Prevalence of early childhood caries among 2-6 years old underprivileged and privileged children in Dar es Salaam

Maro D1, Kahabuka F.K2
1Dental Officer, Muhimbili National Hospital, Dar es Salaam, Tanzania
2School of Dentistry, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania

Abstract

Aim: To determine the differences in prevalence of early childhood caries among underprivileged and privileged children aged 2 to 6 years at different institutions in Dar es Salaam. Design: A cross sectional study. Study participants and methods: Intra oral examination was done to assess the children’s caries status scored according to WHO criteria. Results: A total of 333 children comprising 51% boys and 49% girls were examined. About 52% were underprivileged children. Nearly half of the children (49.6%) had caries in their primary dentition, the mean decayed teeth (dt) was 2.4, which was 1.3 among underprivileged and 2.8 among the privileged children. The lower posterior teeth were the most affected by caries and the lower anterior incisors were the least affected. Caries occurrence increased with age from 12.5% at 2 years, to 39% at 5 years, then dropped to 50.6% at six years. Caries was more prevalent among males (55.9% versus 44.8%) (p = 0.049); among the older group children (55.7% versus 40.2%) (p = 0.008); and among the privileged children (59.1% versus 42.5%) (p = 0.003). Conclusions: Nearly half of the examined children had ECC. The occurrence increased with age. Privileged children were more affected by caries than the underprivileged. The mandibular posterior teeth were the most affected and mandibular anterior teeth the least affected.

Key words: Early childhood caries, privileged, underprivileged, children

Correspondence: Kahabuka F.K., School of Dentistry, P.O. Box 65014, Dar es Salaam, Tanzania. Tel:+255-22-2151135, Cell:00255-74-4538084, Fax:+255-22-2150465, e-mail: fkahabuka@muchs.ac.tz

Introduction

Early childhood caries (ECC) also known as baby bottle tooth decay (BBTD), rampant caries, nursing caries, labial caries or maxillary anterior caries, is a form of tooth decay affecting teeth of young children especially infants and toddlers. (1). A severe pattern of ECC that attacks the maxillary deciduous incisors in particular is termed as severe early childhood caries, SECC (2).

ECC can develop soon after the first tooth erupts (3-4). Usually it starts as a whitish lesion on the smooth surfaces of the front teeth towards the lips and cheeks and it is often covered by thick plaque. The lesion quickly develops into caries. Initially, an ECC lesion is brown in colour, later it becomes dark brown. The condition is more likely to occur in infants or toddlers who suck a bottle filled with a sugar-containing liquid or a dummy dipped in a sweeter, or who have a prolonged (over one year) on-demand breast feeding habit (5). Studies show that there is significant association of high caries rates with cariogenic diet, and frequency of sugary meals per day (6). All of these habits are particularly damaging to the teeth while a child is sleeping. Because saliva which has an important role in washing away the harmful acids that cause tooth decay is less produced during sleep, (7).

ECC is a multifactorial disease in nature. Like other dental caries, ECC is a disease resulting in destruction of tooth structure by acid-forming bacteria found in dental plaque, in the presence of sugar (8). The micro-flora, substrate, saliva and host are key factors involved in the pathogenesis, together with the immature host defence system. Immature enamel surfaces and developmental defects of enamel are as well considered in the aetiology (8).

Studies among children at the age of 5 years and below have shown that ECC (ECC and SECC) increases with age (6, 9-11). Furthermore, Carino et al (12) reported a prevalence of ECC to range from 59% in children aged 2 years, to 94% in children aged 5 years and a slight drop to 92%
among children aged 6 years. In another study it
was noted that the prevalence of ECC increased
with the number of sugary snacks between meals
and a cariogenic diet (6).

The most prevalent caries patterns in the 3-year-
old children are the fissure (62%) patterns. Further,
the prevalence of the fissure pattern of ECC in-
creases successively with age groups, however the
maxillary anterior patterns have no significant
change with age (11). Groups at high risk of dental
caries were reported by Jose et al. (13) to be those
who are afraid of dental hygiene status, secondly
those who consume snacks and are given sweets
as rewards and third are those belonging to a lower
socioeconomic class. Other studies report an asso-
ciation of ECC and being underprivileged (14-15).
In a similar manner, Ferro et al. (9), reported ECC
to be higher among the immigrant children than
among the Italian native-born children. He further
reported the prevalence of ECC to be three times
and that of S-ECC six times more frequent in this
region than in native born. Other studies show that
prevalence, severity and distribution of the caries
varies greatly with age but not sex (11, 16).

