Complete genome sequences and multidrug resistance genotypes of nontuberculous mycobacteria isolates from the Central Tuberculosis Reference Laboratory Muhimbili Tanzania

Hortensia Nondoli¹,⁵, Reuben Maghembe²,⁶, Winifrida Kidima³, Victor Makene¹, Esther Ngadaya⁴

¹Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P. O. Box 35179, Dar es Salaam, Tanzania.
²Section of Biological and Marine Sciences, Faculty of Natural and Applied Sciences, Marian University College, P. O. Box 47, Bagamoyo, Tanzania.
³Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar es Salaam, P. O. Box 35160, Dar es Salaam, Tanzania.
⁴National Institute of Medical Research, Muhimbili Medical Research Centre, P. Box 3436, Dar es Salaam.
⁵Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, P.O Box 608, Mbeya
⁶Department of Microbiology and Immunology, Faculty of Biomedical Sciences, Kampala International University-WC, Ishaka, Uganda.

Abstract

Background: Nontuberculous mycobacteria (NTM) usually comprise a group of environmental bacteria, with emerging but elusive coinfection with tuberculosis mycobacteria, causing pulmonary tuberculosis. Whole genome sequencing may give insight into potential antimicrobial resistance genotypes, giving clinicians and policymakers proper directions in clinical applications and management regimens.

Methods: WGS was performed on twenty-four gDNA isolates from archival samples at the Central Tuberculosis Reference Laboratory using the MinION Oxford Nanopore Sequencing approach. Out of twenty-four, two were confirmed to belong to the NTM group. Further analysis was done to resolve the complete genomes of two nontuberculous mycobacteria strains isolated from tuberculosis patients. We then combined phylogenomics, reference-based scaffolding and average nucleotide identity (ANI) analysis to delineate each strain's taxonomic position and corresponding features.

Results: Our findings reveal that the two strains fit into the genus Mycolicibacterium, and the closest relative is Mycolicibacterium novocastrense. Coupling BacAnt and CARD-based antibiotic resistance analyses revealed multidrug-resistant genotypes of diverse spectra and mechanisms. While the BC02 strain is genetically resistant to beta-lactams, macrolides and rifamycins, the BC05 strain portrays an extended drug resistance genotype encompassing beta-lactams, macrolides, polyamines, and aminoglycosides. Both strains possess a single nucleotide polymorphism (SNP) of the RNA polymerase beta-subunit (rpoB), representing resistance to the first-line rifampicin. Additionally, the BC05 strain genetically portrays resistance to ethambutol, isoniazid and fosfomycin through mechanisms involving target alteration through SNPs, drug inactivation and efflux.

Conclusion: Our findings strongly suggest the potential implication of multidrug-resistant NTM clinical isolates in the pathogenesis of pulmonary tuberculosis.

Keywords: Genomics; whole genome sequencing; NTM; phylogenomics; phylogenetics; antimicrobial resistance

¹ Corresponding author: Hortensia Nondoli, Email: hnondoli@gmail.com
Introduction

Non-tuberculous mycobacteria (NTM) usually comprise a group of environmental *Mycobacterium* species (spp) with potential health risks considered to pose a risk to pulmonary health. There are more than 160 NTM species worldwide apart from the *Mycobacterium tuberculosis* complex living in water and soil (Ratnatunga et al., 2020). Previously, these organisms were considered non-dangerous to humans with immune competence and affected only immunocompromised individuals. However, evidence is increasing of their importance in pulmonary disease in both immune-competent and immunocompromised individuals (Griffith et al., 2007).

In addition, the emergence of co-infection is alarming, suggesting a link between *Mycobacterium tuberculosis* (MTB) and NTM in the pathogenesis of pulmonary disease. With increased complications of pulmonary disease, evidence is accumulating pointing to the overwhelming phenomenon of antimicrobial resistance among respiratory pathogens. Draft-to-complete genomes of various *Mycobacterium tuberculosis* complex (MTBC) strains are flooding the databases. This contributes to a better understanding of the genetics underlying virulence, host-pathogen interaction features, and antimicrobial resistance patterns among MTBC strains.

However, despite this globally evident achievement, whole genome sequencing technology in the sub-Saharan African Region is in its infancy, with most infectious and noninfectious bacteria being sequenced. Except for a few MTBC sequencing studies in East African settings (Ssengooba et al., 2016; Kanyerezi & Nabisubi, 2020; Katala et al., 2020; Mbelele et al., 2022), evidence shows that even MTBC strains are yet to be sequenced at the genomic level from East and Central Africa. This calls for attention and emphasis on the need for whole genome sequencing of MTB and NTM strains to track the possible epidemiological trend of pulmonary disease associated with *Mycobacterium* species. In addition, even the current research interest has been skewed towards the analysis of MTBC strains, whose infection, pathogenesis, and clinical implications are elucidated to a significant level.

On the contrary, little is explored about the genomics of NTM. The increase in multidrug-resistant strains of the MTB complex has been substantially established (Al-Mutairi et al., 2019; Katale et al. 2020; Senghore et al., 2020). Evidence of co-infection between MTBC and NTM is emerging, with speculations increasing about their role in the pathogenesis of TB as well as antimicrobial resistance (Kotwal et al., 2017). In Tanzania, a recent combination of microscopy and molecular markers, entailing rRNA and hsp65 gene sequences, identified over 16 NTM strains, including *M. gordonae*, *M. interjectum*, and *M. intracellular. M. kumamotonense/hiberniae*, and *M. flavescens/novocastrense*, among others (Hoza et al. 2016).

