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ABSTRACT 
Gamma Modified Two Parameter (GMTP) is a novel biased two-
parameter estimator proposed to address the effects of 
multicollinearity in Generalized Linear Models (GLMs). An 
expansion of the linear regression model's Modified Two 
Parameters (MTP) is the newly suggested estimator. The 
performance of the GMTP estimator over the maximum likelihood 
estimator (MLE), gamma ridge estimator (GRE), gamma Liu 
estimator (GLE), and gamma Liu-type estimator (GLTE) reviewed 
in this article are theoretically compared, and the estimator's 
properties is discussed. A simulation study that examine the effects 
of the dispersion parameter, sample size, explanatory variables, 
and degree of correlation are used to examine the superiority of the 
GMTP with four different biasing parameters over the MLE, GRE, 
GLE, and GLTE with regard to the estimated MSE criterion. The 

GMTP estimator with biasing parameters 2k  and 4k
outperforms the MLE, GRE, GLE, and GLTE, according to 
simulation research. More research can be done to see how well 
the GMTP estimator performs in comparison to other estimators 
that were not examined in this study. 
 
Keywords: Multicollinearity, Generalized Linear Models, Two-
Parameter estimator, Liu estimator, Mean squared error matrix, 
Simulation. 
 
INTRODUCTION  
In regression models, the distribution of the response variable is 
frequently an issue to be addressed. In real-world analysis, the 
response variable does not always follow a normal distribution. For 
example, datasets derived from economic and social sciences 
datasets typically contain positive values, resulting in positively 
skewed datasets. Similarly, epidemiological data is frequently 
positively skewed, violating the response variable's normality. In 
cases where the dependent variable no longer follows a normal 
distribution but is positively skewed, the Gamma regression model 
is an appropriate model to use (Malehi et al., 2015; Asar and Genc, 
2015; Hattab, 2016; Asar and Genc, 2018; Algamal, 2018a; Amin 
et al., 2019).  
The Maximum Likelihood (ML) estimator is the most commonly 
employed estimator to determine the Gamma Regression Model's 
parameters under certain assumptions, similar to how the Ordinary 
Least Squares (OLS) estimator is used to calculate the Linear 
Regression Model's parameters.  
When using the Gamma regression model, non-correlated 
explanatory variables must be assumed. However, it is often 
obvious in research that there is a strong or nearly strong linear 
relationship between the explanatory variables, which brings up the 

multicollinearity issue. The estimated coefficients by the maximum 
likelihood (ML) method become unstable and have a high variance 
in the presence of multicollinearity, resulting in low statistical 
significance (Kurtoglu and Ozkale, 2016; Amin et al., 2017; Perez-
Melo and Kibria, 2020).  Furthermore, the regression coefficients’ 
sampling variance can influence both inference and prediction 
(Hattab, 2016; Algamal 2018a; Amin et al., 2019).  
Several techniques have been put forth in the literature to address 
the issue of multicollinearity in linear regression, including the Stein 
(1956) estimator, principal component estimator (Massy, 1965), 
ridge regression estimator (Hoerl and Kennard, 1970), modified 
two-parameter estimator (Dorugade, 2014), Liu estimator (Liu, 
1993), Liu-type estimator (Liu, 2003), and a modified Jackknife 
Ridge estimator proposed by Batah et al., (2008). Liu estimation 
was developed by Kurtoglu and Ozkale (2016). Similarly, Amin et 
al., (2017), Algamal (2018b) and Asar and Genc (2015) presented 
several methods for estimating the Gamma regression model's 
ridge parameter, k. Adewale et al., (2021) extended new ridge-type 
estimator to the gamma regression model, and Algboory and 
Algamal (2022) worked on Liu-Type estimator in gamma 
regression model on the basis of (r-(k-d)) class estimator.  
 
The goal of this paper is to generalize a modified two-parameter 
(MTP) estimator proposed by Dorugade (2014) into gamma 
regression models.  
The paper is structured as follows: in Section 2, the Gamma 
Modified Two-Parameter estimator is proposed and its mean 
squared error (MSE) properties are derived. Section 3 includes a 
simulation study to assess the performance of the gamma modified 
two-parameter estimator and some existing estimators in the 
presence of multicollinearity. Section 4 concludes with some 
concluding remarks. 
 
