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ABSTRACT 
This study investigated the long- run and short-run relationships 
between solid waste generation in Nigeria and two key climate 
variables: rainfall and temperature. Employing a Vector Error 
Correction Model (VECM) analysis on data from 1982 to 2022, then 
revealed counterintuitive findings. In the long run, lagged rainfall 
exhibits a negative association with solid waste (p < 0.05), 
potentially explained by increased waste decomposition in wetter 
conditions. Conversely, lagged temperature showed a positive 
association (p < 0.05), aligning with theories of increased 
consumption and economic activity in warmer periods. The short-
run analysis unveils a self-correcting mechanism in solid waste 
generation and a statistically significant negative impact of lagged 
temperature (p < 0.05), requiring further investigation. Based on 
these findings, the study proposed policy implications for waste 
management strategies and data collection, emphasizing the need 
for sustainable solutions in the context of climate change. 
 
Keywords: solid waste management; vector error correction model 
(VECM); cointegration analysis; Climate Variables.   
 
INTRODUCTION  
Climate change, as elucidated by Abbass et al. (2021), Alhassan 
(2021), Liu et al. (2022), and Li and Tan (2023), is not just a 
localized issue but a global phenomenon with profound 
implications for environmental systems, ecosystems, and human 
societies. The impacts of climate change on these interconnected 
elements are multifaceted and can exacerbate existing 
environmental issues while also creating new challenges. 
Observations (Olasunkanmi, 2014; Adeniran et al., 2020; Abbass 
et al., 2021; Alhassan, 2021; Liu et al., 2022; and Li and Tan, 2023) 
suggest that climate change directly affects environmental systems 
(weather patterns, precipitation levels, and temperature variations) 
and ecological processes (pollination, migration patterns, and 
nutrient cycling), which are vital for the functioning of ecosystems. 
For example, shifts in temperature and precipitation can affect the 
timing of flowering and the availability of resources, impacting the 
reproductive success of plants and the animals that depend on 
them (Alhassan, 2021; Liu et al., 2022; and Li and Tan, 2023). On 
a societal level, studies such as those by Hoegh-Guldberg et al. 
(2018), Cleland et al. (2020), and the IPCC (2022) have noted that 
the impacts of climate change are far-reaching and severe, 
affecting weather patterns and leading to crop failures, food 
shortages, and water scarcity, particularly in vulnerable regions 
with limited resources and infrastructure. 
In Nigeria, solid waste management remains a critical issue due to 
its significant impact on public health, environmental quality, and 
sustainable development. According to the World Bank, the 
country's annual waste generation has increased from 
approximately 17 million tonnes in 2000 to over 32 million tonnes 

in 2020. The United Nations Industrial Development Organization 
(UNIDO, 2022) has observed that Nigeria generates over 32 million 
tonnes of waste annually, with plastic accounting for 2.5 million 
tonnes. Urban areas, particularly major cities like Lagos, have 
emerged as significant contributors to the overall waste generation 
in Nigeria. Currently, Nigeria generates an average of 0.51 
kilograms per capita per day (World Bank, 2022). Along with the 
quantitative growth in waste generation, the nature of solid waste 
in Nigeria has also changed, with the share of synthetic waste with 
complex compounds, especially plastics, glass, and hazardous 
materials, increasingly larger (Karbassi and Heidari, 2015). The 
country is among the top 20 nations that contribute 83 percent of 
the total volume of land-based plastic waste that ends up in the 
oceans. Unfortunately, there is no national strategy in place to 
effectively manage and commercialize waste in Nigeria. As a 
result, more than 200,000 tonnes of plastics from Nigeria end up in 
the Atlantic Ocean, while over 172.7 million people in the country 
are living in an unclean environment (Aina and Adeola, 2020). 
Evidence has shown that Nigeria experiences diverse climatic 
conditions due to its geographical location (Adewole et al., 2018; 
Akhtar et al., 2019; Aiyelaagbe et al., 2019). These conditions, 
according to Akhtar et al. (2019) and Aiyelaagbe et al. (2019), 
include rising temperatures, changes in rainfall patterns, high 
humidity levels, and floods, droughts, among others. Previous 
research by Guerrero, Maas, and Hogland (2013), Lumbreras and 
Fernández (2014), Nathanson (2015), Aiyelaagbe et al. (2019), 
and Otitoloju et al. (2020) have noted that climate change and its 
associated variables significantly impact solid waste generation 
and management. For instance, rising temperatures can accelerate 
organic waste decomposition, potentially increasing methane 
emissions and requiring adjustments in waste collection frequency 
(Adewole et al., 2018). Changes in rainfall patterns can influence 
waste segregation, transportation, and disposal. The increased 
frequency and intensity of extreme weather events like droughts 
and floods can disrupt waste collection and processing 
infrastructure, exacerbating waste management issues (Akhtar et 
al., 2019). 
With a rapidly growing population and changing consumption 
patterns, which are driving a significant increase in solid waste 
generation, Nigeria is facing severe environmental and health 
challenges. However, a critical gap exists in our understanding of 
how key climate variables like temperature and precipitation 
directly and indirectly impact the dynamics of solid waste 
generation across diverse regions and waste types. This lack of 
knowledge hinders the development of effective and sustainable 
waste management strategies that adapt to the evolving climate 
and its multifaceted impacts on waste characteristics, collection 
efficiency, and disposal outcomes. Consequently, inadequate 
waste management under a changing climate exacerbates 
environmental risks like air and water pollution, greenhouse gas 
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emissions, and vector-borne diseases, disproportionately affecting 
vulnerable communities and hindering broader sustainability goals. 
In a previous work, Shehu et al. (2024) examined the long run and 
short run impact of GDP and Real Income on Solid Waste in Nigeria 
Using Vector Error Correction Model. This present paper aims to 
address this gap by employing a Vector Error Correction Model 
(VECM) to analyze the cointegrated relationships and dynamic 
impacts of temperature and precipitation on solid waste generation 
in Nigeria.  
Nigeria faces a burgeoning solid waste challenge due to rapid 
population growth and evolving consumption patterns (World Bank, 
2023). However, a crucial knowledge gap remains: how key climate 
variables, like temperature and precipitation, directly and indirectly 
influence waste generation in Nigeria. Solid waste encompasses 
household, industrial, commercial, and agricultural discards 
(Osinowo et al., 2020). Temperature, precipitation, and extreme 
weather events are key climate variables influencing its generation 
(UNEP, 2021). Higher temperatures accelerate organic waste 
decomposition, potentially increasing methane emissions, a potent 
greenhouse gas (IPCC, 2022). Intense rainfall events can 
overwhelm waste management infrastructure, leading to leachate 
contamination and waste dispersion (UNEP, 2021). Changes in 
rainfall patterns can affect waste management practices, such as 
disrupting waste collection and disposal (UNFCCC, 2022). More 
frequent and intense storms can damage waste infrastructure, 
leading to waste spills and contamination (World Bank, 2023). 
The Atmospheric Heat Trapping (Greenhouse Effect), proposed by 
Joseph Fourier in 1824 and further developed by scientists like 
Eunice Newton Foote and Svante Arrhenius, explains how specific 
atmospheric gases trap heat, contributing to global warming 
(NASA, 2023). The basic premise of atmospheric heat trapping is 
that certain gases in the atmosphere, known as greenhouse gases 
(GHGs), absorb some of the long-wave infrared radiation emitted 
by Earth's surface and atmosphere. This trapped energy 
contributes to warming the planet, similar to how a greenhouse 
traps heat from sunlight. This theory helps us analyze the dynamics 
of climate variables on solid waste. In a warming climate, landfills 
could experience accelerated organic decomposition, potentially 
impacting methane emissions and landfill stability (IPCC, 2022). 
A growing body of evidence suggests climate change significantly 
impacts on a number of factors (World Bank, 2023).  The first of 
such studies is the work of Li and Tan (2023) who explored 
strategies to enhance pollution oversight by local governments 
while minimizing collusion with incineration plants. The authors 
proposed a differential game model simulating interactions 
between these entities. Their findings revealed that higher 
environmental assessment standards incentivize stricter oversight 
by local governments.  
In another related study, Ani, et al. (2022) investigated the 
changing impact of climate change on food and human security in 
Nigeria. It employed quantitative and qualitative data from various 
sources, including Statistical data on climate variability, Semi-
structured interviews, Reports from international NGOs, and Focus 
group discussions with farmers, government officials, and other 
stakeholders. The study found that climate change negatively 
affects food security and contributes to armed conflicts over natural 
resources, jeopardizing human security. 
Michalak and Szyja (2023) use a "benchmarking" approach to 
compare Poland's climate change adaptation policy with other EU 
countries. Analyzing 12 projected indicators of economic and 
climate impact, the study reveals contrasting trends: while Poland 

