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ABSTRACT: 
This paper investigates the application of the least squares method 
for obtaining numerical solutions to Volterra-Fredholm integro-
differential equations. The least squares method is a well-
established approach for solving integral equations, and in this 
study, it is utilized to find approximate solutions to such equations. 
To enhance the accuracy of the solutions, Chebyshev polynomials 
are used as basis functions for the approximation process. These 
polynomials are chosen due to their favorable convergence 
properties and their ability to provide accurate approximations over 
a wide range of problems. Several examples are included in this 
study to demonstrate the effectiveness and reliability of the 
proposed method. The numerical results obtained using the least 
squares method with Chebyshev polynomial approximations are 
compared with exact solutions, showing excellent agreement. The 
outcomes of this study indicate that the method is both efficient and 
reliable for solving Volterra-Fredholm integro-differential equations, 
offering a robust approach for practical applications. 
 
Keywords: Volterra-fredholm integro-differential equations, 
Chebyshev polynomials, least square method. 
 
INTRODUCTION 
Volterra-Fredholm integro-differential equations arise in the same 
manner as Volterra-Fredholm integral equations with one or more 
of ordinary derivatives in addition to the integral operators. The 
Volterra-Fredholm integro-differential equations appear in two 
forms, namely 

𝑦𝑛(𝑥) = 𝑔(𝑥) + 𝜆1 ∫ 𝑘1(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑟

+ 𝜆2 ∫ 𝑘2(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡                        (1)
𝑠

𝑟

 

And 
𝑦𝑛(𝑥, 𝑡)
= 𝑔(𝑥, 𝑡)

+ 𝜆 ∫ ∫ 𝐺(𝑥, 𝑡, 𝛿, 𝜏, 𝑦(𝛿, 𝜏))𝑑𝛿𝑑𝜏, (𝑥, 𝑡) 𝜖 Ω × [0, 𝑇]    (2)

𝑇

Ω

𝑡

0

 

Where 𝑔(𝑥, 𝑡) and 𝐺(𝑥, 𝑡, 𝛿, 𝜏, 𝑢(𝛿, 𝜏)) are analytic functions on 

𝐷 = Ω × [0, 𝑇], and Ω is a closed subset of ℝ𝑛 , 𝑛 = 1,2,3. It is 
interesting to note that (1) contains disjoint volterra and fredholm 
integral equations, whereas (2) contains mixed integrals. The 
unknown functions 𝑦(𝑥) and 𝑦(𝑥, 𝑡) appears inside and outside 
the integral signs. This is a characteristic feature of a second kind 
integral equation. If the unknown function appears only inside the 
integral signs, the resulting equations are of first kind. 
It is important to note that initial conditions should be given for 
volterra integro-differential equations to determine the particular 
solutions. 

Over the last few years, numerous numerical methods have been 
presented to solve volterra-fredholm integro-differential equations. 
For example, integral collocation methods for the solution of higher-
orders linear fredholm-volterra integro-differential equations was 
presented by Abubakar. A and Taiwo O.A (2014). (Akyuz et al., 
2003) developed a matrix method to solve volterra-fredholm 
integral equations. Solution of volterra integral and integro-
differential equations using modified Laplace Adomian 
decomposition method was presented by D. Rani and V. Mishra 
(2019). (Cardone, A. et al., 2018) Proposed the computational 
treatment of differential equations using collocation method for 
ordinary differential equation and presented its application with 
examples. Conclusion was drawn that the method presented yield 
desired result when compared with the exact solution. (Taiwo O.A 
et al., 2014) Employed multiple perturbed collocation Tau method 
to solve higher order linear and nonlinear boundary value problems 
with the aid of Chebyshev basis functions. (Caruntu. et al., 2021) 
Presented polynomial least square method for nonlinear fractional 
volterra and fredholm integro-differential equations. (Ahsan Fayez 
et al., 2018) Combined the least square method with Euler 
polynomials for finding the approximate solutions of integro-
differential equations. Wazwaz (2010), Combined Laplace 
transform-Adomian decomposition method for handling nonlinear 
volterra integro-differential equations. In this study we presented 
Chebyshev least square method to solve Volterra Fredholm 
integro-differential equations. Other methods used by authors are 
He’s Homotopy perturbation method (Abbasbany (2006, 2007). 
Other numerical techniques can be found in (Owolanke et al., 2021; 
Owolanke, Uwaheren, & Obarhua, 2017; Ogunbamike & 
Owolanke, 2022; Ogunbamike, Awolere, & Owolanke, 2021; 
Owolanke, Ogunbamike, & Adebayo, 2024; Yakusak & Owolanke, 
2018; Owolanke & Ogunbamike, 2018). 
 