MODEL AND ESTIMATORS 
When the predictor variable is positively skewed and the mean is 
proportional to the dispersion parameter, the Gamma Regression 
Model is used (Qasim et al., 2018; Amin et al., 2017)). Let us 

consider a Gamma distribution with a nonnegative shape   and 

a nonnegative scale  parameter, as well as a probability density 

function:  
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canonical parameter, and ( )





2
2 i

iyVar == , 

( ) 'exp ii x=  where ( )'
21 ,...,, ipiii xxxx = , 

ni ,...,2,1=  and pj ,...,2,1=  where n is the sample size 

and p is the number of regressors variables such that (n > p). The 
log-likelihood function of equation (1) is given as follows: 
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Because equation (2) is nonlinear, it is solved iteratively using the 
Fisher scoring method as follows: 
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process continues until the convergence of estimates. Hence, the 
ML estimator is obtained as: 
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obtained at the final iteration by the procedure of Fisher scoring 
(Hardin and Hilbe, 2012). The following is the matrix for the mean 
squared error (MMSE) and mean square error (MSE) of the ML 
estimator, respectively: 
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Where j  is regarded as jth  of the matrix's eigenvalues 

XWXA ˆ'= . The following is the analysis of the matrix A's 

eigenvalue decomposition: 
'qqA = such that q is the 

orthogonal matrix made up of the eigenvectors that correspond to 

the eigenvalues of A such that ( )
pdiagA  ,...,, 21= . 

Some of the eigenvalues will be small when the predictor variables 
have a linear association, indicating that the information matrix A is 
ill-conditioned. As a result, the ML estimator's MSE will be 
overestimated, and some regression coefficients will be severely 
impacted. 
 
Estimator of Gamma Ridge 
It was Hoerl and Kennard (1970) who initially introduced the ridge 
estimator, an estimator that is frequently used to reduce 
multicollinearity in linear regression models. In the context of 
extended linear models, this was suggested by Segerstedt (1992). 
The definition of the gamma ridge estimator (GRE) is: 
 

( ) MLEGRE AkIA  ˆˆ 1−
+=                                                     (7) 

where ( ) 1
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−
− += kIXWXAk  and k > 0 is the biasing 

parameter. The MMSE and MSE of GRE are defined respectively 
as: 
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where  'q=  in such a way that q is A's eigenvector matrix. 

 
Estimator of Gamma Liu 
Kurtoglu and Ozkale (2016) employed the Liu estimator, which was 
first published by Liu (1993) in the linear regression model and is 
known as the Gamma Liu estimator given as: 

MLEDGLE F  ˆˆ =                                             (10)      

where ( ) ( ),1
dIAIAFD ++=

−
 0 < d < 1 is the Liu biasing 

parameter. The MMSE and MSE of GLE are defined respectively 
as: 
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Estimator of Gamma Liu-type 
The Liu-type estimator, first introduced by Liu (2003) in the linear 
regression model, has been applied to the generalized linear 
models by Algamal and Asar (2018) and is known as the Gamma 
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Liu-type estimator defined as: 
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A Proposed Estimator of Gamma Ridge-Type  
Dorugade (2014) proposed Modified Two-Parameter (MTP) as: 
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We offer the following Gamma Modified Two-Parameter (GMTP) 
estimator as the result of our work, which suggests generalizing the 
modified two-parameter (MTP) estimate in the gamma regression 
model: 
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. The Gamma Modified Two-Parameter Estimator's properties are 
as follows: 
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The Matrix Mean Square Error and Mean Square Error of GMTP 
are given respectively as: 
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Setting k = 0 in equation (24), we obtain 
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Also, setting d = 1 in equation (24), we obtain 
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The Effectiveness of Gamma Modified Two-Parameter 
Estimators  
In this part, we employed two important  lemmas to provide a 

comparison between GMTP̂  and MLÊ , GRÊ , GLÊ , 

GLTÊ  utilizing lesser MSE criterion. 

Lemma 1: Let R be a n × n positive definite matrix and  be a 

vector. Then, 
'−R  is positive definite if and only if 

11' −  R  (Farebrother, 1976).   