has the lowest projected impact among Western EU nations, its 
adaptation policies are the weakest. This disparity is reversed 
when comparing Poland to other 2004 EU entrants. Notably, the 
study highlights a broader European concern - despite rising 
negative climate consequences, adaptation policy implementation 
remains insufficient overall. 
Kara et al. (2021) investigated the impact of climate change risk on 
supply chain performance. The Methodology involved Three-phase 
mixed approach: Cognitive mapping: Capturing expert-based 
relationships between climate risks and performance; 
Survey: Identifying key climate factors and their influence on 
specific performance dimensions; and System dynamics 
modeling: Assessing the systemic impact of climate change on 
various performance metrics. The study found that Climate change 
significantly reduces natural resource availability and capacity, 
leading to Stock-outs, increased inventory costs, Bottlenecks in 
procurement, manufacturing, and logistics, and Supply chain 
efficiency and effectiveness decrease with increasing climate risks. 
The study concluded that Climate change poses a significant threat 
to supply chain performance, necessitating proactive risk 
management strategies.  
Alejandra et al. (2023) examined the impact of climate change on 
international trade flows compared to domestic flows. Gravity 
model with 67 countries from 1986 to 2016, using temperature and 
extreme weather events as climate change indicators. The study 
found that International trade generally less affected by 
temperature changes than domestic flows. Other findings by the 
study include Extreme weather events negatively impact 
international trade, primarily biological events, temperature 
extremes, storms, and landslides; China and Japan strongly 
influence overall results, particularly for storms (China) and 
extreme temperatures (Japan); and General Equilibrium analysis 
suggests insect infestation and extreme temperatures have the 
most detrimental impact on welfare. It was concluded that Climate 
change, especially extreme weather events, poses a significant risk 
to international trade, emphasizing the need for adaptation and 
mitigation strategies. 
Mavodyo (2023) investigated the impact of climate change on 
various food insecurity indicators in the Southern African 
Development Community (SADC) region. The study adopted a 
System Generalized Method of Moments (GMM) estimator, 
analyzing multiple indicators including crop yield, food affordability, 
malnutrition, and a general food insecurity measure. It was found 
that: Precipitation significantly impacts all four indicators, both 
linearly and non-linearly; the greatest impact is on food 
affordability, followed by malnutrition; Temperature, alone, has no 
significant effect but gains significance when interacting with 
precipitation; and increased precipitation and climate change 
mitigation are crucial policy priorities. The study concluded that 
Climate change, particularly precipitation changes, significantly 
affects various aspects of food insecurity in the SADC region. The 
study emphasizes the need for sustainable irrigation programs, 
comprehensive climate change mitigation strategies, and actions 
to ensure food affordability and access to nutritious meals, 
especially for vulnerable populations. 
In another study, Murat et al. (2022) analyzed the effect of climate 
change on aggregate output in middle- and high-income countries. 
The study employed a Dynamic panel data analysis for 1990-2016, 
incorporating temperature and precipitation as climate indicators 
within a Cobb-Douglas production function. Generalized Method of 
Moments (GMM) estimation and Granger causality tests were 
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used. The study found that Middle-income countries experienced 
both temperature and precipitation have negative and statistically 
significant impacts on aggregate output. While High-income 
countries temperature has a positive but negligible effect on 
aggregate output, while precipitation has no significant effect. The 
study concluded that climate change negatively impacts aggregate 
output in middle-income countries, while high-income countries 
experience minimal positive or no effects from temperature 
changes. This highlights the varying vulnerability of different 
economic groups to climate change. 
Mavodyo (2023) investigated the impact of climate change on 
various food insecurity indicators in the Southern African 
Development Community (SADC) region. The methodology 
includes System Generalized Method of Moments (GMM) 
estimator, analyzing multiple indicators including crop yield, food 
affordability, malnutrition, and a general food insecurity measure. 
The study found that precipitation significantly impacts all four 
indicators, both linearly and non-linearly. Other findings include: the 
greatest impact is on food affordability, followed by malnutrition. 
Temperature, alone, has no significant effect but gains significance 
when interacting with precipitation, and increased precipitation and 
climate change mitigation are crucial policy priorities. The study 
concluded that Climate change, particularly precipitation changes, 
significantly affects various aspects of food insecurity in the SADC 
region. The study emphasizes the need for sustainable irrigation 
programmes, comprehensive climate change mitigation strategies, 
and actions to ensure food affordability and access to nutritious 
meals, especially for vulnerable populations. 
Jain, et al. (2023) quantified the environmental cost of food waste 
in the United States and propose policy solutions. More specifically, 
the study analyzed greenhouse gas (GHG) emissions from food 
waste in the US between 1997 and 2017, comparing animal-based 
vs. plant-based products. Proposes a mix of economic incentives, 
regulations, and public awareness campaigns to address food 
waste. The study found that Food waste significantly increases 
greenhouse gas emissions, costing the US billions of dollars 
annually; Animal-based products contribute considerably more to 
GHG emissions per capita compared to plant-based products; and 
Between 1997 and 2017, food waste-related GHG emissions in the 
US increased by 10 billion kgCO2eq and costs by 6 billion USD. 
Ho-Jyun and Hongtu (2023) examined the impact of a greenhouse 
gas emissions trading scheme (GHG-ETS) on industrial effluent 
discharge in the Pearl River Delta, China. The study employed 
Difference-in-Differences (DID) analysis comparing regions with 
and without GHG-ETS implementation from 2008 to 2019. The 
study found that the Implementation of GHG-ETS leads to higher 
actual energy costs for manufacturers, even with sufficient carbon 
emission quotas. Other findings include GHG-ETS incentivizes 
industries to increase sewage discharge to marginally reduce 
energy consumption. Compared to non-GHG-ETS regions, Pearl 
River Delta industries saw a significant increase in sewage 
discharge per unit of industrial value added after the scheme's 
implementation. The study suggests that GHG-ETS, while aiming 
to reduce greenhouse gas emissions, may have unintended 
consequences like increased industrial effluent discharge, 
highlighting the need for comprehensive environmental policy 
design. 
Carrilho-Nunes and Catalão-Lopes (2022) analyzed the impact of 
environmental policy and technology transfer on greenhouse gas 
(GHG) emissions in Portugal. The study employed a statistical 
model to examine the influence of policy instruments (feed-in 