Chebyshev and shifted Chebyshev polynomials 
Chebyshev polynomials are sequence of orthogonal polynomials 
which are related to de-Moivre’s formula and which can be defined 
recursively. One usually distinguishes between chebyshev 
polynomials of first kind which are denoted by 𝑇𝑛 and chebyshev 

polynomials of second kind which are denoted by 𝑈𝑛. 
 
Chebyshev polynomials of first kind 
Chebyshev polynomials of first kind 𝑇𝑝(𝑥)  is defined as: 

𝑇𝑝(𝑥) = cos(𝑝𝑐𝑜𝑠−1𝑥) ,              − 1 ≤ 𝑥

≤ 1                                                        (2) 
Or equivalently 
 
 𝑇𝑝(𝑥) = cos 𝑛𝜃,           𝑤ℎ𝑒𝑟𝑒      𝜃 =

𝑐𝑜𝑠−1𝑥                     (3)  
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The few chebyshev polynomials of the first kind are; 
𝑛                                 𝑇𝑝(𝑥) 

       0                                 𝑇0(𝑥) = 1 

     1                                𝑇1(𝑥) = 𝑥 

                2                               𝑇2(𝑥) = 2𝑥2 − 1 

                 3                               𝑇3(𝑥) = 4𝑥3 − 3𝑥 

                         4                               𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1 
                              5                               𝑇5(𝑥)

= 16𝑥5 − 20𝑥3 + 5𝑥 
 
The Shifted Chebyshev polynomials 
For convenience and for the sake of problems that exist in intervals 
other than −1 ≤ 𝑥 ≤ 1, 𝑇𝑝(𝑥) is in this subsection normalized to 

a general finite range    
 𝑎 ≤ 𝑥 ≤ 𝑏 as follows: 

𝑇∗
𝑝(𝑥) = cos(𝑝𝑐𝑜𝑠−1𝑥);                          −1 ≤ 𝑥

≤ 1                                 (4) 
 
 
And the recurrence relation is given by 
𝑇∗

𝑝+1(𝑥) = 2𝑥𝑇∗
𝑝(𝑥) − 𝑇∗

𝑝−1(𝑥),                                𝑝 ≥ 1 

Where N is the degree of the polynomial. 
In general, chebyshev polynomial valid in 𝑎 ≤ 𝑥 ≤ 𝑏  is given as 
  

𝑇∗
𝑝(𝑥) = cos [𝑁𝑐𝑜𝑠−1 (

2𝑥 − 𝑎 − 𝑏

𝑎 − 𝑏
)] ;                   −1 ≤ 𝑥

≤ 1                                 (5) 
 
And the recurrence relation is given as 
  

𝑇∗
𝑝+1(𝑥)

= 2 (
2𝑥 − 𝑎 − 𝑏

𝑎 − 𝑏
) 𝑇∗

𝑝(𝑥)

− 𝑇∗
𝑝−1(𝑥)                                                               (6) 

Few terms of the shifted chebyshev polynomials valid in the interval 
[0, 1] are given below: 
 