A case study conducted in Dar es Salaam, Tanzania, identified a strain *M. yongonense* (Mnyambwa et al. 2018) adding to the previously identified strains. However, these results were based on partial sequences, which are of low resolution, recovering only taxonomic identities to the level of genus. This work focused on establishing whole genomic information including potential antimicrobial resistance genotypes from high throughput sequencing via Oxford Nanopore technology. Therefore, the current study reports *Mycolicibacterium novocastrense* UDSM-BC02 and *Mycolicibacterium novocastrense* UDSM BC05 as NTM strains from Tanzania with genomic characteristics potentially representing multidrug resistance and TB pathogenic potential, accounting for symptoms of pulmonary tuberculosis in TB patients.
Materials and Methods

Sampling and sample preparation
In this project, Ethical approval was sought from the National Health Research Review Committee and granted ethical clearance number HQ/R.84/VOLII/853. Our study involved analysis of 24 mycobacterial samples archived at the central TB reference laboratory (CTRL) in Dar es Salaam which were collected from selected cross border regions of Tanzania. The samples used for this study were received from the East African Public Health Laboratory Network (EAPHLN) project satellite (using GeneXpert MTB/RIF assay (Cepheid, USA)) hospitals namely Kibong’oto (Kilimanjaro), Mnazimmoja (Unguja), Musoma referral hospital (Mara), St Benedict Ndanda referral hospital (Mtwara), Sumbawanga referral hospital (Rukwa) and Kigoma referral hospital (Kigoma).

In addition, the study utilized samples from the EAPHLN project non-satellite (without Xpert MTB/RIF assay) sites of Nyamagana district hospital in Mwanza, Levolosi, and St Vicent health centers in Arusha and Pwani regions respectively. These selected areas for sample collection were from the cross-border regions except for St Vicent Health center. The inclusion criteria were all tuberculosis patients with positive smear consented to participate in the study. However, presumptive tuberculosis cases not willing to participate in the study were excluded as well as tuberculosis patients who were already on anti-tuberculosis treatment.

DNA Extraction and sequencing
The genomic DNA was extracted from twenty four heat-killed Mycobacteria isolates by the cetyltrimethylammonium bromide (CTAB) method as previously described (van Soolingen et al., 1991). Briefly, sterile loops were used to lift bacterial isolates from LJ medium slants. The isolates were added into tubes containing 1X TE (Tris–ethylenediaminetetraacetic acid) buffer, pH 8.0, and then heat-killed in a water bath at 80°C for 20 min followed by the addition of 10 mg/ml lysozyme in each tube and incubated at 37 °C overnight. On the following day, the DNA was extracted with chloroform–isoamyl alcohol (24:1), and the pellets of genomic DNA were rehydrated in 80 µl TE and left overnight at 4 °C. The quality and quantity of gDNA were confirmed using a Qubit 2.0 fluorometer (Thermal Fisher Scientific, Waltham, MA USA). The gDNA was eventually stored at -20 °C before sequencing.

Library preparation and sequencing
Library construction and sequencing were done using the Oxford Nanopore ligation sequencing kit (LSK 109) without fragmentation according to manufacturer’s instructions. Twenty-four samples were end-prepped by adenylating the 3' end and phosphorylating the 5' end, followed by attaching barcodes for multiple sample sequencing. The end-prepped DNA was washed with a long fragment buffer to select only long fragments of more than 3kb. Sequencing adapters were added to these long fragments of DNA and incubated for 20 minutes at room temperature. Libraries were sequenced using MinION MK1C for 48 hours generating a total of 6.45 gb reads, which were base called using Guppy as the device was sequencing and the mean read length was 2.43kb, while de novo assembly was accomplished with Flye (v2.8).

Genome annotation and establishment of basic features for each sample strain
To predict the possible taxonomic placement of each strain, assembled genomes for all the strains were first annotated with Microbial Genome Atlas (MiGA) (Rodriguez-R et al., 2018) and then with the comprehensive genome analysis service at PATRIC (Wattam et al., 2014). Annotation was also accomplished with Rapid Annotation by Subsystems Technology (RAST).

Taxonomic insight: Approach from Genomic Data and 16S rRNA genes to determine possible closest strain
To predict the possible closest strains, the 16S rRNA genes were extracted using the ContEst16S algorithm (Lee et al., 2017) and used for BLASTn
against the NCBI nucleotide database. Alternatively, the entire genomes from MiGA were used to identify the closest strains based on automated average nucleotide identity (ANI). Thereafter, the closest relative genome sequences were downloaded from GenBank for detailed comparison. The genomes were analyzed by the

Type (Strain) Genome Server (TYGS), for whole genome-based taxonomic identities (Meier-Kolthoff & Göker 2019), also integrating the latest updates for the most appropriate features (Meier-Kolthoff et al., 2022). The TYGS analysis was subdivided into the following steps:

Determination of closely related type strains

Determination of closest type strain genomes was achieved in two complementary ways: First, all user genomes were compared against all type strain genomes available in the TYGS database via the MASH algorithm, a fast approximation of intergenomic relatedness (Ondov et al., 2016) and, the ten type strains with the smallest MASH distances chosen per user genome. Second, an additional set of ten closely related type strains was determined via the 16S rRNA gene sequences. These were extracted from the user genomes using RNAmmer (Lagesen et al., 2007) and each sequence was subsequently subjected to BLAST analysis against the 16S rRNA gene sequence of each of the currently 15679 type strains available in the TYGS database. This was used as a proxy to find the best 50 matching type strains (according to the bitscore) for each user genome and to subsequently calculate precise distances using the Genome BLAST Distance Phylogeny approach (GBDP) under the algorithm 'coverage' and distance formula d5 (Meier-Kolthoff et al., 2013). These distances were finally used to determine the 10 closest type strain genomes for each of the user genomes.

Scaffolding and chromosome-level assembly to deduce full genomes.

The closest relatives identified via genome PATRIC annotation and blind phylogenetic reconstructions from TYGS were selected as reference genomes. Then contigs from each strain genome were mapped to these selected reference genomes using CONTIGuator v2.27 (Galardini et al., 2015). The scaffolds from the best matches were used as a reference for further remapping of the contigs to enhance recovery. This process of reference-guided assembly was repeated four times for each strain genome and the ultimately recovered sequence was considered a chromosome, relative to the chromosome sizes of reference and other closely related strains from genome and assembly databases in the National Center for Biotechnology Information (NCBI).