 
We thus arrive at the following conclusion: 

Lemma 2: Suppose that 2,1, == iyM ii be the two 

competing estimators of  . Assume that 

( ) ( ) 0ˆˆ
21 −=  CovCovI ,then, 
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( ) ( ) 0ˆˆ
21 −  MMSEMMSE if and only if 

( ) ,1'

11

'

2 +  I where i denotes the bias of î  

(Trenkler and Toutenburg, 1990). 
In the context of the proof of 

( ) ( ) 0ˆˆ
21 −  MMSEMMSE  leads to the inference 

that ( )2̂MMSE  is better than ( )1̂MMSE . To 

compare the proposed estimator with certain existing ones, the 
same criterion is applied; (see Akdeniz and Erol, 2003). 
 
Comparison of GMTP and MLE 

Theorem 1: GMTP̂  is superior to MLÊ  if  

( )  1
1'11'' −
−−−  HHHAAH                 (27) 

 
Proof: The difference of the MSE is 
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Comparison of GMTP and GRE 

Theorem 2: GMTP̂  is superior to GRÊ  if: 
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It can be seen from the above equation  that 2V  is positive definite 

if

( ) ( )  ( ) ( ) ( )( ) 22242244
21 kddkdkdkkkd jjjjjjj −−+−++−+    

Hence, by lemma 1, the proof is completed. 
 

Comparison of GMTP̂  and GLÊ  

Theorem 3: GMTP̂  is better than GLÊ  if 
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It can be seen from the above equation that 3V  is positive definite 

if

( ) ( ) ( ) ( )  ( ) ( ) ( ) ( )( )  222242222242
21111 kddkkddkkdd jjjjjjjjj −−+−+−++−++   

 
Hence, by lemma 1, the proof is completed. 
 

Comparison of GMTP̂  and GLTÊ  

Theorem 4: GMTP̂  is better than GLTÊ  if 
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Proof: we investigate the difference between equation (24) and 
(15) 
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It can be seen from the above equation that 4V  is positive definite 

if

( ) ( ) ( )  ( ) ( ) ( ) ( )( )  2222422442
21 kddkkkdkdkkdd jjjjjjjj −−+−+++−+−   

 
Hence, by lemma 1, the proof is completed. 
 
Choosing the Gamma Modified Two-Parameter Estimator’s 
parameters, k and d 
The biasing parameter recommended by Hoerl et al. (1975) is 
utilized in accordance with Dorugade (2014) so that 
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But k is dependent on both  and j . They will be practically 

replaced by their unbiased estimator ̂ and ĵ . This is thus 
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The value of k was proposed by Hoerl et al. (1975) by taking the 
harmonic mean of the k values (for j = 1, 2,..., p). Thus, for the 
suggested estimator, the Gamma Modified Two-Parameter 
Estimator, four shrinkage parameters are investigated.  This is how 
they are defined: 
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Therefore, the d that minimizes ( )GMTPMSE ̂  can be thought 

of as the best value of d.   
Let 

( ) ( ) ( )
( )

( )( )
( )

== 













+

−−
+













+

+
==

p

i

j

j

j
p

j j

jj

GMTP
kd

kddk

kd

k
MSEdkg

1

2

4

222

1
4

2
21

ˆ, 









 

 
Then, we obtain by differentiating g (k, d) w.r.t. d and equating to 
0, we have 
 

( )( )

= 










 −++
=

p

j j

jjjj

k

k
d

1
2

2




                     (41) 

On the other hand, d is dependent upon  and j . They will be 

practically replaced by their unbiased estimator ̂ and ĵ .  

Thus, this will be acquired. 
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MONTE CARLO SIMULATION  
This section looks at the performance of GMTP with various 
multicollinearity levels using a Monte Carlo simulation experiment. 
 