 𝑇∗

0(𝑥) = 1 

 𝑇∗
1(𝑥) = 2𝑥 − 1 

𝑇∗
2(𝑥) = 8𝑥2 − 8𝑥 + 1 

𝑇∗
3(𝑥) = 32𝑥3 − 48𝑥2 + 18𝑥 − 1 

𝑇∗
4(𝑥) = 128𝑥4 − 256𝑥3 + 100𝑥2 − 32𝑥 + 1 

𝑇∗
5(𝑥) = 512𝑥5 − 128𝑥4 + 1120𝑥3 − 400𝑥2 + 50𝑥 − 1    

𝑇∗
6(𝑥) = 204𝑥6 − 6144𝑥5 + 6912𝑥4 − 5484𝑥3

+ 840𝑥2 − 72𝑥 + 1 

𝑇∗
7(𝑥)   = 32765𝑥8 − 131072𝑥7 + 212992𝑥6

− 40224𝑥5 + 84480𝑥4 − 21504𝑥3

+ 26868𝑥2 − 128𝑥 + 1 
 
METHODOLOGY 
This section, we discussed the chebyshev least square method on 
the solution of volterra- fredholm integro-differential equations. 
Consider the Volterra-Fredholm integro-differential equations of the 
form : 

𝑦𝑛(𝑥)
= 𝑔(𝑥)

+ 𝜆1 ∫ 𝑘1(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0

+ 𝜆2 ∫ 𝑘2(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡                      (3)  
1

0

 

With the initial condition: 
 𝑦𝑘(0) = ∅𝑘                                                              (4) 

We assumed an approximate solution of the form: 
𝑦(𝑥) = 𝑦𝑁(𝑥)

= ∑ 𝑎𝑘  𝑇∗
𝑘(𝑥)                                                          (5)

𝑁

𝑘=0

 

Where 𝑎𝑘  , 𝑘 = 0(1)𝑁 are unknown constants to be determined 
and   𝑇∗

𝑘(𝑥) is the shifted chebyshev polynomial basis function. 
Differentiating equation (5) n-times to obtain: 

𝑦′
𝑁

(𝑥)

=
𝑑

𝑑𝑥
∑ 𝑎𝑘  𝑇∗

𝑘(𝑥)                                                       (6)

𝑁

𝑘=0

 

 
𝑦′′

𝑁
(𝑥)

=
𝑑2

𝑑𝑥2 ∑ 𝑎𝑘  𝑇∗
𝑘(𝑥)                                                   (7)

𝑁

𝑘=0

 

 
𝑦′′′

𝑁
(𝑥)

=
𝑑3

𝑑𝑥3 ∑ 𝑎𝑘  𝑇∗
𝑘(𝑥)                                                      (8)

𝑁

𝑘=0

 

 
𝑦′𝑣

𝑁
(𝑥)

=
𝑑′𝑣

𝑑𝑥′𝑣 ∑ 𝑎𝑘  𝑇∗
𝑘(𝑥)                                                         (9)

𝑁

𝑘=0

 

 
                  . 
      
 
                . 
 
 
                . 
𝑦𝑛

𝑁
(𝑥)

=
𝑑𝑛

𝑑𝑥𝑛
∑ 𝑎𝑘  𝑇∗

𝑘(𝑥)                                                            (10)

𝑁

𝑘=0

 

Substituting the assumed approximate solution equations (5) and 
(10) into equation (3) to obtain: 
𝑑𝑛

𝑑𝑥𝑛
∑ 𝑎𝑘  𝑇∗

𝑘(𝑥)𝑁
𝑘=0  = 𝑔(𝑥) +

 𝜆1 ∫ 𝑘1(𝑥, 𝑡) ∑ 𝑎𝑘  𝑇∗
𝑘(𝑥)𝑁

𝑘=0 𝑑𝑡 +
𝑥

0

𝜆2 ∫ 𝑘2(𝑥, 𝑡) ∑ 𝑎𝑘  𝑇∗
𝑘(𝑥)𝑁

𝑘=0 𝑑𝑡                         (11) 
1

0
 

 
And therefore, the residual 𝑅(𝑢, 𝑥) will be: 