tariffs, fossil fuel support), technology transfer, and other factors on 
GHG emissions. A Positive impact of environmental policy with 
Stringent environmental policies effectively reduce GHG emissions 
in Portugal was found. The study also noted a Potential drawback 
of technology transfer as technology transfer, while aiming to 
improve sustainability, might initially increase GHG emissions 
("Green Paradox"). It was concluded that study highlights the 
effectiveness of environmental policy in curbing emissions while 
urging caution with technology transfer due to its potential 
unintended consequences. It suggests policymakers carefully 
consider these dynamics for a smooth transition to a sustainable 
economy. 
Rising temperatures threaten the interior continent with water 
scarcity, glacier melt, and potential extinction of plant species 
(Gampe et al., 2016; Dimri et al., 2018; Mannig et al., 2018; Shaffril 
et al., 2018; Goes et al., 2020; Schuurmans, 2021; Mihiretu et al., 
2021). Coastal ecosystems face devastation from rising 
temperatures, insect outbreaks, health problems, and seasonal 
changes (Perera et al., 2018; Phillips, 2018; Hussain et al., 2018; 
Abbasi et al., 2021c). Globally, insufficient infrastructure and 
adaptive capacity exacerbate these issues (IPCC, 2013). Other 
significant concerns include lack of environmental education, 
outdated consumer behavior, and inadequate legislation (Hussain 
et al., 2018; Abassi et al., 2021c). By 2050, projected 2-3°C 
temperature rise and rainfall pattern shifts could have serious 
consequences (Gorst et al., 2018; Huang et al., 2022). Natural and 
environmental disasters lead to losses in agriculture, system 
rehabilitation, and technology rebuilding (Ali & Erenstein, 2017; 
Ramankutty et al., 2018; Yu et al., 2021). Additionally, recent years 
have seen smog-related health issues and road accidents due to 
poor visibility. 
Global agriculture, a major contributor to greenhouse gas 
emissions (30-40%), is also significantly impacted by climate 
change (Thornton & Lipper, 2014; Grieg; Mishra et al., 2021; Ortiz 
et al., 2021). Agro-environmental and climatic factors influencing 
agricultural productivity, such as floods, droughts, and forest fires, 
are heavily impacted by changing precipitation patterns (Huang, 
2004). Reliance on exhaustible resources further fuels agriculture's 
vulnerability (Godfray et al., 2010). Declining agricultural 
productivity negatively impacts farmers' livelihoods and contributes 
to poverty, as food and water security are compromised by climate 
change (Rosenzweig et al., 2014; Ortiz et al., 2021). As a crucial 
part of economies, particularly in developing countries, agricultural 
systems influence overall well-being and household income 
(Schlenker & Roberts, 2009). Rising greenhouse gas 
concentrations (CH4, CO2, N2O) have reached unprecedented 
levels in recent centuries (Stocker et al., 2013; Usman & Makhdum, 
2021). Climate change, driven by both natural and human factors 
(Karami, 2012), is projected to cause global temperature increases 
of 1-3.7°C by the end of the century (Pachauri et al., 2014). These 
rising temperatures pose severe threats to crop growth and global 
food security (Reidsma et al., 2009). 
Literature documenting CC-driven species extinction is extensive 
(Urban, 2015; Beesley et al., 2019). Predictions for the 21st century 
are grim, with numerous species facing potential demise (Pereira 
et al., 2013; Abbass et al., 2019). While northward shifts may offer 
some relief for mountain-dwelling species seeking optimal 
climates, habitat fragmentation and limited range can leave them 
trapped in unsuitable environments (Dullinger et al., 2012). The 
American pika's extirpation in some regions exemplifies this 
(Stewart et al., 2015). Analyzing long-term ecological data is crucial 
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for rigorously identifying pre- and post-CC patterns at species and 
ecosystem levels (Manes et al., 2021; Testa et al., 2018). 
Unfortunately, such data is often scarce, necessitating continued 
focus on acquiring and utilizing it effectively. 
Forests play a crucial role in regulating global climate and nutrient 
cycles (FAO, 2018; Reichstein & Carvalhais, 2019; Rehman et al., 
2021). However, disturbances like climate change significantly 
impact their structure, function, and health (Zhang et al., 2017; 
EPA, 2018). Rising temperatures and altered precipitation patterns 
tend to disrupt forest growth, productivity, and species composition 
(Allen et al., 2010; Flannigan et al., 2013; Millar & 
Stephenson, 2015; Hubbart et al., 2016; Rehman et al., 2021). 
Increased droughts and storms on the other hand, exacerbate 
stress, weaken trees, and damage forests (Diffenbaugh et 
al., 2017; Lehner et al., 2017; Hartmann et al., 2018; Martínez-
Alvarado et al., 2018; Brázdil et al., 2018). These devastate forests 
and alter ecosystems (EPA, 2018). 
Forests sustain the livelihoods of around 1.6 billion people globally, 
with many relying heavily on them (Bank, 2008; Sunderlin et al., 
2005; Wasiq & Ahmad, 2004). Climate change poses unique 
challenges for these communities. Climate disruptions affect 
agricultural practices, leading to decreased crop yields and income 
(Macchi et al., 2008; Cruz, 2015). Changes in rainfall patterns and 
pest outbreaks threaten food security for forest-dependent 
communities. Increased temperatures and altered precipitation 
patterns lead to the spread of waterborne and vector-borne 
diseases (Xu et al., 2008; Gunter et al., 2008; Cell, 2009; Fardous 
& Sharma, 2012). 
From the above, it should be noted that existing literature 
predominantly focuses on the influence of climate factors on the 
ecosystem, environment among others, with investigations into 
solid waste management receiving comparatively less attention. 
This study is undertaken to explore the dynamic relationship 
between some climate factors and solid waste. 
MATERIALS AND METHODS  
This study analyzes the impact of climate variables (rainfall and 
temperature) on solid waste generation in Nigeria. Data was 
collected from secondary sources including the National Bureau of 
Statistics' Annual Abstract and the World Bank Development 
Indicators. The data cover a period of 41 years, from 1982 to 2022, 
to capture longitudinal trends and analyze their potential influences 
on solid waste generation. 
The study variables include Solid Waste Generation (SW) 
measured in tons, representing the total amount of waste 
generated within a specific year; rainfall measured in millimeters of 
precipitation annually across the selected regions in Nigeria; and 
temperature which is measured in degrees Celsius. The dynamics 
among these variables are analyzed using a Vector Error 
Correction Model (VECM), which extends the framework of a 
vector autoregressive (VAR) model by integrating an error 
correction term into each equation (Adenomon, et al., 2017). The 
inclusion of the error correction term in each equation of the VAR 
accounts for the disequilibrium between variables in the short run, 
allowing for the analysis of the adjustments that occur in response 
to any deviations from the long-run equilibrium. By considering the 
speed and direction of these adjustments, the VECM provides 
insights into the interdependencies and feedback mechanisms 
among the variables under investigation though ARDL model could 
be an alternative to VECM (Adenomon and Ojo, 2020). In 
summary, the utilization of a Vector Error Correction Model (VECM) 
enhances the analysis by capturing the short-run dynamics and the 