In Tanzania, Matee et al (16) reported the overall
prevalence of ECC to be 6.8%. Rugarabamu (10)
reported a 40% prevalence of caries among
three year olds whereas as Mosha et al (17-18)
reported a prevalence of 24% and 25% among
5-6 year old Tanzanian children. Recently, Mziray
and Kahabuka (19), reported an ECC prevalence
of 26.4% among 6-36 months old children
attending a reproductive and child health clinic at
Mnazi Mnoja Dispensary in Dar es Salaam.

ECC is further reported to be a big challenge to
the dental profession throughout the developing
and developed world as well. For instance in
Saudi Arabia, dentists working with children
have expressed their concerns about the seri-
ousness of the nursing caries problem (20).
Studies report that socially disadvantaged
children experience higher mean dmft levels than
their similarly aged children (14, 21). In
Tanzania, socially disadvantaged children
include street children, orphans, refugees and
those living in remote areas. These children may
have no access to oral health services including
oral health education and thus they may have
higher levels of dmft than their similarly aged
children. Whereas information on ECC among
Tanzanian school children is available, the
information among underprivileged Tanzanian
children is lacking. Therefore, the aim of this
study was to determine the differences in
prevalence of early childhood caries among
underprivileged and privileged children aged 2 to
6 years at different institutions in Dar es Salaam.

Study participants and methods

This was a cross sectional study conducted
among 2-6 year old underprivileged children
living at special institutions and privileged
counterparts attending nursery schools in Dar es
Salaam. Underprivileged children refer to
children who were living at institutions for
underprivileged children either because they
were orphans or were formerly street children.
A minimum sample of 298 children was required
for the study. Fourteen institutions were
conveniently sampled and visited, 12 for the
underprivileged and 2 for the privileged children.
Only 10 institutions (5 underprivileged and 5
privileged schools) had children eligible for the
study. A convenient sampling technique was
used to obtain the children for the study in the
institutions for underprivileged children whereas
a random sampling method was used to select
children attending the nursery schools by picking
every second child from the list of students in a
school registry.

Informed consent was obtained from the
authorities in the particular institutions and from
parents on behalf of the children. Intraoral
examination was conducted under natural
daylight in classrooms with the child seated on
an office chair. Examination was in form of
inspection aided by mouth mirrors whenever
necessary. Caries was scored according to the
WHO criteria of 1997. (22) Children who were
found with oral health problems following
examination were recorded and authorities
responsible for the children were advised to seek
medical or dental attention. Children were
instructed on oral hygiene to enhance their
hygiene practices.

SPSS version 11.5 computer program was used
for data analysis. Chi square tests was used to
test differences in caries occurrence between sex,
age and privileged or underprivileged groups. P-
value of < 0.5 was chosen as a level of
significance.

Results

A total of 333 children were examined, 170
(51.1%) boys and 163 (48.9%) girls. The
underprivileged group of children were 52.2%
and privileged group 48%. About 41% of the
children were five years old with older (5 and 6
Early childhood caries in underprivileged children

years) children constituting 66.4% and the younger (2 to 4 years) children constituting 33.6%. With the exception of the 3 and 6 year olds there were more males than females, (Table 1).

Table 1: Distribution of the study population by age and sex

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2.9</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>5.3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td>25.3</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>44.1</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>38</td>
<td>22.4</td>
<td>49</td>
</tr>
<tr>
<td>Total</td>
<td>170</td>
<td>100</td>
<td>163</td>
</tr>
</tbody>
</table>

Table 2 shows the distribution of participants by number of decayed teeth. About half of the children (49.6%) were caries free. Among those who had caries, majority (27%) had one to three decayed teeth. Whereas the least proportion of children (8.1%) had seven to 13 decayed teeth. The overall mean decayed teeth (dt) was 2.4, privileged school children had a higher mean caries score (dt = 2.8) than underprivileged children (dt 1.3). This difference was statistically significant (p < 0.001).