𝑅(𝑢, 𝑥) =
𝑑𝑛

𝑑𝑥𝑛
∑ 𝑎𝑘  𝑇∗

𝑘(𝑥)𝑁
𝑘=0 −  𝑔(𝑥) -

 𝜆1 ∫ 𝑘1(𝑥, 𝑡) ∑ 𝑎𝑘  𝑇∗
𝑘(𝑥)𝑁

𝑘=0 𝑑𝑡 −
𝑥

0

 𝜆2 ∫ 𝑘2(𝑥, 𝑡) ∑ 𝑎𝑘  𝑇∗
𝑘(𝑥)𝑁

𝑘=0 𝑑𝑡                                      (12) 
1

0
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Now minimizing the square of the residual error, i.e. 

𝐸(𝑎𝑖 … 𝑎𝑛) = ∫ [𝑅(𝑡, 𝑦(𝑥))]
2

𝑑𝑡                  𝑥
𝑥

0

∈ [0, 𝑡]                                            (13) 

From (13) the problem now is reduced to find the coefficient 𝑎𝑖′𝑠 

which minimize 𝐸, is that 
𝜕𝐸

𝜕𝑎𝑖
= 0 for each i=1, 2, …n. which will 

give a linear system of n- equation. The system of equations 
obtained is then solved to get values for the unknown constants. 
The values are now substituted in to the assumed solution given in 
equation (5) to get the approximate solution. It is important to note 
that when the problem contains some initial conditions, we first 
apply those conditions before implementing the least square 
method procedure to obtain the remaining number of required 
equations. 
 
NUMERICAL EXAMPLES 
Example 1: consider the third order volterra-fredholm integro-
differential equation: 

𝑦′′′(𝑥) + 𝑦′(𝑥)
= 𝑔(𝑥)

+ ∫ 𝑡𝑦(𝑡)𝑑𝑡 + ∫ 𝑦(𝑡)𝑑𝑡                                             (14)
1

0

𝑥

0

 

Where 𝑔(𝑥) = (−
𝑥5

5
+

𝑥4

4
+ 3𝑥2 − 2𝑥 +

73

12
), with the initial 

conditions 
𝑦(0) = 0,
𝑦′(0) = 0,           𝑦′′(0)
= −2                                                                        (15) 

 

And the exact solution given by: 𝑦(𝑥) = 𝑥3 − 𝑥2 
 
Example 2: consider the second order volterra-fredholm integro-
differential equation 

𝑦′′(𝑥)
= 𝑔(𝑥)

− ∫ 𝑡𝑦(𝑡)𝑑𝑡
𝑥

0

− ∫ 𝑦(𝑡)𝑑𝑡                                                             (16)
1

0

 

Where 𝑔(𝑥) = (
𝑥4

4
+

𝑥2

2
+

10

3
), with the initial conditions 

𝑦(0) = 1,
𝑦′(0) = 0,                                                                             (17) 

 

And the exact solution given by: 𝑦(𝑥) = 𝑥2 + 1 
 
Example 3: consider the second order volterra-fredholm integro-
differential equation 
𝑦′′(𝑥) + 𝑦(𝑥)
= 𝑔(𝑥)

− ∫ 𝑡2𝑦(𝑡)𝑑𝑡 − ∫ 𝑦(𝑡)𝑑𝑡                                               (18)
1

0

𝑥

0

 

Where 𝑔(𝑥) = (6𝑥 + 𝑥3 −
𝑥6

6
−

1

4
), with the initial conditions 

𝑦(0) = 0,
𝑦′(0) = 0,                                                                            (19) 

 

And the exact solution given by: 𝑦(𝑥) = 𝑥3 
 

Table 1: Numerical Results for Example 1 (CASE N=4 , N=6 and 
N=8) 

