prescribed in short intervals as in prophylaxis. But if used properly and only for treatment (and not for prophylaxis), and if the therapeutic interval would not be too short, then AQ has no major problems. HENCE, AQ could be better than SP.

In view of the high levels of CQ resistance, continuing using it as the standard treatment of malaria increases the incidence of people at risk of malaria morbidity and mortality, particularly in the rural areas where CQ is probably the only available and dependable antimalarial drug. From the results of this study, therefore, it is obvious that a change of the first line drug is inevitable; and AQ appears to be the sound choice.

References

A RANDOMISED CLINICAL TRIAL COMPARING THE EFFICACY OF B-ARTEMETHER AND CHLOROQUINE FOR THE TREATMENT OF UNCOMPPLICATED MALARIA IN TANZANIA

1. National Institute for Medical Research, P. O. Box 9653, Dar es Salaam
2. National Institute for Medical Research, Amani Medical Research Centre, P.O. Box 4, Amani, Tanga

Rugemadila, J.B., Msangeni, H.A., Akida, J.A. and Malimi, M.C.

ABSTRACT: A randomised clinical trial was conducted in the Muheza Designated District Hospital (Teule) to compare artemether with chloroquine for tolerance and efficacy in treating malaria. Patients aged 5 years and above were screened clinically and parasitologically. Chloroquine was administered at 25 mg/kg of body weight over 3 days. Artemether was given at 3.2 mg/kg on the first day, and 1.6 mg/kg on the following four successive days. 54 patients were treated with chloroquine and 52 with artemether. The latter drug demonstrated a rapid, progressive and significant effect from day 3. It scored its highest parasite clearance of 92.2% on day 7, in contrast to 57.7% achieved by chloroquine on the same day. No difference in the clinical response observed between the two drugs. Adverse effects were mild and negligible, and consisted of itching and dizziness. No abnormal physiological function tests noted. Thus, oral artemether was highly effective in clearing parasitaemia compared to chloroquine, and virtually had no side effects.

Introduction
Malaria is an increasing public health problem worldwide. It is endemic in over 90 countries, poses an infection exposure risk to over 40% of the world’s population, and each year about 300 million people become infected, resulting to over 2.7 million deaths (WHO, 1996). The problem is compounded by the emergence, and rapid spreading of multi-drug resistant strains of Plasmodium
falciparum. In the united Republic of Tanzania malaria is mostly caused by P. falciparum, and accounts for over 30% of the disease burden (World Bank). Furthermore, there are already high levels of parasite resistance not only to the first line drug, chloroquine (CQ), but also to the second line and reserve drugs. The in vivo and in vitro studies undertaken in Tanga region in the north-eastern part of the country elicited parasite resistance rates of 40%, 70–75% and 5% to CQ, sulfadoxine/pyrimethamine (SP) and mefloquine (MQ), respectively (Kilimani and Mkuifya, 1988a; Kilimani and Mkuifya, 1985b; Kilimani et al., 1989; Ronn et al., 1996). Nevertheless, prompt and effective case management remains the most important control method, which therefore, justifies concerted research efforts to provide alternative antimalarial drugs.

The Chinese herb, Artemisia annua, also known as qinghao in China was used for the treatment of malaria in the People’s Republic of China for time immemorial. The active component of the herb, artemisinin (known in Chinese as qinghaosu) was isolated and characterised by Chinese scientists in 1972, and the compound and several of its derivatives have been studied for efficacy, pharmacology, pharmacokinetics and toxicology (WHO, 1993). Artemether (AT) is one of the derivatives of artemisinin that has shown to have great antimalarial activity. Its initial clinical trials, most of which were conducted in the Far East and several African countries other than Tanzania, showed that the drug was safe, well-tolerated and effective in clearing parasitaemia and malaria related manifestations. The side effects observed with this drug were mostly associated with the injectable (intramuscular) preparations, and in all cases they have been of low incidence, mild and transient. In view of the occurrence of rapid spread of drug resistant malaria parasite strains, the efficacy of an antimalarial drug demonstrated in one area may not be applicable to another. There was therefore, a need to find out the efficacy of AT as an alternative treatment for malaria in Tanzania. The study was carried out between the months of January and June, 1996.

Materials and Methods
The study was based at the Muheza Designated District Hospital (Teule) whose catchment area is holoendemic for malaria. There are high levels of multi-drug resistance of P. falciparum, particularly to CQ, SP and to a lesser extent, MQ. The study patients were selected from those seeking treatment from the hospital and its catchment health facilities.

Each of the potential patients was examined clinically and parasitologically by thin and thick Giemsa stained blood smears for malaria parasite identification and enumeration. Positive ones were interviewed to elicit age, a history of concurrent serious illness, and of ingesting antimalarial drugs within the past 14 days. Those with a negative history were given a Dill-Glazko urine test for the presence of 4-aminoquinoline antimalarial drugs. Women of reproductive age were also interviewed for a history of concurrent lactation and missed menstrual periods of 5 weeks or more. In case of doubt regarding missed periods, a pregnancy test was employed to be certain. Only those aged 5 years and above, non-pregnant and non-lactating women who gave informed consent were registered for the study. Other blood samples were collected for the assessment of bone marrow, liver and kidney function tests. Blood Pressure and pulse rate measurements were taken and recorded daily and on each follow up visit.