Caries status for specific tooth types showed that a larger proportion of the children (32.7%) had dental caries on mandibular first molars and the lowest (1.2 to 1.8%) presented with dental caries on the mandibular incisors, (Table 3).

Table 2: Distribution of children by number of decayed deciduous teeth

<table>
<thead>
<tr>
<th>Caries score</th>
<th>Underprivileged</th>
<th>Privileged school</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>57.5</td>
</tr>
<tr>
<td>1-3</td>
<td>46</td>
<td>26.4</td>
</tr>
<tr>
<td>4-6</td>
<td>22</td>
<td>12.6</td>
</tr>
<tr>
<td>7-13</td>
<td>6</td>
<td>3.4</td>
</tr>
<tr>
<td>Total</td>
<td>174</td>
<td>100</td>
</tr>
</tbody>
</table>

For both groups of children (underprivileged and privileged) caries occurrence increased with age. Generally, the frequency of children with caries increased almost five times from 12.5% at the age of 2 years to 59% at the age of five years. The proportion of study participants aged two to three years who were caries free (59.8%) was significantly higher than 44.3% of those aged 5 and 6 years (p < 0.001). Fewer children were affected by caries among the underprivileged than among the privileged groups of children (42.5% and 59.1%, respectively). This difference was statistically significant (p < 0.001), (Table 4).

Table 3: Distribution of children with caries lesion according to tooth type

<table>
<thead>
<tr>
<th>Tooth type</th>
<th>Children with caries on maxillary teeth</th>
<th>Children with caries on mandibular teeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Second molars</td>
<td>43</td>
<td>12.9</td>
</tr>
<tr>
<td>First molars</td>
<td>71</td>
<td>21.3</td>
</tr>
<tr>
<td>Canines</td>
<td>8</td>
<td>2.4</td>
</tr>
<tr>
<td>Lateral incisors</td>
<td>37</td>
<td>11.1</td>
</tr>
<tr>
<td>Central incisors</td>
<td>49</td>
<td>14.7</td>
</tr>
</tbody>
</table>

Table 4: Caries status among the privileged and underprivileged children according to age

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Privileged children</th>
<th>Underprivileged children</th>
<th>Privileged and underprivileged combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>66.7</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>66.7</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>40.4</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>37.3</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>36.4</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td>40.9</td>
<td>94</td>
</tr>
</tbody>
</table>
Caries affected more males (55.9%) than females (44.8%) and the difference was statistically significant \((p < 0.05) \).

Discussion

A substantial number of the children enrolled in the study were picked from streets to be raised at institutions thus their age was estimated based on their appearance or information from unreliable sources. Therefore, interpretation of the relationship of caries with age should be done cautiously.

The number of children at the institutions increased roughly with age, both for the underprivileged and privileged groups. The small number of the younger children found in the institutions could be explained by the fact that the younger children are usually taken care at institutions specialized in raising the younger children and which were not included in this study. Regarding the children at nursery schools, in Tanzania few parents enroll their children to schools at early ages. Therefore, only few young children were already in schools at the time of study. Similarly there was a slight difference in the distribution of the population by sex. There were more males than females. The difference in sex distribution of the studied population may have influenced the difference in the prevalence of ECC among males and females.

The prevalence of deciduous teeth cavies in this study group (50.5%) was higher than that reported previously by Rugurubamu (10), Matee et al. (16), Mosha et al. (17-18) as well as Mziray and Kahabuka (19). The difference between the findings of the current study and the previous ones could be due to differences in the age groups of the study participants. In the younger age groups, the prevalence is lower than in the older age groups.

The mean dmft among the privileged was higher than among the underprivileged children. The dissimilarity between the two groups can be explained by possible differences in exposures to cariogenic foods. The underprivileged children may not have had as much access to sugary snacks/foods at the institutions compared to the privileged ones who live at their homes as a significant association between high caries rate and consumption of sugary foods is known (6). Additionally, it is also possible that the underprivileged children were not breastfed at will and for prolonged periods of time beyond one year of age. Breast feeding at will is considered to be a causal factor of ECC in Tanzanian children as was reported to be the case in Southeast Asian population (23). When the mother’s nipple is used to induce sleep or if the child is allowed to breast feed at night in the event the mother shares a bed with the child, residual milk is left in the child’s mouth as the child sleeps. The residual milk provides substrate to the bacteria that ferment the carbohydrates in milk to produce acids. Because the substrate is availed constantly, demineralization of the enamel continues without an opportunity for remineralization and therefore an aggressive form of ECC called rampant caries occurs.