𝑥 Exact Approx 

N=4 
Error  
N=4 

Approx.         
N=6 

Error 
N=6 

Approx. 
N=8 

Error 
N=8 

0.
0 

0.000
00 

0.000
00 

0.000
e+00 

0.0000
0 

0.000e
+00 

0.0000
0 

0.000
e+00 

0.
1 

-
0.009
00 

-
0.009
00 

0.000
e+00 

-
0.0090
0 

0.000e
+00 

-
0.0090
0 

0.000
e+00 

0.
2 

-
0.032
00 

-
0.032
00 

0.000
e+00 

-
0.0320
0 

0.000e
+00 

-
0.0320
0 

0.000
e+00 

0.
3 

-
0.063
00 

-
0.063
00 

0.000
e+00 

-
0.0630
0 

0.000e
+00 

-
0.0630
0 

0.000
e+00 

0.
4 

-
0.096
00 

-
0.096
00 

0.000
e+00 

-
0.0960
0 

0.000e
+00 

-
0.0960
0 

0.000
e+00 

0.
5 

-
0.125
00 

-
0.125
00 

0.000
e+00 

-
0.1250
0 

0.000e
+00 

-
0.1250
0 

0.000
e+00 

0.
6 

-
0.144
00 

-
0.144
00 

0.000
e+00 

-
0.1440
0 

0.000e
+00 

-
0.1440
0 

0.000
e+00 

0.
7 

-
0.147
00 

-
0.147
00 

0.000
e+00 

-
0.1470
0 

0.000e
+00 

-
0.1470
0 

0.000
e+00 

0.
8 

-
0.128
00 

-
0.128
00 

0.000
e+00 

-
0.1280
0 

0.000e
+00 

-
0.1280
0 

0.000
e+00 

0.
9 

-
0.081
00 

-
0.081
00 

0.000
e+00 

-
0.0810
0 

0.000e
+00 

-
0.0810
0 

0.000
e+00 

1.
0 

0.000
00 

0.000
00 

0.000
e+00 

0.0000
0 

0.000e
+00 

0.0000
0 

0.000
e+00 

 
Table 2: Numerical Results for Example 2 (CASE N=4 , N=6 and 
N=8) 

𝑥 Exact Approx 

N=4 
Error  
N=4 

Approx       
N=6 

Error 
N=6 

Approx. 
N=8 

Error 
N=8 

0
.
0 

1.00
000 

1.00
000 

0.00
0e+0
0 

1.000
00 

0.000
e+00 

1.0000
0 

0.00
0e+0
0 

0
.
1 

1.01
000 

1.01
000 

0.00
0e+0
0 

1.010
00 

0.000
e+00 

1.0100
0 

0.00
0e+0
0 

0
.
2 

1.04
000 

1.04
000 

0.00
0e+0
0 

1.040
00 

0.000
e+00 

1.0400
0 

0.00
0e+0
0 

0
.
3 

1.09
000 

1.09
000 

0.00
0e+0
0 

1.090
00 

0.000
e+00 

1.0900
0 

0.00
0e+0
0 

0
.
4 

1.16
000 

1.16
000 

0.00
0e+0
0 

1.160
00 

0.000
e+00 

1.1600
0 

0.00
0e+0
0 

0
.
5 

1.25
000 

1.25
000 

0.00
0e+0
0 

1.250
00 

0.000
e+00 

1.2500
0 

0.00
0e+0
0 

0 1.36 1.36 0.00 1.360 0.000 1.3600 0.00
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.
6 

000 000 0e+0
0 

00 e+00 0 0e+0
0 

0
.
7 

1.49
000 

1.49
000 

0.00
0e+0
0 

1.490
00 

0.000
e+00 

1.4900
0 

0.00
0e+0
0 

0
.
8 

1.64
000 

1.64
000 

0.00
0e+0
0 

1.640
00 

0.000
e+00 

1.6400
0 

0.00
0e+0
0 

0
.
9 

1.81
000 

1.81
000 

0.00
0e+0
0 

1.810
00 

0.000
e+00 

1.8100
0 

0.00
0e+0
0 

1
.
0 

2.00
000 

2.00
000 

0.00
0e+0
0 

2.000
00 

0.000
e+00 

2.0000
0 

0.00
0e+0
0 

 
Table 3: Numerical Results for Example 3 (CASE N=4 , N=6 and 
N=8) 