Genomic screening of antimicrobial resistance genes

Antimicrobial resistance genes analysis was done using the PATRIC annotation pipeline for the identification of antimicrobial resistance genes and mechanisms (Antonopoulos et al., 2019). Then the genome sequences were alternatively scanned by the comprehensive antimicrobial resistance database (CARD) (Alcock et al., 2020) and, using default parameters, the BacAnt: a combinatorial pipeline for concomitant identification of antimicrobial resistance genes with integrons and transposable elements (Hua et al., 2021).

Results

Demographic and clinical features of the patients

Among all 24 samples isolated as Mycobacteria, 2 (8.3%) samples were identified as NTM and labeled as BC02 and BC05. The patient with a code BC02 was a male aged 23 years living in Kilimanjaro with a history of TB relapse in the year 2015 and HIV negative. He was referred to a regional Hospital (Kibong’oto) after relapse with the following clinical features: coughing (60 days), fever (7 days), chest pain (7 days), fatigue (14 days), and loss of appetite (21 days). The second patient,
coded as BC05, was a male living in Arusha aged 32 years with the following clinical characteristics; HIV positive, with typical TB relapse symptoms including coughing for 58 days, fever (30 days), weight loss (53 days), breathing difficulties (30 days) and fatigue (30 days). He was previously treated with anti-Tb first-line drugs in the same facility.

Assembly of NTM strains genomic features
The results of the assembled genome for Myc_UDSM_BC02 contained 108 contigs, a total of 595838 bp (GC 66.72%), 7263 protein-coding sequences (CDS), 49 RNAs with 3 rRNA genes from PATRIC annotation. On the other hand, the Myc_UDSM_BC05 genome comprised 80 contigs, equivalent to 9197165 bp (GC 66.63%), 11,370 protein CDS, 90 transfer RNA (tRNA) genes, and 9 rRNA genes. Based on the annotation statistics and a comparison to other genomes in PATRIC within this same species, both genomes appeared to be of good quality. Details of the analysis, including predicted functions, and phylogenetic positions are shown (Figures 1, 2).

![Functional characteristic features of coding sequences from the PATRIC annotation pipeline.](image)

Phylogenetic analysis of NTM strain genome from comprehensive annotation by PATRIC
Further annotation was done using PATRIC platform using reference genomes from the National Center of Biotechnology Information (NCBI) and includes them in the phylogenetic analysis as part of the comprehensive genome analysis process. The closest reference and representative genomes were identified by Mash/MinHash (Ondov et al., 2016). PATRIC global protein families (PGFams) (Davis et al., 2016) were selected from these genomes to determine the phylogenetic placement of the study genomes. The protein sequences from the predicted families were aligned with MUSCLE (Edgar 2004), and the nucleotides for each of those sequences were mapped to the protein alignment. The joint set of amino acid and nucleotide alignments were
concatenated into a data matrix, and RaxML (Stamatakis 2014) was used to analyze this matrix, with fast bootstrapping (Stamatakis et al., 2008) was used to generate the support values in the trees. PATRIC global protein families (PGFams) (Davis et al. 2016) were selected from these genomes to determine the phylogenetic placement of the study genomes. The PATRIC platform retrieves high-quality and appropriate representative reference genomes from the National Center for Biotechnology Information (NCBI) and includes them in the phylogenetic analysis as part of the comprehensive genome analysis process. The closest reference and representative genomes were identified by Mash/MinHash (Ondov et al., 2016). PATRIC global protein families (PGFams) (Davis et al., 2016) were selected from these genomes to determine the phylogenetic placement of the study genomes. The protein sequences from the predicted families were aligned with MUSCLE (Edgar 2004), and the nucleotides for each of those sequences were mapped to the protein alignment. The joint set of amino acid and nucleotide alignments were concatenated into a data matrix, and RaxML (Stamatakis 2014) was used to analyze this matrix, with fast bootstrapping (Stamatakis et al., 2008) was used to generate the support values in the trees. The initial prediction of the phylogenetic placement of each strain is indicated in Figure 2. Each of the strains forms a cluster with Mycolicibacterium acapulense, suggesting a close relationship between them. However, other members of the genus Mycolicibacterium are missing from this automated phylogenetic tree analysis. This shortfall accounts for the need to incorporate other phylogenomic approaches with the most recent and up-to-date databases.
Figure 2. Codon phylogenetic trees generated from PATRIC annotation: A) the position of Myc_UDSM_BC02, B) the position of Myc_UDSM_BC05 based on PATRIC database search for close strains. Numbers above branches are bootstrap values for 1000 replicates automatically generated by RAxML.
Phylogenetic position of BC02 and BC05 based on 16S rRNA gene sequences.

To reassess the quality of genome sequences before rRNA analysis, screening for contigs contamination was approached using ContEst16S (Lee et al., 2017). The genomes were both found to be clean, i.e., devoid of intra-genus contaminant sequences. The BC02 genome contained one 16S rRNA gene, which upon BLASTn against the NCBI database showed a percentage identity of 98.43 – 99.19 % with Mycolicibacterium spp exclusively M. novocastrense (GenBank accession no. HM807280.1) and M. flavescens (GenBank accession no. AF174289.1). On the other hand, the BC05 strain contained three 16S rRNA genes. The BLASTn algorithm in ContEst16S predicted Mycobacterium/LQIX as the closest strain. Based on 16S rRNA phylogeny (Figure 3) annotation results revealed that the strains of the two isolates BC02 and BC05 were closer to each other than to the reference genomes. The results of phylogenetic position analysis of each isolate inferred from genome-based distance phylogeny (GBDP) calculated from 16S rRNA revealed that the two isolates lies within the genus Mycolicibacterium (Figure 4). Their possible difference is suggestive of further genomic differences and potential virulence and antibiotic resistance features, described in the next parts of this work.
Figure 3. Tree inferred with FastME 2.1.6.1 from GBDP distances calculated from 16S rRNA gene sequences. The branch lengths are scaled in terms of GBDP distance formula d5. The numbers above branches are GBDP pseudo-bootstrap support values > 60% from 100 replications, with an average branch support of 52.6%. The tree was rooted at the midpoint.
Whole genome-based phylogenetics and taxonomic placement of BC02 and BC BC05 strains

