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In this paper, we shall use higher-order hybrid Gaussian kernel in a meshsize 

boosting algorithm in kernel density estimation. Bias reduction is guaranteed 

in this scheme like other existing schemes but uses the higher-order hybrid 

Gaussian kernel instead of the regular fixed kernels. A numerical verification 

of this scheme is conducted and the results are compared with the regular 

fixed kernels. 
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Introduction  

Schapire in 1990 proposed the first boosting algorithm. Other authors like 

Freund (1995), Schapire and Singer (1999) but to mention a few have also 

made contributions. Boosting is a means of improving the performance of a 

‘weak learner’. It is applied in this context using the higher-order hybrid 

Gaussian kernel. Boosting does not only guarantee an error rate  that is better 

than random guessing but also deals with the correction of ‘noises’ at the tails 

of the distribution or where we have sparse cluster of data within a given 

region. 

In 2004, Mazio and Taylor proposed an algorithm in which a kernel density 

classifier is boosted by suitably re-weighting the data. The weight placed on 

the kernel estimator, is a ratio of a log function in which the denominator is a 

leave-one-out estimate of the density function. A theoretical explanation is 

also given by Mazio and Taylor (2004) to show how boosting is a bias 

reduction technique i.e a reduction of the bias term in the expression for the 

asymptotic mean integrated squared error (AMISE). 

In section 2, we discussed the method boosting in KDE using higher-order 

hybrid Gaussian kernel. Section 3 is devoted to discussion of data, 

implementation of algorithm while section 4 concludes this article. 

Methods 

 The leave-one-out estimator of Mazio and Taylor (2004)  in the weight 

function is replaced by a meshsize estimator due to the time complexity 

involved in the leave-one-out estimator. In the leave-one-out estimator, 

(n+(n-1)).n function evaluations of the density is required for each boosting 

step ( n- is the sample size). Thus, we are using a meshsize in its place. The 

only limitation on this meshsize algorithm is that we must first determine the 

quantity 
nh

1  so as to know what the meshsize that would be placed on the 

weight function  (Ishiekwene et al., 2008, Ishiekwene & Nwelih, 2011). The 

need to use a meshsize in place of the leave-one-out lies on the fact that 

boosting is like the steepest-descent algorithm in unconstrained optimization 

and thus a good substitute that approximates the leave-one-out estimate of the 

function (Duffy and Helmbold, 2000; Taha, 1971; Ratsch et al., 2000; 

Mannor et al., 2001: Hazelton & Turlach,2007). 

The new meshsize algorithm is stated as:  
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 Meshsize boosting Algorithm for Higher-order Hybrid Gaussian Kernel 

STEP 1: Given { xi 1,2,…n} initialize W1(i)  1/n  

STEP 2: Select h(the smoothing parameter) 

STEP 3: For m 1,2,…,M 

(i) Get  

 xfm



exp-

 
2

2
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(ii) Update 

Wm+1  Wm(i) + mesh 

STEP 4: Provide output 

             )(
1

xf
m
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and normalized to integrate to unity. 

We can see that the weight function uses a meshsize instead of the leave-one-

out log ratio function of  Mazio and Taylor (2004). The kernel function used 

is the higher-order Gaussian kernel unlike the fixed used in Ishiekwene et al 

2008. The idea of higher-order kernels via bias reduction dates back to 

Parzen (1962) and Bartlett (1963). Schucany and Summers (1997) also 

applied the generalized jackknife to bias reduction in kernel density 

estimation and showed that it is equivalent to using higher-order kernels 

(Birke, 2009). Jones and Foster (1993) discussed several methods for 

constructing higher-order kernels. The modified work of Jones and Foster 

(1993) leads to the proposed higher-order hybrid Gaussian kernel (Afere, 

2010 ) used in this paper. The numerical verification of this algorithm would 

be seen in the discussion. 