speed of adjustment towards long-run equilibrium, thereby 
providing a comprehensive understanding of the interrelationships 
among the variables in the system. 
Theoretically, the VAR model is specified thus: 
Let Yt = (y1t, y2t, . . . , ynt)0 denote an (n - 1) vector of time series 
variables. 
The basic p-lag vector autoregressive (VAR(p)) model has the 
form 
𝑌𝑡 = 𝑐 + 𝜋1𝑌1−𝑡 + 𝜋2𝑌𝑡−2` + ⋯ + 𝜋𝑝𝑌𝑡−𝑝 +  £𝑡 , t = 1, …, T  

  (1) 
Where 𝜋𝑖 are (n x n) coefficient matrix and £𝑡 is an (n × 1) 
unobservable zero mean white noise vector process (serially 
uncorrelated or independent) with time invariant covariance matrix 
Σ. A bivariate VAR (2) model equation by equation has the form: 

(
𝑦1𝑡

𝑦2𝑡
) =  (

𝑐1

𝑐2
) + (

𝜋11
1

𝜋21
1

 𝜋12
1

   𝜋22
1 ) (

𝑦1𝑡−1

𝑦2𝑡−1
)                                                                  

+ (
𝜋11

2

𝜋21
2

 𝜋12
2

   𝜋22
2 ) (

𝑦1𝑡−2

𝑦2𝑡−2
) +  (

£1𝑡

£2𝑡
)                                        (2) 

 
where cov (£1𝑡 , £2𝑡) = σ12 for t = s; 0 otherwise.  
From the above, it can be observed that each equation has the 
same regressors — lagged values of y1t and y2t. Hence, the VAR(p) 
model is just a seemingly unrelated regression (SUR) model with 
lagged variables and deterministic terms as common regressors. 
In lag operator notation, the VAR(p) is written as 
 
π(L)Yt = c + εt  
 
where π(L) = Iπ − π1L − ... − πpLp. 
 
The VAR(p) is stable if the roots of det (Iπ − π1z − ··· − π𝑝𝑧

𝑝
)= 0  (3) 

 
The mean-adjusted form of the VAR(p) is then  

𝑌𝑡 − 𝜇 =  Π1(𝑌𝑡−1−𝜇) + Π2(𝑌𝑡−2−𝜇) + ⋯ +

 Π𝑝(𝑌𝑡−𝑝−𝜇) + 𝜀𝑡  (4) 

 
Using the variables for this study, an appropriate VECM model can 
be formulated as follows  

𝛥𝑦𝑡 =  𝛼𝛽′𝑦𝑡 − 1 + ∑𝑖=1 
𝑝−1

⌈𝑖𝛥𝑦𝑡−1 +  𝜀𝑡   

   (5) 
where: 
 Δ: Operator differencing,  
Δ𝑦𝑡= 𝑦𝑡 - 𝑦𝑡−1 𝑦𝑡−𝑖: Vector variable endogenous with the 1st lag 

𝜀𝑡: Vector residual.  

Γ𝑖: Matrix with order k × k of coefficient Endogenous of the i-th 
variable  
𝛼: Vector adjustment, matrix with order (k × r)  

𝛽: Vector cointegration (long-run parameter) matrix (k × r) 
The VECM in this study comprises three core variables and is 
presented as equation 3.6 below 

Δ(𝑆𝑊) = ϓ0 + ϓ1𝑆𝑊ϕ𝑡−1 + ∑ 𝑎3𝑖 Δ(SW𝑡−𝑖)𝑞3
𝑖=1 +

∑ 𝜓3𝑖 Δ(𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑡−𝑖)𝑟3
𝑖=1 +  ∑ ŋ3𝑖 Δ(Temperature𝑡−𝑖) + 𝑘3

𝑖=1  ɛ3𝑡  

     (6) 
 
Where ϓ0 is the intercept term, representing the constant or 
baseline level of Solid Waste Generation when all other variables 
are zero and  ϓ1𝑆𝑊ϕ𝑡−1 is the Error correction coefficient, 
quantifying the speed of adjustment towards equilibrium. Both 
parameters would be estimated using a seemingly unrelated 
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regressions (SUR) estimation technique. Rainfall and Temperature 
are as previously defined. Δ is operator differencing, and 𝜀𝑡 

represents Vector residual.  
 
Other econometrics tests employed include the Augmented 
Dickey-Fuller (ADF) Test specified as: 
ΔYt = α + βt + γYt-1 + δ1ΔYt-1 + ... + δp-1ΔYt-p+1 + εt 
Where: 

• Yt: The time series variable being tested for a unit root 
(LNSW, LNRainfall, and LNTemperature). 

• ΔYt: The first difference of Yt (Yt - Yt-1). 

• α: The intercept term. 

• β: The coefficient on the time trend (t). 

• γ: The coefficient on the lagged value of Y (Yt-1). This is 
the key parameter for testing the unit root hypothesis. 

• δ1, ..., δp-1: Coefficients on lagged differences of 
Yt, used to control for serial correlation. 

• εt: The error term. 
The null hypothesis that Yt has a unit root (non-stationary) will be 
tested.  
The study also employed the Johansen Cointegration Test: 
Yt = ΠYt-1 + ΓXt + εt 
Where Yt: A vector of time series variables, including LNSW, 
LNRainfall, and LNTemperature. 

i. Π: A matrix of coefficients capturing long-run 
relationships between variables in Yt. 

ii. Γ: A matrix of coefficients capturing short-run 
dynamics between variables in Yt. 

iii. Xt: A vector of exogenous variables (not included 
in the model). 

