval using thrice 

bootstrap standard error  for  model (I) for sample size n- 0h  = 200, 0h = 10. 

                

 

Figure 3: Represent forecast interval using plus or minus a multiple of standard 

deviation as forecast interval and the proposed AIC forecast interval using thrice 

bootstrap standard error  for  model (II) for sample size n- 0h  = 100, 0h = 10. 
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   Figure 4: Represent forecast interval using plus or minus a multiple of standard 

deviation as  forecast interval and the proposed AIC forecast interval using thrice 

bootstrap standard error for Model (II) for sample size n- 0h  = 200, 0h = 10. 

 

5  Discussion of Results 

The interval forecast in Figures 1 and 2 are constructed using plus or minus a 

multiple of standard deviation for the forecast distribution when bootstrap method is 

applied and the AIC bootstrap forecast interval for sample sizes n = 100 and 200 

respectively using Model (I). Similarly,  Figures 3 and 4 are constructed using plus or 

minus a multiple of standard deviation for the forecast distribution when bootstrap 

method is applied and the AIC bootstrap forecast interval for sample sizes n = 100 and 

200 respectively using Model (II). In Figures 1 and 2, it is observed that the largest 

interval of the multiple of standard deviation, which is 5 times standard deviation gives 

70% and 80% coverage to the expected future values respectively while the bootstrap 

AIC forecast interval gives a 90% and 100% coverage to the expected future values 

respectively. In Figure 3 and 4, the smallest interval of the multiple of standard 

deviation, which 2 times standard deviation gives 100% coverage to the expected future 

values respectively while the bootstrap AIC forecast interval gives 70% and 100% 

coverage to the expected future values.  
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6 Conclusion 

In this paper, a new method of constructing interval forecast for non-linear 

LSTAR model using the bootstrap AIC function is presented. This new interval 

forecast is constructed using the bootstrap standard error of AIC obtained by re-

sampling from the generated residuals of the estimated LSTAR model. Simulation 

results show that the interval predicted by this method gives a better coverage compared 

to the conventional method of using a multiple of the standard deviation computed from 

the forecast distribution which does not indicate or suggest an appropriate forecast 

interval.  
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