Design of Simulation  
In accordance with Amin et al. (2017) and Amin et al. (2019) the 
response variable of n observations from the Gamma Regression 

model is constructed as, ( ) ,~ ii Gammay  where 

dispersion parameter,  5.1,1,5.0 and

)exp( ' ii x== , ( )p ...,, ,21=  with 

parameter vector,   chosen such that 1
1

2 =
=

p

j

j . The 

explanatory factors are obtained by following Gibbons (1981); 
Kibria (2003); Lukman and Ayinde (2017) and Idowu et al. (2023) 
as follows: 
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2
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where  depict the correlation between the explanatory variables, 

ijw  are independent standard normal pseudorandom numbers. 

The effectiveness of the suggested estimators is assessed in 
relation to many parameters, including the degree of correlation 

)99.0,95.0,9.0,8.0( = , the number of explanatory 

variables (p = 4, 8), and the sample size (n = 30, 50, 100, 150, 200, 
250). The generated data is repeated 1,000 times in the R 
programming language in order to incorporate these various values 

of n,  ,   and p. The average MSE is then determined by: 
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SIMULATION RESULT 
The estimated Mean Square Errors (MSEs) of the suggested 
estimators with four different biasing parameters under various 
circumstances, including the degree of correlation, sample size, 
dispersion parameter, and explanatory variables, are provided in 
Tables 1 and 2. From the simulation results, it can be seen that the 
estimated MSE increases as the dispersion parameter values 
increase; the estimated MSE values of all the estimators decrease 
with increasing n; and that the estimated MSE increases as the 
degree of multicollinearity increases. The GMTP estimated MSE 

values with 2k  and 4k  are consistently less than those of the 

compared estimators. Out of all these estimators, MLE performs 

the worst. Therefore, GMTP with 2k  and 4k  are regarded as a 

robust alternative among others in nearly all scenarios when all 
other parameters are held constant and the dispersion parameters 
are 1.5 and 0.5, respectively. 
 

 
Table 1: Estimated MSE of the estimators when n = 30, 50 and 100 

phi    0.5         1.5      

n p 
rho MLE GRE GLE GLTE 

GMTP 
1 

GMTP 
2 

GMTP 
3 

GMTP 
4 

MLE GRE GLE GLTE 
GMTP 
1 

GMTP 
2 

GMTP 
3 

GMTP 
4 

30 4 0.8 0.015 0.0065 0.012 0.009 0.0581 0.0074 0.5211 0.006 4.48 2.007 3.553 2.755 1.8786 0.7045 27.939 0.778 
  0.9 0.025 0.0084 0.018 0.014 0.1096 0.0084 1.1221 0.005 8.358 3.465 6.0475 5.276 4.9609 0.8619 66.786 0.903 
  0.95 0.047 0.0123 0.03 0.025 0.057 0.0115 0.3383 0.007 16.39 6.529 10.947 11.13 14.092 1.3971 185.35 1.349 
  0.99 0.233 0.0453 0.127 0.132 0.0775 0.0179 0.478 0.012 83.66 32.69 50.802 77.12 147.82 12.985 1767.2 12.27 
 8 0.8 0.016 0.0045 0.009 0.007 0.1023 0.0019 4.668 0.002 1.185 0.429 0.8826 0.76 0.2067 0.094 13.671 0.1021 
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  0.9 0.03 0.007 0.016 0.012 0.2077 0.0024 10.018 0.002 2.19 0.743 1.4904 1.514 0.5359 0.095 32.98 0.1023 
  0.95 0.061 0.0125 0.031 0.024 0.3787 0.0031 18.861 0.002 4.229 1.384 2.672 3.236 1.5516 0.104 83.689 0.111 
  0.99 0.332 0.0638 0.163 0.133 0.9048 0.007 46.421 0.006 20.8 6.624 12.058 20.17 15.956 0.3659 846.31 0.362 