The two strains were further subjected to other approaches to be able to discriminate the two strains. Based on whole genome phylogenetic and taxonomic placement, the two strains BC02 and BC BC05 were first subjected to the TYGS database for fast classification (Meier-Kolthoff et al., 2022). The TYGS database can retrieve the most closely and distant related strains based on several computations integrating ANI and genome-genome distance calculation (GGDC). The results of this annotation as presented in Figure 4, revealed that the two study strains form a separate clade from MTBC such as *M. tuberculosis* H37Rv, *M. africanum* ATCC 25420, and *M. caprae* ATCC BAA-824 or *M. microti* ATCC 19422, which are well-established strains of the MTBC.
Figure 4. Genome-based phylogenetic tree inferred with FastME 2.1.6.1 from GBDP distances. Calculated from genome sequences. The branch lengths are scaled in terms of the GBDP distance formula \(d_5 \). The numbers above branches are GBDP pseudo-bootstrap support values > 60% from 100 replications, with an average branch support of 79.7%. The tree was rooted at the midpoint.
Assembled chromosomes.

It is usually ideal to decrease the number of contigs as much as possible to generate a chromosomal genomic DNA and enhance the resolution of extrachromosomal sequences if any. Following the identification of phylogenetically close strains, the latter genome sequences were downloaded from the NCBI database and used as references against which the contigs for the study genomes were mapped using CONTIGuator 2.27 (Galardini et al., 2015). The scaffold size and corresponding percentage recovery generated from each mapping are indicated in Figure 5. The final recovered genome for the strain BC02 can be accessed via accession no. CP097264 while that of BC05 is under the NCBI processing but can be shared upon request.

![Figure 5](image_url)

Figure 5. Chromosome recovery profiles obtained from reference-based assembly via CONTIGuator scaffolding pipeline. A) Genome size for each reference mapping, numbers above bars indicate the recovered chromosome against the corresponding reference genomes. B) Mapping percentage corresponding to each recovered genome.

Analysis based on Average nucleotide identity of BC02 and BC05

To enhance the power of inference, the genomes were compared with other NTM in the genus *Mycobacterium* as well as standard strains from the MTBC complex based on their average nucleotide identity. Average nucleotide identity (ANI) was calculated using the enve-omics algorithm (Kim et al., 2014). The values of ANI analysis are presented in Tables 1. From these results a distance matrix was generated and the corresponding comparative heatmap is shown in Figure 6.
Table 1. Average nucleotide identities of each strain compared to reference genome sequences

<table>
<thead>
<tr>
<th>Reference sequence</th>
<th>ANI BC02</th>
<th>SD</th>
<th>ANI BC05</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mtb. kansasii ATCC 12478 (CP006835.1)</td>
<td>78.38</td>
<td>4.45</td>
<td>80.17</td>
<td>4.12</td>
</tr>
<tr>
<td>Mtb H37Rv (NC_018143.2)</td>
<td>88.34</td>
<td>11.09</td>
<td>88.35</td>
<td>11.04</td>
</tr>
<tr>
<td>M. acapulense (NZ_LT592249.1)</td>
<td>90.02</td>
<td>3.61</td>
<td>90.03</td>
<td>3.72</td>
</tr>
<tr>
<td>M. acapulense CSURP1424 (NZ_LT592249.1)</td>
<td>90.02</td>
<td>3.61</td>
<td>90.03</td>
<td>3.72</td>
</tr>
<tr>
<td>M. flavescens NCTC10271 (LR134353.1)</td>
<td>89.89</td>
<td>3.38</td>
<td>89.91</td>
<td>3.48</td>
</tr>
<tr>
<td>M. moriokaense JCM 6375</td>
<td>80.06</td>
<td>4.26</td>
<td>79.88</td>
<td>4.35</td>
</tr>
<tr>
<td>M. nivoides strain DL90</td>
<td>78.72</td>
<td>4.49</td>
<td>78.54</td>
<td>4.53</td>
</tr>
<tr>
<td>M. novocastrense GA-2945b GCID (NZ_LQ1J01000001NZ)</td>
<td>95.51</td>
<td>3.19</td>
<td>95.56</td>
<td>3.15</td>
</tr>
<tr>
<td>M. novocastrense JCM18114 (NZ_BCTA01000119.1)</td>
<td>95.63</td>
<td>3.36</td>
<td>95.67</td>
<td>3.38</td>
</tr>
<tr>
<td>M. pulveris JCM 6370</td>
<td>80.94</td>
<td>4.42</td>
<td>80.87</td>
<td>4.45</td>
</tr>
<tr>
<td>M. smegmatis FDAARGOS 679 (CP054795.1)</td>
<td>79.19</td>
<td>4.61</td>
<td>79.08</td>
<td>4.70</td>
</tr>
<tr>
<td>Myc_UDSM BC02</td>
<td>100.00</td>
<td>0.00</td>
<td>99.81</td>
<td>0.66</td>
</tr>
<tr>
<td>Myc_UDSM_BC05</td>
<td>99.81</td>
<td>0.66</td>
<td>100.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Results from RAST annotation

To enhance precision in the description of these two genomes the assembled chromosomes were reannotated with the RAST server (Aziz et al., 2008) using the RASTk pipeline (Brettin et al., 2015). Default minimum gene length was used, with the minimum identity being adjusted to 70%. From this annotation, the BC02 genome (with 5,624,151 bp in size and 66.9 GC %) was found to contain 6657 CDS with 50 RNA genes and 301 subsystems. These genomic features are coherent with most members of the genus Mycolicibacterium reported from recent genomic studies (Sánchez et al., 2019; Vatlin et al., 2019).