Patients were randomised into two treatment groups, one for CQ and the other for AT. Both drugs were available as similar white tablets. This was advantageous for blinding patients for the treatment taken, and for those either carrying out clinical examinations or recording side effects. The patients' numbers, instead of names, were used for labelling specimens so as to blind the testing technicians for treatment administered to the patient and for the point along the study period. The identification of the patients by treatment was only known by the nurses who were the only ones administering the drugs. Although there was a chance to break the identification code to facilitate treatment of severe side effects or deteriorating illness, it was to be broken during data analysis.

AT was administered as tablets each containing 50 mg of the active ingredient. The calculation of the daily doses were based on the patients' body weights, given at 3.2 mg/kg on the first day, and 1.6 mg/kg on the following four successive days. CQ was also given as tablets each containing 150 mg base, and was administered at a dosage of 10 mg/kg on the first two days, followed by 5 mg/kg on the third day. Patients were admitted in hospital for 7 days, and thereafter, followed up as outpatients on days 14, 21 and 28. During the follow up, clinical assessment and parasitological examination of blood slides were performed, and blood samples for physiological function tests were collected and examined.

Results
A total of 106 patients, 54 for CQ and 52 for AT were analysed. AT had a rapid, progressive and significant effect as by day 3 it already attained 23.5% parasite clearance in contrast to only 5.6% scored by CQ. Throughout the follow up period up to 28 days, AT recorded not only consistently rising but also highly significant parasite clearance rates, reaching a peak of 92.2% on day 7 compared to 57.7% achieved by CQ. Cure rate as observed on day 28 was higher in the AT group (79.5%) than in those treated with CQ (27.9%). However, there was no difference in the clinical response noted between these two drugs. In addition, both drugs
showed high rates of recrudescence. The only side
effects recorded were itching and dizziness. Two patients
on CQ group and one on AT complained of itching, and
only one in the AT group reported to have dizziness.
There were no marked abnormalities noted in the
physiological function tests except for a few who showed
some decrease in the total white cell count, particularly
in those treated with CQ.

Discussion
This clinical trial has demonstrated that the two drugs
were well tolerated, with AT being the better off. The
only elicited side effects were itching and dizziness,
both of which were mild, transient and resolved
spontaneously. The physiological function tests showed
that only leucopenia and reticulocytosis could possibly
be associated with the interventions since the post-
treatment rates increased beyond the pre-treatment
levels, more so in patients treated with CQ. This
therefore, shows that AT was virtually without adverse
effects as reported elsewhere (Myint, P.T. and Shwe,

For both treatment groups, the post-treatment
prevalences for each of the malaria related manifestations
decreased dramatically and consistently to rates well
beyond the pre-treatment levels. The similarities in the
clinical response probably indicate an equal pharmacological action. Nevertheless, AT was far
superior to CQ in terms of parasite clearance and cure rate as found in other studies done in Southeast Asia
(Karbwang et al., 1992). AT could provide a good
alternative treatment for malaria in Tanzania. The main
problem with it however, seems to be related to the rate
of recrudescence. For it to be more effective, and for
preventing it from developing resistance in the near future,
its should be combined with another antimalarial drug to
give it a synergistic effect.

References
Report 1996. Fighting Disease and Fostering Development, 1996. world Health Organization,
Geneva, Pages 47 - 48
World Health Organization (1993). The Role of Artemisinin
and its Derivatives in the Treatment of Malaria. WHO/ MAL/94. 1067

Kilimali, VAEB and Mkuuya, AR. (1985) In vivo and in vitro
assessment of the Sensitivity of Plasmodium falciparum
to Chloroquine in Four Districts of Tanga Region,
81.

Kilimali, VAEB and Mkuuya, AR. (1985). In vivo assessment of
the Sensitivity of Plasmodium falciparum to
Sulfadoxine/Pyrimethamine combination (Fansidar)
in Six localities in Tanzania where Chloroquine Resistant
P. falciparum has been detected. IBID, 1985, 79: 482 –
83

Kilimali VAEB, Mkuuya, AR and Kilama, WL. (1989). Low
Resistance of Plasmodium falciparum to Mefloquine in
Tanga Region, Tanzania. IBID, 83:162 – 64
Ronn, AM, Msangeni, HA, Mhina, J, Werner, WH and
Bybbsjerg, IC. (1996). High levels of Resistance of
Plasmodium falciparum to Sulfadoxine/Pyrimethamine
in Children in Tanzania. IBID, 90: 179 – 81
of Clinical Studies of Treatment of Falciparum Malaria
with Artemether Injection. Kunming Pharmaceutical
Factory, pp 108
Clinical Studies on Treatment of Cerebral Malaria with
2: 125 -30
(qinghaosu) in Plasmodium falciparum and P. vivax in
19 – 22
Myint P T and Shwe T. (1987). A Controlled Clinical Trial of
Artemether (qinghaosu derivative) versus Quinine in
Complicated and Severe Falciparum Malaria. Trans.
Study of the Treatment of Cerebral Malaria with
Artemether (qinghaosu derivative). IBID, 83: 72
Comparison of Oral Artemether and Mefloquine in Acute
Uncomplicated Falciarum Malaria. Lancet, 340: 1245 –
48

on Artemether and Chloroquine for Severe Malaria in
Resolution with Artemether in Malawian Children with
Cerebral Malaria. IBID, 341: 661 – 62


of Artemether in the Treatment of Plasmodium
Hyg., 87: 685 – 6

of Dill and Glazko: A Simple Field Test to Detect
Chloroquine in Urine. Bulletin of the World Health
Organization, 42: 477 - 79