PARTITION IDENTITY

M.S. Ladan ${ }^{1}$, D. Singh ${ }^{2}$ and Y. Tella ${ }^{3}$

${ }^{1}$ Department of Statistics, Yaba College of Technology, Yaba, Lagos.
${ }^{2}$ Department of Mathematics, Ahmadu Bello University, Zaria. Nigeria.
${ }^{3}$ Department of Mathematics, Kaduna State University, Kaduna. Nigeria.
E-mail Address of the Corresponding Author: sm_ladan@yahoo.com _

Tel: +2348023313732

In an article by Hansraj Gupta (1970), various important identities were highlighted. Euler's identity, Jacob's identity, Cauchy's identities, Ramanujan identities, Rogers - Ramanujah identities etc., just to mention a few.
In particular, Rogers - Ramanujan's identities have received considerable attention. Several proofs of these identities have been given, Andrews, (1966) besides two by Rogers himself. Alder (1954), gave a generalization of Rogers identities. A combinatorial generalization of these identities were given by Gordon (1961). Among the most striking results in the theory of partitions are the Rogers-Ramanujan's Identities Alder (1948).

Definition of Important Terms

Here we introduce some definitions related to the study following Andrews (1979), a partition of a positive integer n is a way of writing n as a sum of positive integers. The summands of the partition are known as parts.

Partition

In Singh et al (2012), a partition of a positive integer n is defined as a sequence of positive integers whose sum is n.

Partition function $\mathbf{p}(\mathbf{n})$

In Andrews and Erikson (2004), a partition function $p(n)$ counts the number of unique partitions of the positive integer n. For examplep(5) $=7$ as seen above. For a recent reference see Ladan et al (2018).
The main purpose of this paper is to use the ideas of generating function to prove our proposition.

Proposition: The number of partitions into parts that occurs at most twice is equal to the number of partitions into parts which are $\neq 0 \bmod 3$.
Proof. The proof using generating function approach.
The generating function for partitions of a number in which each part can occur at most twice is given by

$$
\left(1+x+x^{2}\right)\left(1+x^{2}+x^{4}\right)\left(1+x^{3}+x^{6}\right) \ldots
$$

The generating function for the number of partition into parts not equal to $0 \bmod 3$ is given by

$$
\begin{gathered}
\left(1+x+x^{2}+\cdots\right)\left(1+x^{1.2}+x^{2.2}+\cdots\right)\left(1+x^{1.4}+x^{2.4}\right. \\
+\cdots) \ldots
\end{gathered}
$$

We now wish to show that this two are equal,

$$
\begin{gathered}
\left(1+x+x^{2}+\cdots\right)\left(1+x^{1.2}+x^{2.2}+\cdots\right)\left(1+x^{1.4}+x^{2.4}\right. \\
+\cdots) \ldots
\end{gathered}
$$

$$
=\frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{4}\right)\left(1-x^{5}\right) \ldots}
$$

Science World Journal Vol 13(No 3) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University.

$$
\begin{aligned}
& =\frac{1}{\prod_{i \neq o \bmod 3}\left(1-x^{i}\right)} \\
& =\frac{1}{\left(1-x^{3 i+1}\right)\left(1-x^{3 i+2}\right)} \\
& =\frac{\prod_{i}^{\infty}\left(1-x^{3 i}\right)}{\prod_{i}^{\infty}\left(1-x^{3 i}\right) \prod_{i}^{\infty}\left(1-x^{3 i+1}\right) \prod_{i}^{\infty}\left(1-x^{3 i+2}\right)} \\
& =\frac{\prod_{i}^{\infty}\left(1-x^{3 i}\right)}{\prod_{i}^{\infty}\left(1-x^{i}\right)} \\
& =\left(\frac{1-x^{3}}{1-x}\right)\left(\frac{1-x^{6}}{1-x^{2}}\right)\left(\frac{1-x^{9}}{1-x^{3}}\right) \ldots \\
& =\left(1+x+x^{2}\right)\left(1+x^{2}+x^{4}\right)\left(1+x^{3}+x^{6}\right) \ldots
\end{aligned}
$$

which is the generating function for the partitions of a number in which each part occur at most twice.

Conclusion

By this point, we have seen a wealth of material motivated by Euler Theorem, our results employ the proof technique introduced here namely, the use of generating functions as a powerful tool used in proving partition identities.

REFERENCES

Alder, H. L., 1948. The non-existence of certain identities in the theory of partitions and composition. Bull, Amer. Math. Soc. 54, 712-722.
Alder, H. L., 1954. Generalizations of the Rogers Ramanujan identities, Pacific J. Math 4, 161-168.
Alder, H. L., 1969. Partition identities - From Euler to the present. Amer. Math, Monthly 76:733-746

Alder H. L., 1979. The use of Generating function to Discover and prove partition identities two-year College Math. J. 10. 318329.

Andrews. G. E., 1965. A simple proof of Jacob's triple product identity, Amer, Math. Soc. 16. 333-334.
Andrews, G. E., 1966. An analytic proof of the Rogers-Ramanujan - Gordon identities - Amer. J. Math 88. 844-846.

Andrews, G.E., 1979. An Introduction to Ramanujan's lost Note book, American Mathematical Monthly 86 (2), 89-108.
Andrews, G.E., 1984. Theory of Partitions, Cambridge University Press. New York.
Andrews, G.E, and Erikson, K 2004. Integer Partitions, Cambridge University Press. New York.
Euler, L., 1948. Introduction in Analysis infinitorium" Lausare 1, 253-273.
Gordon, B., 1961. A Combinatorial generalization of the RogersRamanujan identities. Amer. J. Math. Vol. 83. pp. 393399.

Gupta, H., 1970. Partitions - A survey, Journal of Research of the National Bureau of standard B. Mathematical Sciences Vol. 948. No. 1 January - March.

Ladan, M.S., Singh, D., and Tella, Y. 2018. Extension of Formulas for Partition Functions, Science World Journal Vol. 13 (1) pp.28-31.
Niven I and Zuckerman H. S., 1980 An introduction to the Theory of Numbers, $4^{\text {th }}$ Ed., 268. New York. Wiley.
Singh, D., Ibrahim, A.M.., Singh, J.N., \& Ladan, M.S. 2012. An overview of Integer partitions, Journal of Mathematical Sciences and Mathematics Education, 7(2), 19-31.