Out of the 301 subsystems (Figure 7), the richest in features is that for amino acid metabolism followed by those for carbohydrate metabolism and then fatty acids, lipids, and isoprenoids. The most remarkable feature of Mycolicibacterium spp is their genomic richness in the genes for biosynthesis of membrane lipids, which have been implicated in fatty acid accumulation and biofilm formation, among other adaptive mechanisms to harsh conditions (Chen et al., 2020). On the other hand, the BC05 genome (7,979,474 bp and GC 66.5%) contained 9590 CDS and 90 rRNAs with 833 subsystems with various functional categorizations indicated in Figure 8. These annotation features are consistent in terms of values with genomic size and are more coherent with Mycolicibacterium spp genomes from other studies (Sánchez et al., 2019) than Mycobacterium spp (Advani et al., 2019). Detailed analysis of virulence factors showed that both BC02 and BC05 strains possess genes for invasion and intracellular resistance, i.e., 51 gene features for BC02 and 519
for BC05, suggesting that the strains can potentially infect and cause disease.

The BC02 genome also possesses resistance to fluoroquinolones (2 genes). All these features are indicative of their potential virulence and antibiotic resistance. In the BC05 genome, other antibiotic resistance features identified via RAST annotation include resistance to vancomycin (9 genes), tetracycline resistance, ribosome protection type (45 genes), aminoglycoside adenyllyl-transferases (2 genes), and tetracycline resistance, ribosome protection type, too (45 genes), among others. This pattern of genotypic antimicrobial resistance is a strong indicator of multidrug resistance, characterized in the vast majority of Mycobacteria including the Mycobacterium tuberculosis H37Rv, M. tuberculosis var africanum, M. tuberculosis var kansasii (Katale et al., 2020; Al-Mutairi et al., 2019), and other MTBC species (Joean et al., 2020; Parthasarathy et al., 2016).

In addition, while BC02 possesses a single, potentially class A beta-lactamase gene, BC05 contains up to 105 beta-lactamase genes.

Figure 7. Metabolic subsystems recovered from RASTk annotation of the BC02 chromosome. The bar in the left represents the percentage of each subsystem coverage and the legend on the right indicates the counts for each subsystem feature.
Figure 8. Metabolic subsystems recovered from RASTk annotation of the BC05 chromosome. The bar in the left represents the percentage of each subsystem coverage and the legend on the right indicates the counts for each subsystem feature.

Orthologous clusters
From Orthovenn2 analysis, BC02 and BC05 together with the most closely related NTM species and reference MTBC strains form 7769 clusters, 6559 orthologous clusters (at least contains two species) and 1210 single-copy gene clusters (Table 2). This indicates that most of the gene families and clusters are shared among Mycolicibacterium spp as contrasted to the Mycobacterium representative strains. The number of singletons (genes not conforming to a cluster) is consistently dependent upon the genome size and the number of inherent CDS. It appears that, the BC02 genome (1316 singletons) has fewer singletons than the BC05. Genome (2646 singletons) Likewise, the genome of Mycolicibacterium smegmatis LN831039 (6847 CDS) contains 1928 singletons.

Table 2. Clusters of orthologous recovered from Orthovenn2 analysis and annotation. The proteome of each genome is presented against the clusters and corresponding singletons.

<table>
<thead>
<tr>
<th>Species</th>
<th>Proteins</th>
<th>Clusters</th>
<th>Singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myc_UDSM_BC02</td>
<td>6657</td>
<td>5108</td>
<td>1316</td>
</tr>
<tr>
<td>Myc_UDSM_BC05</td>
<td>9590</td>
<td>5950</td>
<td>2646</td>
</tr>
<tr>
<td>Myc_novocastrense_JCM_BCTA01000119</td>
<td>5336</td>
<td>4794</td>
<td>411</td>
</tr>
<tr>
<td>Myc_flavescens_NTC10271_LR134353</td>
<td>5698</td>
<td>4762</td>
<td>674</td>
</tr>
<tr>
<td>Myc_smegmatis_LN831039</td>
<td>6847</td>
<td>4427</td>
<td>1928</td>
</tr>
<tr>
<td>Mtb_africanum_GM041182</td>
<td>4269</td>
<td>4070</td>
<td>129</td>
</tr>
<tr>
<td>Mtb_H37Rv_NC018143</td>
<td>4302</td>
<td>4092</td>
<td>124</td>
</tr>
</tbody>
</table>

Shown in Figure 9 the members of Mycolicibacterium share 1537 protein families. While protein families shared between BC02 and M. novocastrense could not be resolved, 35 families are shared between BC05 and M. novocastrense.
Figure 9. A Venn representation of the distribution of unique, group-specific, and core gene families among the Mycolicibacterium spp as compared with M. tuberculosis H37Rv. The selected closest scaffolds with at least a single one-to-one ortholog shared among the genomes were compared using OrthoVenn2. The core genome is shown in the central circle. Each colored intersect segment represents the number of gene families shared among the respective overlapping genomes, and the outermost circled numbers represent unique gene families for individual genomes.

Analysis of mutations associated with antimicrobial resistance genotypes in BC02 and BC05 strains of NTM to anti-TB drugs.

PATRIC database offers an opportunity to analyze genes related to antimicrobial resistance (specialty genes), including a count of virulence factors, drug targets, and antimicrobial resistance genes. As indicated in Table 3, again specialty genes for the BC05 are more than two-fold those of BC02, possibly due to larger genome size, also attributable to repetitive sequences in the BC05 genome. To better define the antimicrobial resistance potential of each strain, the FASTA files were first analyzed with BacAnt v3.3.3, which provides a database (BacAnt-database v2.0) to scan for resistance genes, insertion elements, and transposon regions from the genome sequences (Hua et al., 2021). Results from this scanning revealed neither insertion elements nor transposons but a class A beta-lactamase (BlaA) gene flanked between 2605222 and 2605896 of the BC02 chromosomal DNA sequence, which covers 73.26% with 99.56% identity to the reference gene in the resistance database (resDB).