 
RESULTS AND DISCUSSION  
In this section, we present the empirical findings derived from the 
Vector Error Correction Model (VECM) analysis conducted in this 
study. Prior to the estimation of the VECM, we performed 
descriptive analysis, Unit Root tests, and Johansen Cointegration 
tests to assess the data background, stationarity, and cointegration 
of the series. The dataset includes 41 observations. 
 
Data Background and Diagnostics Tests 
Descriptive analysis of the data as presented in Table 4.1 shows 
that Solid waste generation in Nigeria between 1982 and 2022 is 
high with an average of 20.5 billion tons annually. Rainfall averages 
209.6 mm, and temperature averages 27.26°C. Median values 
align closely with means, suggesting minimal skewness in 
distributions.  However, large standard deviations for SW and RAIN 
(12.9 billion tons and 5.6 mm) indicate substantial variations in 
these variables. The smaller standard deviation for TEMP (0.32°C) 
suggests less year-to-year fluctuation. Positive skewness for RAIN 
(1.91) indicates more years with lower rainfall compared to higher 
values. Negative skewness for TEMP (-0.44) implies slightly more 
years with warm temperatures. Kurtosis values exceeding 3 
(RAIN: 7.58, TEMP: 3.14) suggest heavier tails than a normal 
distribution, implying potential outliers or non-normality. 
Probabilities of Jarque-Bera test exceeding 0.05 for SW and TEMP 
(0.29 and 0.51, respectively) suggest their distributions cannot be 
rejected as normal at a 5% significance level. However, RAIN's 
probability (0.00) confirms a non-normal distribution.  
Concerning diagnostic tests, the ADF statistics show that all the 
three series became stationary after the first difference. The 

Cointegration tests using Johansen confirm strong evidence of 3 
cointegrating equations using Trace test indicates and   Max-
eigenvalue test, establishing a foundation for the subsequent 
VECM analysis. 
 
Estimated VECM Equations 
Long-Run Dynamics between Climate Variables and Solid 
Waste in Nigeria  
The Estimated VECM models illustrate the long-run effects of 
Climate Variables on Solid Waste in Nigeria 
LNSW(−1) =    −  104.8807 −  1.403156 LNRAIN(−1) 

+   41.07405 LNTEMP(−1) 
The above equation describes the long-run equilibrium relationship 
between the log of solid waste (LNSW), log of rainfall (LNRAIN), 
and log of temperature (LNTEMP). The model reveals a statistically 
significant (p < 0.05) negative association between lagged rainfall 
and solid waste. Conversely, lagged temperature exhibits a 
positive and significant (p < 0.05) relationship with solid waste over 
the long term. The negative impact of rainfall on long-run solid 
waste generation merits further investigation, as it appears 
counterintuitive. A potential explanation lies in increased waste 
decomposition driven by higher rainfall. This aligns with the 
decomposition theory, which posits that environmental factors like 
moisture and temperature significantly influence waste degradation 
rates. Observations have also supported this notion, indicating that 
wetter conditions accelerate the breakdown of organic matter, 
leading to reduced waste accumulation over time. 
On the other hand, the positive association between temperature 
and solid waste is more intuitive. Several theoretical frameworks, 
including the consumption theory and the economic activity theory, 
support this finding. The consumption theory suggests that higher 
temperatures lead to increased consumption of packaged goods, 
consequently generating more waste. Similarly, the economic 
activity theory posits that warmer temperatures often coincide with 
increased construction and industrial activity, both of which 
contribute to higher waste generation.  
 
Short-Run Dynamics between Climate Variables and Solid 
Waste in Nigeria 
Building upon the long-run analysis, the study estimates short-run 
effects and Error Correction Mechanisms (ECM). 
 

D(LNSW) =  0.169703 − 0.196814 D(LNSW(−1))

− 0.311720 D(LNRAIN(−1))

− −4.944817 D(LNTEMP(−1))

−  0.284093𝐸𝐶𝑀(−1) 
 
The short-run VECM analysis reveals that the solid waste 
generation model converges towards its long-run equilibrium at a 
rate of 28.41% per period (p < 0.05). This indicates a relatively swift 
self-adjustment mechanism within the system. Interestingly, even 
without changes in rainfall or temperature, the model exhibits a 
baseline tendency for solid waste to increase in the short run 
(constant term = 0.169703). 
The negative coefficient associated with the lagged change in solid 
waste (-0.196814, p < 0.5) suggests a self-correcting mechanism. 
Essentially, larger past increases in solid waste lead to smaller 
current increases, signifying an inherent stabilizing force within the 
system. 
While the lagged change in rainfall exhibits a negative coefficient (-
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0.311720), its statistical insignificance (p > 0.5) casts doubt on its 
practical impact. Although this finding aligns with the proposed 
decomposition explanation, further investigation is warranted due 
to the lack of robust evidence. 
The most intriguing finding lies in the negative and statistically 
significant coefficient associated with the lagged change in 
temperature (-4.944817, p < 0.5). This implies that past increases 
in temperature lead to larger decreases in current solid waste 
generation compared to rainfall. This counterintuitive result 
necessitates further exploration to understand the underlying 
mechanisms at play. 
 
Conclusion and Policy Implication 
This study employed a Vector Error Correction Model (VECM) to 
analyze the dynamic relationship between solid waste generation 
in Nigeria and two key climate variables: rainfall and temperature. 
Following the analysis of data, the study concludes that Lagged 
rainfall is negatively associated with solid waste (p < 0.05) in the 
long run, potentially due to increased waste decomposition in 
wetter conditions, and that Lagged temperature is positively 
associated with solid waste (p < 0.05) in the long run, consistent 
with theories like increased consumption and economic activity in 
warmer periods. 
In the terms of short run, the study found that solid waste model 
converges towards long-run equilibrium at a rate of 28.41% per 
period (p < 0.05), and the Lagged changes in solid waste exhibit a 
self-correcting mechanism. Another short run finding is that the 
negative and statistically significant coefficient of lagged 
temperature (-4.944817, p < 0.5) requires further investigation due 
to its counterintuitive nature. 
Based on these findings, several policy implications emerge: 

1. Waste Management Strategies: 

i. Rainfall: Explore and implement 
technologies that accelerate organic waste 
decomposition to capitalize on the observed 
positive impact of rainfall. 

ii. Temperature: Encourage sustainable 
consumption practices and promote waste 
reduction initiatives in sectors likely to 
increase their activity during warmer periods 
(e.g., construction, tourism). 

iii. Investigate the specific waste composition 
(e.g., organic vs. inorganic) and its 
relationship to climate variables. 

iv. Develop and implement effective policy 
interventions to promote sustainable waste 
management practices in the context of 
climate change. 