𝑥 Exact Appro 
N=4 

Error  
N=4 

Approx        
N=6 

Error 
N=6 

Approx 
N=8 

Error 
N=8 

0
.
0 

0.00
000 

0.00
000 

0.00
0e+
00 

0.000
00 

0.000
e+00 

0.000
00 

0.00
0e+
00 

0
.
1 

0.00
100 

0.00
100 

0.00
0e+
00 

0.001
00 

0.000
e+00 

0.001
00 

0.00
0e+
00 

0
.
2 

0.00
800 

0.00
800 

0.00
0e+
00 

0.008
00 

0.000
e+00 

0.008
00 

0.00
0e+
00 

0
.
3 

0.02
700 

0.02
700 

0.00
0e+
00 

0.027
00 

0.000
e+00 

0.027
00 

0.00
0e+
00 

0
.
4 

0.06
400 

0.06
400 

0.00
0e+
00 

0.064
00 

0.000
e+00 

0.064
00 

0.00
0e+
00 

0
.
5 
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0.12
500 

0.00
0e+
00 

0.125
00 

0.000
e+00 

0.125
00 

0.00
0e+
00 

0
.
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600 

0.21
600 

0.00
0e+
00 

0.216
00 

0.000
e+00 

0.216
00 

0.00
0e+
00 

0
.
7 

0.34
300 

0.34
300 

0.00
0e+
00 

0.343
00 

0.000
e+00 

0.343
00 

0.00
0e+
00 

0
.
8 

0.51
200 

0.51
200 

0.00
0e+
00 

0.512
00 

0.000
e+00 

0.512
00 

0.00
0e+
00 

0
.
9 

0.72
900 

0.72
900 

0.00
0e+
00 

0.729
00 

0.000
e+00 

0.729
00 

0.00
0e+
00 

1
.
0 

1.00
000 

1.00
000 

0.00
0e+
00 

1.000
00 

0.000
e+00 

1.000
00 

0.00
0e+
00 

 
DISCUSSION  
Based on the findings from this work, we have successfully 
established that the shifted Chebyshev polynomials can as well be 
used as basis function in the formulation of least square method for 
solving Volterra-Fredholm integro-differential equations. 
 
 

Conclusion 
In this study, we presented the least square method to solve 
volterra-fredholhm integro-differential equations with the aid of 
shifted chebyshev polynomial basis functions as the approximate 
solution. 
Three examples were considered with the method and we 
observed from the results obtained that the method is an accurate 
and reliable numerical scheme for solving volterra-fredholm 
integro-differential equation. 
 
REFERENCE 
Abbasbany, S. (2006b). Application of He’s Homotopy perturbation 

method for Laplace transform. Chaos, Soliton and 
Fractals, 30(5), 1206-1212. 

Abbasbany, S. (2007). Application of He’s Homotopy perturbation 
method for functional integral equations. Chaos, Soliton 
and Fractals, 31(5), 1245-1247. 

Abubakar, A., & Taiwo, O. A. (2014). Integral collocation 
approximation methods for the solution of high-order 
linear Fredholm-Volterra integro-differential equations. 
American Journal of Computational and Applied 
Mathematics, 4(4), 111-117. 
https://doi.org/10.5923/j.ajcam.20140404.01 

Ahsan, F. S., & Haneeda, O. A. (2021). The numerical solutions of 
integro-differential equations by Euler polynomials with 
least-square method. Palarch’s Journal of Archaeology 
of Egypt/Egyptology, 18(4), 1740-1753. ISSN 1567-
214X. 