In the case of the BC05 chromosome, the antimicrobial resistance genotype could not be resolved with BacAnt. Thus alternative reannotation was approached using the comprehensive antimicrobial resistance database, (CARD) retaining default parameters (Alcock et al., 2020). Based on CARD analysis, nucleotide sequences undergo ORF calling to generate predicted protein sequences (Alcock et al., 2020). From this analysis (Table 3), the BC02 genome was found with three strict hits, relevant to genes conferring resistance against macrolides.
and rifamycin as defined by efflux, drug inactivation, and target alteration/replacement respectively. On the other hand, results show that the strain BC05 contains one perfect and 10 strict hits for a wide range of antibiotic resistance genes (Table 5). The perfect hit presents efflux-mediated antibiotic resistance against first-line anti-TB drugs, rifamycin, and isoniazid. The rest of the hits include efflux, and target alteration against rifamycin, macrolide, penam, disinfectants, polyamine, and fosfomycin antibiotics. These resistance genotypes in the BC05 are strongly suggestive of the emergence of a multidrug-resistant NTM strain associated with MTBC coinfection, which underlies exacerbated pulmonary tuberculosis pathogenesis.

Table 3. Antimicrobial resistance genes for BC02 and BC05 strains as recovered from the PATRIC annotation pipeline. The annotation entails virulence factors, transporter genes and drug targets from different databases accessible to the PATRIC database.

<table>
<thead>
<tr>
<th>Specialty Genes</th>
<th>Source</th>
<th>Myc_UDSM_BC02</th>
<th>Myc_UDSM_BC05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virulence Factor</td>
<td>PATRIC_VF</td>
<td>171</td>
<td>548</td>
</tr>
<tr>
<td>Virulence Factor</td>
<td>Victors</td>
<td>113</td>
<td>315</td>
</tr>
<tr>
<td>Virulence Factor</td>
<td>VFDB</td>
<td>31</td>
<td>76</td>
</tr>
<tr>
<td>Transporter</td>
<td>TCDB</td>
<td>51</td>
<td>127</td>
</tr>
<tr>
<td>Drug Target</td>
<td>DrugBank</td>
<td>38</td>
<td>82</td>
</tr>
<tr>
<td>Drug Target</td>
<td>TTD</td>
<td>14</td>
<td>35</td>
</tr>
</tbody>
</table>
Table 4. Myc_UDSM_BC02 antibiotic drug resistance genotypes annotated via the CARD pipelines. Models for detection criteria, antimicrobial resistance gene families, drug class and drug resistance mechanisms are included alongside percentage identity match and sequence coverage by default parameters.

<table>
<thead>
<tr>
<th>ARO term</th>
<th>SNP</th>
<th>Detection criteria</th>
<th>AMR gene family</th>
<th>Drug class</th>
<th>Resistance mechanism</th>
<th>% ID of matching region</th>
<th>% length of resistance sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>mtrA</td>
<td>protein homolog model</td>
<td>resistance-</td>
<td>Macrolide, penam</td>
<td>efflux</td>
<td></td>
<td>96.05</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nodulation-cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>division (RND)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>antibiotic efflux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arr-1</td>
<td>protein homolog</td>
<td>rifampin ADP-</td>
<td>rifamycin</td>
<td>inactivation</td>
<td></td>
<td>84.51</td>
<td>99.3</td>
</tr>
<tr>
<td></td>
<td>model</td>
<td>ribosyltransferase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Arr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MtbrpoB mutants</td>
<td>D516G, H526T, L511R</td>
<td>Protein variant</td>
<td>rifamycin-resistant beta-subunit</td>
<td>rifamycin</td>
<td>Target alteration/</td>
<td>100</td>
<td>52.39</td>
</tr>
<tr>
<td>conferring</td>
<td></td>
<td>model</td>
<td>of RNA polymerase (rpoB)</td>
<td></td>
<td>replacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>resistance to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rifampicin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. *Myc* _UDSM_BC05_ antibiotic drug resistance genotypes annotated via the CARD pipelines. Models for detection criteria, antimicrobial resistance gene families, drug class and drug resistance mechanisms are included alongside percentage identity match and sequence coverage by default parameters.

<table>
<thead>
<tr>
<th>RGI Criteria</th>
<th>ARO Term</th>
<th>SNP</th>
<th>Detection Criteria</th>
<th>AMR Gene Family</th>
<th>Drug Class</th>
<th>Resistance Mechanism</th>
<th>% Identity of Matching Region</th>
<th>% Length of Reference Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect</td>
<td>efpA</td>
<td></td>
<td>protein homolog model</td>
<td>major facilitator superfamily (MFS) antibiotic efflux pump</td>
<td>rifamycin antibiotic, isoniazid</td>
<td>antibiotic efflux</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Strict</td>
<td>qacG</td>
<td></td>
<td>protein homolog model</td>
<td>small multidrug resistance (SMR) antibiotic efflux pump</td>
<td>disinfecting agents and antiseptics</td>
<td>antibiotic efflux</td>
<td>39.81</td>
<td>106.54</td>
</tr>
<tr>
<td>Strict</td>
<td>RbpA</td>
<td></td>
<td>protein homolog model</td>
<td>RbpA bacterial RNA polymerase-binding protein</td>
<td>rifamycin antibiotic</td>
<td>antibiotic target protection</td>
<td>93.69</td>
<td>97.37</td>
</tr>
<tr>
<td>Strict</td>
<td>mtrA</td>
<td></td>
<td>protein homolog model</td>
<td>resistance-nodulation-cell division (RND) antibiotic pump</td>
<td>macrolide antibiotic, penam</td>
<td>antibiotic efflux</td>
<td>96.05</td>
<td>100</td>
</tr>
<tr>
<td>Strict</td>
<td>arr-1</td>
<td></td>
<td>protein homolog model</td>
<td>rifampin ADP-ribosyltransferase (Arr)</td>
<td>rifamycin antibiotic</td>
<td>antibiotic inactivation</td>
<td>84.51</td>
<td>99.3</td>
</tr>
<tr>
<td>Strict</td>
<td>Mycobacterium tuberculosis embB mutant conferring resistance to ethambutol</td>
<td>E378A</td>
<td>protein variant model</td>
<td>ethambutol resistant embB</td>
<td>polyamine antibiotic</td>
<td>antibiotic target alteration</td>
<td>99.8</td>
<td>48</td>
</tr>
<tr>
<td>Strict</td>
<td>Mycobacterium tuberculosis embA mutant conferring resistance to ethambutol</td>
<td>P913S</td>
<td>protein variant model</td>
<td>ethambutol resistant embA</td>
<td>polyamine antibiotic</td>
<td>antibiotic target alteration</td>
<td>99.73</td>
<td>68.74</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>-------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>----------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Strict</td>
<td>Mycobacterium tuberculosis embC mutant conferring resistance to ethambutol</td>
<td>T270I</td>
<td>protein variant model</td>
<td>ethambutol resistant embC</td>
<td>polyamine antibiotic</td>
<td>antibiotic target alteration</td>
<td>99.71</td>
<td>33</td>
</tr>
<tr>
<td>Strict</td>
<td>Mycobacterium tuberculosis intrinsic murA conferring resistance to fosfomycin</td>
<td>C117D</td>
<td>protein variant model</td>
<td>antibiotic-resistant murA transferase</td>
<td>fosfomycin</td>
<td>antibiotic target alteration</td>
<td>100</td>
<td>34.69</td>
</tr>
<tr>
<td>Strict</td>
<td>Mycobacterium tuberculosis rpoB mutants conferring resistance to rifampicin</td>
<td>D516G, H526T, L511R</td>
<td>protein variant model</td>
<td>rifamycin-resistant beta-subunit of rifamycin RNA polymerase (rpoB)</td>
<td>rifamycin</td>
<td>antibiotic target alteration, antibiotic target replacement</td>
<td>99.78</td>
<td>45.14</td>
</tr>
<tr>
<td>Strict</td>
<td>Mycobacterium tuberculosis 23S rRNA mutation conferring resistance to capreomycin</td>
<td>A2145G, A2045G</td>
<td>rRNA gene variant model</td>
<td>23S rRNA with mutation conferring resistance to aminoglycoside antibiotics</td>
<td>aminoglycoside antibiotic</td>
<td>antibiotic target alteration</td>
<td>96.28</td>
<td>100</td>
</tr>
</tbody>
</table>
Discussion