2. Data Collection and Research: 

i. Conduct further research to elucidate the 
mechanisms behind the counterintuitive 
negative association between temperature 
and solid waste. 

ii. Explore potential non-linearities and 
alternative model specifications to gain a 
more nuanced understanding of the system. 
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Appendix I 
The dynamics of climate variables on Solid Waste in Nigeria 
using Vector Error Correction Model 
Descriptive statistics of Original Data 
 

 SW RAIN TEMP 

 Mean  2.05E+10  209.6185  27.25780 

 Median  2.05E+10  208.2657  27.29000 

 Maximum  4.29E+10  231.4564  27.86000 

 Minimum  1.31E+08  201.5763  26.39000 

 Std. Dev.  1.29E+10  5.599373  0.318092 

 Skewness  0.031876  1.910313 -0.439379 

 Kurtosis  1.798150  7.582060  3.142737 

    

 Jarque-Bera  2.474534  60.80379  1.354004 

 Probability  0.290176  0.000000  0.508138 

    

 Sum  8.42E+11  8594.358  1117.570 

 Sum Sq. Dev.  6.64E+21  1254.119  4.047302 

    

 Observations  41  41  41 
 
 
 
Graphical Representation of the Original Data 
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Descriptive statistics of transformed Data 
 

 LNSW LNTEMP LNRAIN 

 Mean  23.34339  3.305273  5.344952 

 Median  23.74225  3.306520  5.338814 

 Maximum  24.48321  3.327192  5.444391 

 Minimum  18.68830  3.272985  5.306168 

 Std. Dev.  1.214078  0.011701  0.026089 

 Skewness -1.902734 -0.473394  1.798238 

 Kurtosis  6.942576  3.195224  7.111016 

    

 Jarque-Bera  51.29354  1.596472  50.96828 

 Probability  0.000000  0.450122  0.000000 

    

 Sum  957.0790  135.5162  219.1430 

 Sum Sq. Dev.  58.95943  0.005477  0.027226 

    

 Observations  41  41  41 
 
    
 
Graphical Representation of the Transformed Data 
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Unit Root Test for Stationarity for Solid Waste 
 
Null Hypothesis: LNSW has a unit root  
Exogenous: Constant   
Lag Length: 4 (Automatic - based on AIC, maxlag=9) 
        t-Statistic   Prob.* 
     Augmented Dickey-Fuller test statistic -2.800185  0.0682 

Test critical values: 1% level  -3.626784  
 5% level  -2.945842  
 10% level  -2.611531  
     *MacKinnon (1996) one-sided p-values.  

 
 
Unit Root Test for Stationarity for Solid Waste at First Difference 
 
Null Hypothesis: D(LNSW) has a unit root 

Exogenous: Constant   

Lag Length: 3 (Automatic - based on AIC, maxlag=9) 
     
     
   t-Statistic   Prob.* 
     
     
Augmented Dickey-Fuller test statistic -4.612798  0.0007 

Test critical values: 1% level  -3.626784  

 5% level  -2.945842  

 10% level  -2.611531  
     
     
*MacKinnon (1996) one-sided p-values.  
 
 
Unit Root Test for Stationarity for Rain  
 
Null Hypothesis: LNRAIN has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on AIC, maxlag=9) 
     
     
   t-Statistic   Prob.* 
     
     
Augmented Dickey-Fuller test statistic -5.238031  0.0001 

Test critical values: 1% level  -3.605593  

 5% level  -2.936942  

 10% level  -2.606857  
     
     
*MacKinnon (1996) one-sided p-values.  
 
 
Unit Root Test for Stationarity for Rain at First Difference 
 
Null Hypothesis: D(LNRAIN) has a unit root 

Exogenous: Constant   

Lag Length: 4 (Automatic - based on AIC, maxlag=9) 
     
     
   t-Statistic   Prob.* 
     
     
Augmented Dickey-Fuller test statistic -3.057407  0.0393 

Test critical values: 1% level  -3.632900  

 5% level  -2.948404  

 10% level  -2.612874  
     
     
*MacKinnon (1996) one-sided p-values.  
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Unit Root Test for Stationarity for Temperature  
 
Null Hypothesis: LNTEMP has a unit root  

Exogenous: Constant   

Lag Length: 2 (Automatic - based on AIC, maxlag=9) 
     
     
   t-Statistic   Prob.* 
     
     
Augmented Dickey-Fuller test statistic -1.122868  0.6968 

Test critical values: 1% level  -3.615588  

 5% level  -2.941145  

 10% level  -2.609066  
     
     

*MacKinnon (1996) one-sided p-values.  
 
 
Unit Root Test for Stationarity for Temperature at First 
Difference 
Null Hypothesis: D(LNTEMP) has a unit root 

Exogenous: Constant   

Lag Length: 9 (Automatic - based on AIC, maxlag=9) 
     
     
   t-Statistic   Prob.* 
     
     
Augmented Dickey-Fuller test statistic -3.268267  0.0257 

Test critical 
values: 1% level  -3.670170  

 5% level  -2.963972  

 10% level  -2.621007  
     
     

*MacKinnon (1996) one-sided p-values.  
 
 
 
Johansen Cointegration test For Solid Waste, Rainfall and 
Temperature 
 
Date: 01/08/24   Time: 22:23   
Sample (adjusted): 1984 2022   
Included observations: 39 after adjustments  
Trend assumption: Linear deterministic trend  
Series: LNSW LNRAIN LNTEMP    
Lags interval (in first differences): 1 to 1  
     
          
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

     
     None *  0.939975  132.6586  29.79707  0.0000 
At most 1 *  0.333324  22.95180  15.49471  0.0031 
At most 2 *  0.167279  7.139194  3.841466  0.0075 
     
      Trace test indicates 3 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  
     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
     
     None *  0.939975  109.7068  21.13162  0.0001 
At most 1 *  0.333324  15.81261  14.26460  0.0282 
At most 2 *  0.167279  7.139194  3.841466  0.0075 
     
      Max-eigenvalue test indicates 3 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  
     
 
Lag Order Selection Criteria for the Endogenous Variables 
 

VAR Lag Order Selection Criteria    

Endogenous variables: LNSW LNRAIN LNTEMP    

Exogenous variables: C      

Date: 01/08/24   Time: 22:26    

Sample: 1982 2022     

Included observations: 37    
       
       
 Lag LogL LR FPE AIC SC HQ 
       
       
0  168.0367 NA   2.68e-08 -8.920905 -8.790290 -8.874857 

1  290.5909  218.6102  5.80e-11 -15.05897 -14.53651 -14.87478 

2  330.9310 
  65.41627
* 

  1.08e-
11* 

 -
16.75302* 

 -
15.83872* 

 -
16.43069* 

3  336.7192  8.447718  1.32e-11 -16.57942 -15.27327 -16.11894 

4  347.1569  13.54082  1.29e-11 -16.65713 -14.95914 -16.05851 
       
       
       

 * indicates lag order selected by the criterion   

 LR: sequential modified LR test statistic (each test at 5% level) 