 Discussion 

This section presents three sets of data that are used to illustrate our 

algorithm and BASIC programming language is used. Table 1 is a sample of 
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size forty and is the lifespan of car batteries in years. Table 2 is a sample of 

size sixty-four and is the number of written words without mistakes in every 

100 words by a set of students in a written essay. Table 3 is the scar length of 

patients randomly selected in millimeters (Ishiekwene and Afere, 2001; 

Ishiekwene and Osemwenkhae, 2006).  

The results are shown in figures 3.1a – 3.3b. Figure 3.1a is the graph for Data 

1 showing the bias reduction, Figure 3.1b for Table 1 showing the MISE. 

Figure 3.2a is the graph for Table 2 showing the bias reduction, Figure 3.2b 

for Table 2 showing the MISE. Figure 3.3a is the graph for Table 1 showing 

the bias reduction, Figure 3.3b for Table 3 showing the MISE. In all three 

data sets used in this paper, we can clearly see the bias reduction which in 

turn translates to a reduction in the MISE. Table 3.1 shows the various 

window widths, bias
2
, variance and the MISE for all three data sets. 

Conclusion 

 Higher-order hybrid Gaussian kernel has been used in place of the classical 

fixed kernel in boosting in kernel density estimation and the results 

compared. The charts- figs. 3.1a – 3.3b and table 3.1 clearly reveals that the 

higher-order hybrid Gaussian kernel method does better than the classical 

fixed kernel method in kernel density estimation. It is therefore 

recommended for use in place of the classical fixed kernel method in 

boosting in KDE having exhibited the qualities of bias reduction which 

translates to a reduction in the MISE( ie bias
2
 + var). 
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Table 3.1: Showing the various higher-order hybrid window widths, bias, variance and MISE for three data sets   

                                                                                                        

m n = 40 n = 64 n = 110 

m
opth  

2Bias dx
 

Var dx

 

MISE m
opth  

2Bias dx
 

Var dx  

MISE m
opth  

2Bias dx
 

Var dx

 

MISE 

2 0.304267 0.00366687 0.029335 0.0330019 3.45847 0.000201626 0.00161301 0.00181463 0.139036 0.00291803 0.0233442 0.0262622 

4 0.351465 0.0021163 0.0253956 0.0275119 4.05966 0.000114511 0.00137414 0.00148865 0.166255 0.00162686 0.0195223 0.0211492 

6 0.388507 0.00143589 0.0229743 0.0244102 4.52586 0.000077037 0.00123259 0.00130963 0.187173 0.00108379 0.0173406 0.0184244 

8 0.418113 0.00106737 0.0213475 0.0224148 4.89647 0.0000569648 0.0011393 0.00119626 0.203733 0.000796555 0.0159311 0.0167277 

10 0.442283 0.000840869 0.0201809 0.0210217 5.19811 0.000044716 0.00107319 0.0011179 0.217178 0.000622702 0.0149449 0.0155676 

12 0.4624 0.000689389 0.0193029 0.0199923 5.44865 0.0000365656 0.00102384 0.0010604 0.228327 0.000507683 0.0142151 0.0147228 

14 0.479423 0.000581797 0.0186175 0.0191993 5.66035 0.0000307983 0.000985547 0.00101635 0.237735 0.000426642 0.0136525 0.0140792 

16 0.494032 0.00050186 0.0180669 0.0185688 5.84182 0.0000265258 0.000954931 0.000981456 0.245793 0.000366805 0.013205 0.0135718 

18 0.506723 0.000440362 0.0176145 0.0180548 5.99931 0.0000232465 0.000929862 0.000953109 0.25278 0.000320999 0.01284 0.013161 

20 0.517861 0.000391719 0.0172356 0.0176273 6.13743 0.0000206576 0.000908936 0.000929594 0.258904 0.000284916 0.0125363 0.0128212 
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Graph showing the Bias for Table 1 

 Graph showing the MISE for Table 1 
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Graph showing the Bias for Table 2 
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Graph showing the MISE for Table 2 
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Graph showing the Bias for Table 3 
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Graph showing the MISE for Table 3 
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