From this study it has been observed that the genome size of BC02 is significantly smaller by approximately 3.2 Mb than that of BC05. This could generally account for a small number of CDS, therefore all the protein assignments in Figure 1 correspond with the smaller BC02 genome relative to that of BC05. The genome sizes of NTM strains are becoming known to be relatively larger compared to those of MTBC (Yoon et al. 2020). Thus, the numbers of CDS are considerably larger. This work also supports that observation, with the BC05 having a huge size and proteome.

In this study, phylogenetic analysis was achieved through PATRIC. The initial prediction of the phylogenetic placement of each strain as indicated in Figure 2 shows that each of the strains forms a cluster with *Mycobacterium acapulense*, suggesting a close relationship between them.

The results of the initial phylogenetic placement of the two strains (Figure 2) shows that they form cluster with *Mycobacterium acapulense* suggesting their close relationship. However, other members of the genus *Mycolicibacterium* are missing from this automated phylogenetic tree analysis. This suggests that the PATRIC phylogenetic analysis algorithms could not successfully manage to retrieve some of the most relevant reference genomes. It could also imply that the database is yet to be updated to include a wide range of the most recent genomes of the genus *Mycolicibacterium*. To overcome this shortfall, we had to incorporate other phylogenomic approaches with the most recent and up-to-date databases for proper placement.

A detailed search through the NCBI assembly database revealed that *Mycobacterium/LQIX* correlates to the former *Mycobacterium* sp. GA-1199 (GenBank assembly accession no.GCA_001500045.1), whose current best match is *Mycolicibacterium novocastrense*, with average nucleotide identity of 95.18%, query coverage of 86.65% and subject coverage of 75.67%. These findings point to the NTM, potentially *M. novocastrense* as the best match for the BC05 genome. Presented in Figure 4, the phylogenetic position of each from GBDP distances calculated from 16S rRNA lies within the genus *Mycolicibacterium*. It then follows that both Myc_BC02 and Myc_BC05 comprise part of the NTM group and are potentially suggestive of co-infection or super-infection with MTBC. Based on the 16S rRNA phylogeny (Figure 3), the two strains are closer to each other than to the reference strain. However, the two strains also form potentially separate clades, indicating a possible difference between them, basally rooted from *Mycolicibacterium vaccae*. Their possible difference is suggestive of further genomic differences and potential virulence and antibiotic resistance features.

The pan-genome comparative analysis provides the highest throughput and the most reliable results in genomics. In the case of phylogenetics, whole-genome-based comparison has demonstrated the potential to discriminate intraspecific differences based on multiple markers to establish various positions and lineages within and between groups (Coscolla et al. 2021; Vázquez-Chacón et al. 2021; Stephen Kanyerezi and Patricia Nabisubi 2020). The TYGS database can retrieve the most closely and distant related strains based on several computations integrating ANI and genome-genome distance calculation (GGDC). We observed that the two study strains formed a separate
The results of the phylogenies reconstructed from both the 16S rRNA gene (Figure 3) and genome-wise comparison (Figure 4) reiterate the prior observation from Figure 2 that the two strains BC02 and BC05 are potential members of the NTM group. A previous study based on 16S rRNA and hsp56 gene sequences from Muheza Designated District Hospital, Tanzania revealed the presence of *M. kumamotonense*, *M. scrofulaceum/M. avium*, *M. acapulcensis/flavescens*, *M. avium*, and *M. flavescens/novacastrense*, among others (Hoza et al. 2016). Also, another case study from Dar es Salaam exposed the presence of *M. yongonense* (Mnyambwa et al. 2018). This work confirms through genomics that *M. novacastrense/flavescens* is among the most common clinical NTM species in Tanzania, especially from Northern regions of Tanzania. However, the insufficiency of genomic data in Tanzania and East Africa hampers pan-genomic comparison within the region to establish appropriate possible linkages for tracing the potential transboundary distribution of the NTM strains.

Observations from ANI values results showed that the two strains appear closer to each other than between each and the reference strains. This is strong evidence that the strains belong to closely related taxonomic groups. The accepted species delimitation for most bacterial samples ranges from 95 – 96% (Jain et al. 2018). From the above results (Table 1) the strains BC02 and BC05 meet the criteria, i.e., ANI = 99.8%, genomic distance of 0.01 and the probability that the two are in the same species is 96.41%. In addition, the strains match with *M. novacastrense* by 95.5% ANI and about 64% with *M. flavescens*.