 FPE: Final prediction error    

 AIC: Akaike information criterion    

 SC: Schwarz information criterion    

 HQ: Hannan-Quinn information criterion   
 
 
Estimated Result of VECM Showing Long Run and Short Run 
Impact of Rainfall and Temperature on Solid Waste 

https://dx.doi.org/10.4314/swj.v19i1.11
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Date: 01/08/24   Time: 22:28  
Sample (adjusted): 1984 2022  
Included observations: 39 after adjustments 
Standard errors in ( ) & t-statistics in [ ] 
    
    Cointegrating Eq:  CointEq1   
    
    LNSW(-1)  1.000000   
    
LNRAIN(-1)  1.403156   
  (2.40657)   
 [ 0.58305]   
    
LNTEMP(-1) -41.07405   
  (4.73812)   
 [-8.66884]   
    
C  104.8807   
    
    Error Correction: D(LNSW) D(LNRAIN) D(LNTEMP) 
    
    CointEq1 -0.284093 -0.001741  0.001875 
  (0.01512)  (0.00501)  (0.00161) 
 [-18.7924] [-0.34732] [ 1.16740] 
    
D(LNSW(-1)) -0.196814  0.001313 -0.003360 
  (0.03048)  (0.01011)  (0.00324) 
 [-6.45759] [ 0.12997] [-1.03779] 
    
D(LNRAIN(-1)) -0.311720 -0.538044 -0.116441 
  (0.45507)  (0.15090)  (0.04834) 
 [-0.68500] [-3.56567] [-2.40903] 
    
D(LNTEMP(-1)) -4.944817  0.311533 -0.201899 
  (1.44612)  (0.47952)  (0.15360) 
 [-3.41937] [ 0.64968] [-1.31443] 
    
C  0.169703  0.000345  0.000961 
  (0.01529)  (0.00507)  (0.00162) 
 [ 11.0992] [ 0.06796] [ 0.59184] 
    
    R-squared  0.928377  0.273270  0.279183 
Adj. R-squared  0.919951  0.187773  0.194380 
Sum sq. resids  0.298777  0.032851  0.003371 
S.E. equation  0.093742  0.031084  0.009957 
F-statistic  110.1773  3.196233  3.292167 
Log likelihood  39.65800  82.70843  127.1069 
Akaike AIC -1.777333 -3.985048 -6.261892 
Schwarz SC -1.564056 -3.771771 -6.048615 
Mean dependent  0.148587  0.000430  0.000478 
S.D. dependent  0.331326  0.034490  0.011093 
    
    Determinant resid covariance (dof 
adj.)  5.96E-10  
Determinant resid covariance  3.95E-10  
Log likelihood  256.2033  
Akaike information criterion -12.21555  
Schwarz criterion -11.44776  
Number of coefficients  18  
    
     

 

VEC Residual Serial Correlation LM Tests   

Date: 01/08/24   Time: 22:31    

Sample: 1982 2022     

Included observations: 39    
       
       Null hypothesis: No serial 
correlation at lag h       
       
       

Lag LRE* stat df Prob. 
Rao F-
stat df Prob. 

       
       
1  77.96052  9  0.0000  14.60494 (9, 70.7)  0.0000 
       
       
       
Null hypothesis: No serial 
correlation at lags 1 to h       
       
       

Lag LRE* stat df Prob. 
Rao F-
stat df Prob. 

       
       
1  77.96052  9  0.0000  14.60494 (9, 70.7)  0.0000 
       
       
*Edgeworth expansion corrected likelihood ratio statistic. 
 
 

VEC Residual Normality Tests  
Orthogonalization: Cholesky 
(Lutkepohl) 
Null Hypothesis: Residuals are 
multivariate normal 

Date: 01/08/24   Time: 22:32  

Sample: 1982 2022   

Included observations: 39  
     
          
Compon
ent 

Skewne
ss Chi-sq df Prob.* 

     
     

1 

-
0.1674
84 

 0.1823
30 1 

 0.669
4 

2 
 0.8632
38 

 4.8436
74 1 

 0.027
7 

3 
 0.8982
98 

 5.2451
10 1 

 0.022
0 

     
     

Joint  
 10.271
11 3 

 0.016
4 

     
          
Compon
ent 

Kurtosi
s Chi-sq df Prob. 

     
     

1 
 3.7212
36 

 0.8452
95 1 

 0.357
9 
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2 
 6.2430
88 

 17.091
13 1 

 0.000
0 

3 
 3.8252
31 

 1.1066
34 1 

 0.292
8 

     
     

Joint  
 19.043
06 3 

 0.000
3 

     
          
Compon
ent 

Jarque-
Bera df Prob.  

     
     

1 
 1.0276
25 2 

 0.598
2  

2 
 21.934
81 2 

 0.000
0  

3 
 6.3517
44 2 

 0.041
8  

     
     

Joint 
 29.314
17 6 

 0.000
1  

     
     *Approximate p-values do not account 
for coefficient 

        estimation   
 
 
VEC Residual Heteroskedasticity Tests (Levels and 
Squares) 

Date: 01/08/24   Time: 22:34   

Sample: 1982 2022    

Included observations: 39   
      
     
     

   Joint test:    
      
      
Chi-sq df Prob.    
      
      
 69.44530 48  0.0231    
      
      
 
Roots of Characteristic Polynomial 
Endogenous variables: LNSW LNRAIN 
        LNTEMP  
Exogenous variables:  
Lag specification: 1 1 
Date: 01/08/24   Time: 22:35 
  
       Root Modulus 
  
   1.000000  1.000000 
 1.000000  1.000000 
 0.666813  0.666813 
-0.406561 - 0.125232i  0.425412 
-0.406561 + 0.125232i  0.425412 
-0.153976  0.153976 
  
   VEC specification imposes 2 unit root(s). 
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 Variance 
Decomposi
tion of 
LNSW:     
 Period S.E. LNSW LNRAIN LNTEMP 
     
 1  0.093742  100.0000  0.000000  0.000000 
 2  0.139404  82.63837  0.530255  16.83137 
 3  0.210923  64.51990  0.595671  34.88443 
 4  0.280371  55.00699  1.219556  43.77345 
 5  0.346904  49.45579  1.312316  49.23190 
 6  0.410128  45.87663  1.495310  52.62806 
 7  0.468819  43.47279  1.577405  54.94981 
 8  0.523793  41.76145  1.653400  56.58515 
 9  0.575101  40.50209  1.704949  57.79296 
 10  0.623265  39.54484  1.746274  58.70889 
     
 Variance 
Decomposi
tion of 
LNRAIN:     
 Period S.E. LNSW LNRAIN LNTEMP 
     
 1  0.031084  2.959664  97.04034  0.000000 
 2  0.034558  2.427577  96.68359  0.888836 
 3  0.041038  2.375036  96.91310  0.711864 