50 4 0.8 0.629 0.3492 0.515 0.428 1.2409 0.1928 9.6533 0.158 2.617 1.262 2.2312 1.65 1.8242 0.7062 28.616 0.786 
  0.9 1.117 0.5599 0.845 0.74 2.6166 0.258 21.862 0.217 4.691 1.961 3.6281 2.911 5.6269 0.877 78.285 0.972 
  0.95 2.138 1.005 1.521 1.447 5.6787 0.4873 39.775 0.431 9.041 3.462 6.338 5.936 16.954 1.6058 231.4 1.668 
  0.99 10.8 4.829 7.224 8.909 52.282 7.6322 616.39 7.4967 46.16 16.64 28.352 42.16 160.86 19.987 1841.8 19.68 
 8 0.8 0.011 0.0048 0.009 0.006 0.0031 0.0021 0.0071 0.002 1.085 0.451 0.8975 0.705 0.2168 0.149 8.3507 0.165 
  0.9 0.019 0.008 0.014 0.01 0.0036 0.0026 0.0083 0.002 1.987 0.757 1.4933 1.336 0.6856 0.153 32.828 0.1699 
  0.95 0.036 0.0147 0.025 0.019 0.0052 0.0038 0.0135 0.003 3.84 1.391 2.6156 2.754 2.0383 0.175 94.931 0.1917 
  0.99 0.178 0.0709 0.113 0.089 0.0355 0.0296 0.0756 0.027 19.16 6.722 11.326 17.02 21.597 0.7395 854.41 0.739 

100 4 0.8 2.731 1.7503 2.438 2.113 7.0096 1.013 52.738 0.85 1.764 1.045 1.6493 1.327 1.1669 0.6864 16.892 0.783 
  0.9 4.757 2.7389 3.934 3.673 14.023 1.2604 134.52 1.063 3.097 1.597 2.7184 2.332 3.4123 0.86 45.251 0.955 
  0.95 9.116 4.9134 7.005 7.449 30.998 2.6941 341.92 2.557 5.96 2.823 4.815 4.831 10.532 1.491 153.48 1.571 
  0.99 47.38 24.56 33.36 52.67 211.38 38.486 2556.1 37.806 31.19 14.1 21.391 37.08 103.92 18.317 1062.2 18.079 
 8 0.8 0.126 0.063 0.107 0.1 0.0853 0.0218 1.3704 0.019 2.918 1.46 2.6839 2.153 0.662 0.7661 20.903 0.8329 
  0.9 0.237 0.1112 0.186 0.216 0.1199 0.0226 2.5152 0.02 5.238 2.319 4.5079 4.083 1.8933 0.749 74.464 0.8231 
  0.95 0.471 0.2157 0.344 0.52 0.171 0.0247 4.1829 0.021 10.11 4.17 7.9811 8.838 7.7216 0.768 337.64 0.8463 
  0.99 2.478 1.1422 1.667 4.238 0.451 0.0962 9.5293 0.087 51.82 20.56 34.203 65.78 84.332 1.672 2744.6 1.7251 

 
 
Table 2: Estimated MSE of the estimators when n = 150, 200 and 250 

phi    0.5         1.5      

n  p 
  MLE GRE GLE GLTE 

GMTP 
1 

GMTP 
2 

GMTP 
3 

GMTP 
4 

MLE GRE GLE GLTE 
GMTP 
1 

GMTP 
2 

GMTP 
3 

GMTP 
4 

150 4 0.8 4.738 3.248 4.37 3.892 11.46 2.012 78.495 1.69 1.472 0.944 1.408 1.15 0.972 0.681 11.46 0.771 

  0.9 8.011 4.899 6.911 6.591 23.62 2.241 208.42 1.85 2.518 1.391 2.295 1.94 2.531 0.827 31.84 0.917 

  0.95 15.11 8.562 12.13 13.21 48.44 3.235 500.98 2.771 4.7943 2.403 4.075 3.929 8.421 1.355 103.6 1.441 

  0.99 78.05 42.04 56.79 94.39 359.4 50.44 3796.9 49.24 25.179 11.92 18.23 29.25 103.4 15.2 1102 15.09 

 8 0.8 1.515 0.877 1.366 1.2 2.076 0.321 39.917 0.285 2.3473 1.293 2.229 1.777 0.603 0.757 14.79 0.818 

  0.9 2.808 1.516 2.384 2.354 4.105 0.344 112.62 0.301 4.1931 2.048 3.804 3.281 1.511 0.733 54.48 0.799 

  0.95 5.566 2.915 4.45 5.127 9.089 0.367 318.69 0.318 8.1316 3.716 6.918 6.964 4.717 0.729 207.3 0.8 

