GASTROINTESTINAL PARASITES OF DOMESTIC CHICKEN
GALLUS-GALLUS DOMESTICUS LINNAEUS 1758 IN
SAMARU, ZARIA NIGERIA

*LUKA, S. A. & NDAMS, I. S.
Department of Biological Sciences
Ahmadu Bello University
Zaria, Nigeria.
*(Corresponding author)
sabduluka@yahoo.ca

The exotic or local breed of the domestic fowl Gallus-gallus domesticus Linnaeus 1758 is reared by rural and urban house holders who use their eggs and meat as a source of animal protein and farm manure (Kekeocha 1984; Frantovo 2000).

Gastrointestinal parasites which invade the host possess morphological and physiological features such as small thread like cylindrical body, hooks, and hard body cuticle enhance their adaptation to long living and existence in their hosts. These parasites constitute a major factor limiting productivity of the poultry industry by affecting the growth rate of the host resulting in malfunctioning of organs and eventually death (Soulsby 1982).

In the USA, an estimated annual loss of $US 200 million dollars have been reported while $45 million is spent yearly on prevention and medication of poultry diseases (Reid 1978). The domestic chicken has a wide range of feeding habits from grains, fruits to insects which may be carrying stages of parasites, thus predisposing them to parasitic infections (Adang 1999; Oniye 2000). Heavy gastrointestinal helminthiasis is characterised by emaciation, mucoid diarrhoea, loss of appetite, anaemia, weakness, paralysis and death. Associated with parasitic infections are acute or catarhal inflammation, maceration and thickening of gastrointestinal tract (Fatihu et al. 1991).

Multiple helminthiasis is common in poultry that are kept extensively while heavy infestation is common in intensively managed stock in which they cause severe pains that affect the normal activities of the birds resulting to death. This paper reports on the occurrence of gastrointestinal parasites of the domestic chicken in Zaria Nigeria to determine the prevalence and most preferred sites of infection in the host.

Source of Birds: A total of 92 local chicken breed slaughtered at the Samaru market, Zaria Nigeria were examined for the presence of gastrointestinal parasites. The gastrointestinal tracts were collected into sample bottles containing 10% formalin and taken to the laboratory for examination.

Laboratory analysis: The gastrointestinal tracts were separated into gizzard, crop, small intestine, large intestine and caecum after which each region was cut open by dissection. The intestinal scraping and floatation methods were used to collect the parasite (Soulsby, 1982; Wood et al. 1982).

Data analysis: Chi-square was employed to compare infestation rates.

Out of the 92 birds examined about 62% were infected with various species of gastrointestinal parasites, comprising 7 species of protozoa and 5 species each of cestode and nematode (Table 1).

The protozoan parasites encountered were Eimeria tenella Railliet & Lucy 1891, E. brunetti Levine 1942, E. mitis Tyzzer 1929, E. acervulina Tyzzer 1929, E. necatrix Johnson 1930, E. maxima Tyzzer 1929 and E. mivati Edgar & Siebold 1964. Of these, E. tenella was the most prevalent and E. mivati the least abundant. The protozoan parasites showed the highest prevalence during the rainy season than the dry season, suggesting that low humidity and warm environmental conditions favour the development of these parasites.

The cestode parasites encountered were Raillietia tetragona Molin 1858, R. echinobothrida Megnin 1880, R. cesticillus Molin 1858, Choanotaenia infundibulum Bloch 1779 and Hymenolepis carioca de Magalhaes 1898 out of which Hymenolepis carioca was the most prevalent and R. cesticillus the least. Cestodes are known to interfere with the metabolism of certain compounds: they absorb glucose and galactose and stored them as glycoprotein as well as absorbed amino acids, polypeptides and proteins (Cheng 1973).

The nematode parasites recovered included Ascaridia galli Shrank 1788, Heterakis gallinarum Shrank 1788, Harteria gallinarum Theiler 1919, Gongylonema ingluvicola Ransome 1904, Syngamus trachea Montagu 1811 out of which only A. galli and H. gallinarum were most prevalent and the remaining rare.

Of the 3 parasitic groups encountered, the protozoans were the most prevalent followed by cestodes and nematodes. Both cestodes and nematodes showed high predilection for specific sites in the gastrointestinal tract of the birds. Most of the helminth parasites were restricted to the small intestine, particularly the duodenum where there is optimum concentration of saline and glucose (Fatihu et al. 1991). Earlier report (Smyth 1976) suggests that the preference for the small intestine by these parasites is to complement their physiological osmotic feeding nature where nutrients exist in dissolved form.
The results showed that most of the parasites prefer to colonise the small intestine than the large intestine. No parasite was recovered in the crop and gizzard (Tables 2, 3 and 4) and only *E. tenella*, a protozoan, was recovered from the caecum (Table 2).

TABLE 2: SITE PREFERENCES OF PROTOZOAN PARASITES IN THE GASTROINTESTINAL TRACTS OF DOMESTIC CHICKEN IN ZARIA, NIGERIA (N=92)

<table>
<thead>
<tr>
<th>Preferred Sites</th>
<th>Parasite</th>
<th>No. infected</th>
<th>Species specific rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caecum</td>
<td>Eimeria tenella</td>
<td>26</td>
<td>28.3</td>
</tr>
<tr>
<td>Large intestine</td>
<td>E. brunette</td>
<td>10</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td>E. mitis</td>
<td>9</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>E. acervulina</td>
<td>8</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>E. necatrix</td>
<td>4</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>E. maxima</td>
<td>3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>E. mivati</td>
<td>2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

The presence of certain conditions especially moisture appears to favour the high infection rates with worms particularly those with a direct life cycle (Kennedy 1975; Audu et al. 2004).

No parasites were recovered from the crop and gizzard, an indication that the hostile nature of these regions may be serving as hindrance to their establishment since the regions are always filled up with grains and undigested items like stones (Ssenyonga 1982).

Both *S. trachea* and *G. ingluvicola* occurred in the small intestine but not in the crop (Table 4), agreeing with earlier observations (Fabiyi 1972; Ssenyonga 1982 & Wood 1982). The heavy worm load in the gastrointestinal tracts of the birds might be due to continuous ingestion of infested droppings or infested intermediate hosts of organisms such as beetles, cockroaches, earthworm, flies and grasshoppers that are readily available to them in poorly managed stocks (Abdu 1986; Majaro 1993).

The lesions observed on the intestinal walls of the infected chickens may be due to the severe inflammation or heavy worm...
burden in the caecal mucosa layer with haemorrhage and necrosis in the submucosa. This is in accordance with the observations of Anderson et al. (1976) & Majaro (1993) that intestinal mucosa of the birds severely infected with coccidian species showed deeply red lesions of variable sizes especially in the small intestine and caecum due to the large number of oocysts ingested.

Mixed infections of two or more species of parasites per bird was common in the present study. This might be attributed to food preference at a particular time which determines the establishment of mixed or single infection (Kennedy 1975).

The present study revealed high prevalence of parasitic infection in domestic chicken slaughtered in Zaria, Nigeria, which could serve as a silent source of economic loss to the poultry industry through reduced productivity. Therefore more attention should be focused towards the improvement of the management and care of free ranging chickens.

ACKNOWLEDGEMENT

We are grateful to the Departments of Biological Sciences and Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria Nigeria for providing the facilities used for the work. We acknowledge the technical assistance of Mallam Saleh Usman and Mr Daniel Gimba.

REFERENCES