Akyuz, A., & Sezer, M. (2003). Chebyshev polynomial solutions of 
system of higher-order linear differential equations with 
matrix method. Applied Mathematics and Computation, 
144, 237-247. 

Cardone, A., Conte, D. D., Ambrusio, R., & Parameter, B. (2018). 
Collocation method for Volterra integral and integro-
differential equations: A review. Axioms, 7, 45-61. 
https://doi.org/10.3390/axioms7030045 

Caruntu, B., & Pasca, M. S. (2021). The polynomial least square 
method for nonlinear fractional Volterra and Fredholm 
integro-differential equations. Mathematics, 9, 2324. 

D. Rani, & V. Mishra. (2019). Solution of Volterra integral and 
integro-differential equations using modified Laplace 
Adomian decomposition method. Journal of Applied 
Mathematics, Statistics and Informatics, 10(1), 2478-
2490. https://doi.org/10.2478/jamsi-2019-0001 

Ogunbamike, O. K., & Owolanke, A. O. (2022). Convergence of 
analytical solution of the initial-boundary value moving 
mass problem of beams resting on Winkler foundation. 
Electronic Journal of Mathematical Analysis and 
Applications, 10(1), 129-136. 

Ogunbamike, O. K., Awolere, I. T., & Owolanke, O. A. (2021). 
Dynamic response of uniform cantilever beams on 
elastic foundation. African Journal of Mathematics and 
Statistics Studies, 4(1), 47-62. 

Owolanke, A. O., Ogwumu, O. D., Kyagya, T. Y., Okorie, C. O., & 
Amakoromo, G. I. (2021). A hybrid two-step method for 
direct solutions of general second-order initial value 
problem. Engineering Mathematics Letters, 2021, 
Article ID 1. 

Owolanke, A. O., Ogunbamike, O. K., & Adebayo, A. (2024). 
Canonical basis interpolation method of solving initial-

https://dx.doi.org/10.4314/swj.v20i1.36
http://www.scienceworldjournal.org/
https://doi.org/10.5923/j.ajcam.20140404.01
https://doi.org/10.3390/axioms7030045
https://doi.org/10.2478/jamsi-2019-0001


Science World Journal Vol. 20(No 1) 2025   https://dx.doi.org/10.4314/swj.v20i1.36 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Solution of Volterra-Fredholm Integro-Differential Equations Using Chebyshev 
Least Square Method 

275 

value problems. COAST Journal of the School of 
Science, 6(2), 1107–1113. 

Owolanke, A. O., Uwaheren, O., & Obarhua, F. O. (2017). An 
eighth-order two-step Taylor series algorithm for the 
numerical solutions of initial value problems of second-
order ordinary differential equations. Open Access 
Library Journal, 4, 1-9. 
https://doi.org/10.4236/oalib.1103486 

Owolanke, A. O., & Ogunbamike, O. K. (2018). Approximate 
solutions of singularly perturbed boundary value 
problems using modified variational iteration method. 
American Journal of Mathematical and Statistical 
Sciences, 4(1), 23-37. 

Taiwo, O. A., & Adebisi, A. F. (2014). Multiple perturbed collocation 
Tau method for a special class of higher-order linear 
Fredholm and Volterra integro-differential equations. 
Projournal of Physical Science Research (PPSR), 2(3), 
3-22. 

Wazwaz, A. M. (2010). The combined Laplace transform-Adomian 
decomposition method for handling nonlinear Volterra 
integro-differential equations. Applied Mathematics and 
Computation, 216, 1304-1309. 

Yakusak, N. S., & Owolanke, A. O. (2018). A class of linear multi-
step method for direct solution of second-order initial 
value problems in ordinary differential equations by the 
collocation method. Journal of Advances in 
Mathematics and Computer Science, 26(1),  

https://dx.doi.org/10.4314/swj.v20i1.36
http://www.scienceworldjournal.org/
https://doi.org/10.4236/oalib.1103486