  0.99 29.57 15.51 21.87 34.89 75.82 0.626 2441.7 0.545 42.456 18.93 30.89 51.9 56.72 1.247 2141 1.294 

200 4 0.8 4.387 3.209 4.158 3.641 8.457 1.914 58.135 1.656 1.3357 0.918 1.299 1.069 0.747 0.688 8.54 0.763 

  0.9 7.385 4.888 6.66 6.009 13.81 2.067 117.64 1.767 2.2848 1.381 2.152 1.759 1.886 0.838 23.18 0.938 

  0.95 13.95 8.662 11.87 11.73 28.94 2.861 302.86 2.503 4.3736 2.444 3.923 3.431 5.614 1.366 70.31 1.425 

  0.99 72.81 43.7 56.61 79.01 201 45.03 2191.5 43.73 23.336 12.61 18.33 22.95 67.28 14.87 731.3 14.67 

 8 0.8 2.22 1.345 2.05 1.772 3.178 0.61 46.01 0.537 1.9143 1.135 1.848 1.513 0.618 0.779 9.949 0.828 

  0.9 4.06 2.253 3.548 3.354 6.313 0.639 128.08 0.56 3.3594 1.736 3.132 2.71 1.218 0.757 35.45 0.812 

  0.95 8.039 4.276 6.615 7.165 14.54 0.687 446.49 0.596 6.489 3.092 5.738 5.63 3.97 0.757 136.2 0.817 

  0.99 43.25 22.86 32.59 49.4 96.05 1.84 3173.3 1.68 34.306 15.77 26.23 40.29 48.63 1.311 2200 1.361 

250 4 0.8 4.123 3.137 3.97 3.443 7.074 1.85 42.253 1.633 1.277 0.919 1.253 1.046 0.701 0.725 6.054 0.785 

  0.9 6.878 4.759 6.369 5.528 12.02 1.934 105.95 1.701 2.1959 1.411 2.106 1.749 1.594 0.933 16.85 0.987 

  0.95 12.96 8.442 11.42 10.45 23.28 2.932 243.16 2.628 4.2336 2.551 3.918 3.461 4.522 1.64 47.51 1.676 

  0.99 68.02 42.99 55.07 63.36 165.1 57.03 1520.5 55.57 22.905 13.53 19.02 23.27 52 19.69 430 19.37 

 8 0.8 0.86 0.53 0.802 0.697 1.273 0.254 17.472 0.227 1.8074 1.111 1.756 1.454 0.655 0.782 8.25 0.827 

  0.9 1.561 0.871 1.384 1.324 2.646 0.261 47.811 0.232 3.1492 1.685 2.97 2.6 1.228 0.767 32.75 0.815 

  0.95 3.088 1.637 2.58 2.879 5.668 0.269 183.9 0.238 6.0694 2.986 5.465 5.438 3.766 0.782 116.7 0.835 

  0.99 16.69 8.739 12.72 22.67 34.38 0.537 1606.5 0.493 32.2 15.23 25.33 40.11 53.87 1.704 1565 1.744 

 
Conclusion  
In order to address the consequences of multicollinearity in GLMs, 
this study suggested a new biased two parameter estimator called 
Gamma Modified Two Parameter (GMTP). The new proposed 
estimator is an extension of the Modified Two Parameters (MTP) in 
the linear regression model. The properties of the GMTP and the 

existing estimators are compared theoretically. The superiority of 
the GMTP with four different biasing parameters over the MLE, 
GRE, GLE, and GLTE with respect to the estimated MSE criterion 
is investigated through a simulation study that looks at the impact 
of the dispersion parameter, sample size, explanatory variables, 
and degree of correlation. Simulation research shows that the 

https://dx.doi.org/10.4314/swj.v18i4.8
http://www.scienceworldjournal.org/


Science World Journal Vol. 18(No 4) 2023   DOI: https://dx.doi.org/10.4314/swj.v18i4.8 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 A Two-Parameter Estimator For Correlated Regressors in Gamma Regression Model 596 

GMTP estimator with biasing parameters 2k  and 4k  performs 

better than the MLE, GRE, GLE, and GLTE. More research can be 
done to see how well the GMTP estimator performs in comparison 
to other estimators that were not examined in this study. 
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