The lower anterior teeth were the least affected teeth, compared to the lower posterior teeth which were highly affected. This could be explained by the fact that the lower anterior teeth are protected by the tongue from residual milk (24) and they have an advantage of a self-cleansing effect of saliva as well as the likely and easy accessibility of these teeth for cleaning. On the other hand, mandibular molars were more affected by caries due to what has been said to be a direct result of the structural irregularities associated with occlusal pits and fissures of these teeth which is more likely to retain food remnants and plaque hence a higher risk to develop caries (25).

Contrary to the findings by Ramalingam and Messer (8), Jamieson et al. (14), and Albert et al. (25) who reported prevalence of ECC to be extremely high in children from poor backgrounds, in this study the proportion of children with caries among the underprivileged group appeared to be significantly less than that among the privileged ones. Probably in the present study children living in underprivileged institutions did not have access to sugary snacks unlike the privileged children. This scenario was earlier on reported by Kahabuka and Mbwawa (27), that underprivileged children living at institutions are less likely to access sugary snack and drinks. The other feasible explanation could be that the underprivileged children, who mostly were initially street children, may have not had the privilege of breast feeding at will beyond one year of age, therefore had less risk to caries development. Breast feeding at will is likely to have been done to children of the privileged group and is the most probable causal factor of ECC in Tanzanian children as reported elsewhere (23). Moreover, the definition of privileged and underprivileged children in these studies is not the same as the one used in the present study. This dissimilarity in defining the two groups may have some influence on the
Early childhood caries in underprivileged children

findings.

On the other hand, Livny et al (28) reported a prevalence of ECC among underprivileged Bodouin community to be 17.6% which is much lower than 42.5% observed among the underprivileged group in the current study.

Caries prevalence increased roughly with age in both the two groups of children. Similar trend was reported by Carino et al (12) who observed the prevalence of ECC to range from 59% in children aged 2 years, to 94% in children aged 5 years and a slight drop to 92% among children aged 6 years. In the similar way, the study agrees with the report by Ferro et al. (9), Rugarabamu (10), Rosenblatt & Zarzar (6), and Douglass et al (11), who also reported caries prevalence to have the tendency of increasing with age. The early rise in caries occurrence with age may be a result of increase in exposure to cariogenic foods with age as well as due to time factor, that is, longer exposures which is necessary for caries development. The possible reason for the drop could be the natural exfoliation and/or tooth extraction(s) that are likely to have taken place by this age.

According to the results of this study, more boys than girls were affected by caries. This is contrary to reports by Matee et al (16) and Douglass et al (11) who reported the prevalence, severity and distribution of caries to vary greatly with age but not sex. Since deciduous teeth emergence time among Tanzanian children does not differ significantly among sexes (personal communication), the difference in caries occurrence between sexes suggests that the two sexes encountered dissimilar exposures to cariogenic foods and should not imply caries to be sex determined. However, the results may have been influenced by the difference in the number of males versus females who participated in the study especially among the five year olds who were the most affected of the age groups.

Conclusion:
The prevalence of caries was high, (50.5%) and the privileged children were slightly more affected by caries than the underprivileged children living at institutions. Occurrence of caries increased with age. Mandibular posterior teeth were the most affected teeth whereas mandibular anterior teeth were the least affected. Males were more affected by caries than females.

Acknowledgement:
This study was sponsored by the Government of the Republic of Tanzania. We are grateful to the officials in charge of the institutions for granting permission to conduct the study and to the children for participating in the study.

References:

A computer is almost human except that it doesn't blame its mistakes on another computer.

A travel agent offered me a 21-day special. He told me I would fly from New York to London. Then from Tokyo back to New York. I asked him ...how am I supposed to get from London to Tokyo? ...He told me... That is why we give you 21 days.