Analysis of the mutation associated with antimicrobial resistance genotypes in BC02 and BC05 strains was performed on anti-TB drugs. The evolution of multidrug-resistant MTBC strains is vastly growing to integrate virtually all the established mechanisms of resistance against anti-TB drugs (Senghore et al., 2020). According to literature the most established beta-lactamase gene in *Mycobacterium* spp (particularly *M. tuberculosis* strain ATCC 25177 / H37Ra) is the class C beta-lactamase (BLaC) (Bhattacharya et al., 2021), which in the UniProt database (https://www.uniprot.org/uniprot/ASU493), is described as a representative of extended beta-lactamase antibiotic resistance and is known to portray extensive penicillinase, cephalosporinase, as well as carbapenemase activities. However, the BlaA gene is elusive as a beta-lactamase, considerably characterized in *Mtb var bovis*, *Mtb var canettii*, *Mtb var orygis*, and *Mycobacterium lactis* (Bhattacharya et al., 2021).

Therefore in vitro and in vivo studies are instrumental in the characterization of the antibiotic resistance mechanism for the BC02 strain. With different coverages and percentage identities ranging from 36 – 98%, the BC02 strain possesses the potential to resist a wide of other drugs including fosfomycin, macrolides, vancomycin, tetracycline, and gentamycin/tobramycin, among others. These forms of resistance are also common among the notorious MTBC strains from various parts (Kidenya et al., 2018; Joean et al., 2020; Katale et al., 2020). This concurrence in the genotypic multidrug resistance is a strong indication for the co-existence of
Coinfections and co-pathogenesis between the less explored NTM strains and the commonly known MTBC strains such as the Mtb H37Rv and Mtb var africanum, among others reported from recent studies (Ishiekwene et al., 2017; Stepanyan et al., 2019). Observation from this study attracts huge attention to the role of NTM co-pathogens as auxiliary agents in the drug resistance process. Here we demonstrate that these resistance genotypes of BC02 and BC05 isolates are comparative to those of MTBC strains (Parthasarathy et al., 2016; Katale et al., 2020). In terms of drug resistance, the BC02 strain presents a narrow resistome spectrum, while BC05 demonstrates a potentially broad spectrum resistome, encompassing rifamycin, isoniazid, macrolides, polyamines, as well as fosfomycin, which correlates with resistance patterns among members of the MTBC such as M. tuberculosis H37Rv, M. tuberculosis africanum, M. tuberculosis var mungi, M. tuberculosis var bovis, and M. tuberculosis var kansasii (Vázquez-Chacón et al., 2021; Al-Mutairi et al., 2019; Parthasarathy et al., 2016).

Until 2018, the first macrolide-binding protein was yet to be elucidated (Zhang et al., 2018). The current findings underscore the possible coexistence of MTB and NTM strains with the potential for macrolide resistance.

In addition, rifamycin resistance is profoundly demonstrated in both BC02 and BC05 by mechanisms involving both adenosine diphosphate (ADP)-ribosyltransferase activity as well as single nucleotide polymorphism (SNP), leading to rifamycin-resistant beta-subunit of RNA polymerase (rpoB). These mechanisms are evident even in the extensively drug-resistant MTB M. tuberculosis H37Rv (Joean et al., 2020). Our findings therefore suggest that molecular diagnostic techniques integrating the principle of DNA hybridization such as those in the GeneXpert or GenoType MTBDRplus (Dorman et al., 2012) kits are not specific to MTBC strains, rather they could potentially detect the BC02 and BC05 strains in the TB samples as the inherent assays focus on the presence of SNPs associated with rifampicin and/or isoniazid, among other drug resistances. Although WGS provides rapid and comprehensive diagnosis of Mycobacterium organisms and their resistance mechanisms and WHO has acknowledged its potential in determining resistance TB there are challenges that has to be addressed before its implementation in low-income countries. Those challenges include high costs of equipment, training of technical staff, and expertise guidance in clinical interpretations of WGS results. The major limitation to this study was lack of funds which could enable inclusion of large number of samples for WGS but also unavailability of databanks of African origin for Mycobacteria strains.

Conclusion

Long-read sequencing supports the recovery of nearly full genomes of strains. Comparative genomic analysis shows that the BC02 and BC05 strains in this study are NTM and belong to Mycolicibacterium. Since the samples were obtained from symptomatic relapse TB patients, this study concludes that the strains have the potential to cause pulmonary tuberculosis and probably resistant TB. While the two strains are closest to each other, they conform to Mycolicibacterium novocastrense as the closest relative.

With the current screening for antibiotic resistance repertoire, this study infers the existence of multidrug-resistant NTM strains whose resistance encompasses a wide range of drug classes including beta-lactam,
macrolides, polyamines, aminoglycosides, and rifamycins. Precisely, the BC02 strain is genetically resistant to penicillins and carbapenems as well as rifamycin drugs, while the BC05 strain is genetically resistant to most first-line anti-TB drugs including rifamycin, isoniazid, and ethambutol, among others. Phenotypic studies coupling standard antimicrobial assays with transcriptomics, proteomics, or other omics-based methods would further our understanding of the exact mechanisms of drug resistance portrayed by each strain towards effective management of pulmonary tuberculosis in Tanzania and the sub-Saharan Region in general.

Acknowledgements
The authors acknowledge the laboratory staff at the Central Tuberculosis Reference Laboratory Muhimbili National Hospital for sample storage and laboratory workbench for DNA extraction and processing. Department of Molecular Biology and Biotechnology Dar es Salaam University and Special thanks to Mr. Charles Kayuki for his unlimited assistance in the Nanopore sequencing work.

Funding: The major project was funded by the World Bank. This work was partly funded by the University of Dar es Salaam and the Swedish International Cooperation Development Agency (SIDA) via the UDSM-IMB project no. 2015-2020/2022.

Competing interests
The authors declare that they have no competing interest related to this article.

References

...

Brettin, T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R,