 4  0.045300  2.129791  96.99685  0.873359 
 5  0.049614  2.033797  97.08771  0.878495 
 6  0.053453  1.930536  97.14341  0.926056 
 7  0.057061  1.862700  97.18572  0.951582 
 8  0.060452  1.805249  97.21750  0.977247 
 9  0.063659  1.759790  97.24221  0.998005 
 10  0.066715  1.721991  97.26220  1.015811 
     
 Variance 
Decomposi
tion of 
LNTEMP:     
 Period S.E. LNSW LNRAIN LNTEMP 
     
 1  0.009957  24.02524  3.001938  72.97282 
 2  0.012557  25.19389  5.071880  69.73423 
 3  0.014235  25.64505  4.146471  70.20848 
 4  0.015774  26.54458  3.621875  69.83354 
 5  0.016969  27.05677  3.130609  69.81262 
 6  0.018093  27.58197  2.783769  69.63426 
 7  0.019095  27.98688  2.508530  69.50459 
 8  0.020038  28.34665  2.288878  69.36447 
 9  0.020922  28.65191  2.107688  69.24040 
 10  0.021764  28.91841  1.955071  69.12652 
     
 Cholesky Ordering: LNSW LNRAIN LNTEMP  
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Estimation Proc: 
=============================== 
EC(C,1) 1 1 LNSW LNRAIN LNTEMP  
 
VAR Model: 
=============================== 
D(LNSW) = A(1,1)*(B(1,1)*LNSW(-1) + B(1,2)*LNRAIN(-1) + 
B(1,3)*LNTEMP(-1) + B(1,4)) + C(1,1)*D(LNSW(-1)) + 
C(1,2)*D(LNRAIN(-1)) + C(1,3)*D(LNTEMP(-1)) + C(1,4) 
 
D(LNRAIN) = A(2,1)*(B(1,1)*LNSW(-1) + B(1,2)*LNRAIN(-1) + 
B(1,3)*LNTEMP(-1) + B(1,4)) + C(2,1)*D(LNSW(-1)) + 
C(2,2)*D(LNRAIN(-1)) + C(2,3)*D(LNTEMP(-1)) + C(2,4) 
 
D(LNTEMP) = A(3,1)*(B(1,1)*LNSW(-1) + B(1,2)*LNRAIN(-1) + 
B(1,3)*LNTEMP(-1) + B(1,4)) + C(3,1)*D(LNSW(-1)) + 
C(3,2)*D(LNRAIN(-1)) + C(3,3)*D(LNTEMP(-1)) + C(3,4) 
 
 
VAR Model - Substituted Coefficients: 
=============================== 
D(LNSW) =  - 0.28409292077*( LNSW(-1) + 
1.40315591491*LNRAIN(-1) - 41.0740504526*LNTEMP(-1) + 
104.880715984 ) - 0.196814108641*D(LNSW(-1)) - 
0.311720218596*D(LNRAIN(-1)) - 4.94481721369*D(LNTEMP(-
1)) + 0.169702916094 
 
D(LNRAIN) =  - 0.00174102943902*( LNSW(-1) + 
1.40315591491*LNRAIN(-1) - 41.0740504526*LNTEMP(-1) + 
104.880715984 ) + 0.00131349672028*D(LNSW(-1)) - 
0.538043725417*D(LNRAIN(-1)) + 0.311533324417*D(LNTEMP(-
1)) + 0.000344556054361 
 
D(LNTEMP) = 0.00187450281426*( LNSW(-1) + 
1.40315591491*LNRAIN(-1) - 41.0740504526*LNTEMP(-1) + 
104.880715984 ) - 0.00335959626413*D(LNSW(-1)) - 
0.116441398391*D(LNRAIN(-1)) - 0.20189879222*D(LNTEMP(-
1)) + 0.000961156858203 
 
 
System: UNTITLED   
Estimation Method: Least Squares  
Date: 01/08/24   Time: 22:41  
Sample: 1984 2022   
Included observations: 39   
Total system (balanced) observations 117  
     
 Coefficient Std. Error t-Statistic Prob.   
     
C(1) -0.284093 0.015117 -18.79243 0.0000 
C(2) -0.196814 0.030478 -6.457590 0.0000 
C(3) -0.311720 0.455067 -0.684998 0.4949 
C(4) -4.944817 1.446121 -3.419367 0.0009 
C(5) 0.169703 0.015290 11.09923 0.0000 
C(6) -0.001741 0.005013 -0.347318 0.7291 
C(7) 0.001313 0.010106 0.129970 0.8968 
C(8) -0.538044 0.150896 -3.565670 0.0006 
C(9) 0.311533 0.479519 0.649679 0.5174 
C(10) 0.000345 0.005070 0.067961 0.9459 
C(11) 0.001875 0.001606 1.167396 0.2458 
C(12) -0.003360 0.003237 -1.037793 0.3018 

C(13) -0.116441 0.048335 -2.409026 0.0178 
C(14) -0.201899 0.153601 -1.314434 0.1916 
C(15) 0.000961 0.001624 0.591844 0.5553 
     
Determinant residual covariance 3.95E-10   
     
     
Equation: D(LNSW) = C(1)*( LNSW(-1) + 1.40315591491*LNRAIN(-
1) - 
        41.0740504526*LNTEMP(-1) + 104.880715984 ) + 
C(2)*D(LNSW( 
        -1)) + C(3)*D(LNRAIN(-1)) + C(4)*D(LNTEMP(-1)) + C(5) 
Observations: 39   

R-squared 0.928377     Mean dependent var 0.148587 
Adjusted R-squared 0.919951     S.D. dependent var 0.331326 
S.E. of regression 0.093742     Sum squared resid 0.298777 
Durbin-Watson stat 1.158603    
     
Equation: D(LNRAIN) = C(6)*( LNSW(-1) + 
1.40315591491*LNRAIN(-1) - 
        41.0740504526*LNTEMP(-1) + 104.880715984 ) + 
C(7)*D(LNSW( 
        -1)) + C(8)*D(LNRAIN(-1)) + C(9)*D(LNTEMP(-1)) + C(10) 
Observations: 39   

R-squared 0.273270     Mean dependent var 0.000430 
Adjusted R-squared 0.187773     S.D. dependent var 0.034490 
S.E. of regression 0.031084     Sum squared resid 0.032851 
Durbin-Watson stat 2.175168    
     
Equation: D(LNTEMP) = C(11)*( LNSW(-1) + 
1.40315591491*LNRAIN( 
        -1) - 41.0740504526*LNTEMP(-1) + 104.880715984 ) + C(12) 
        *D(LNSW(-1)) + C(13)*D(LNRAIN(-1)) + C(14)*D(LNTEMP(-1)) 
+ 
        C(15)    
Observations: 39   

R-squared 0.279183     Mean dependent var 0.000478 
Adjusted R-squared 0.194380     S.D. dependent var 0.011093 
S.E. of regression 0.009957     Sum squared resid 0.003371 
Durbin-Watson stat 2.362213    
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