Pre-sowing Treatment for Improving Seed Quality in West African Rice Varieties: I. Seed Germination and Seedling Vigor

M. O. Ajala, M. A. Adebisi and K. O.Fasan

Department of Plant Breeding and Seed Technology, University of Agriculture, Abeokuta.

P. M. B. 2240, Abeokuta, Ogun State, Nigeria E-mail: wolc_mikc@yahoo.com, mayooadebisi@yahoo.uk.com

Abstract

Ten diverse modern West African rice varieties were exposed to six dry heat temperatures (40°C, 45°C, 50°C, 55°C, 60°C and control (32°C) for 24 hours and thereafter seed germination, speed of germination and seedling vigor were investigated. Dry heat temperatures significantly stimulated seed germination above the control. Temperatures of 40°C, 45°C and 50°C significantly promoted seed germination, seedling vigor and speed of germination of the rice varieties. Although heat intensities at 55°C and 60°C had no adverse effects on both seed germination and speed of germination, 60°C heat treatment specifically failed to increase seedling vigor. Dry heat temperatures generally promoted seed germination of TOx 4004 43-1-2-1 and WITA 12; speed of germination of ITA 230 and seedling vigor of BW348-1, ITA230, SIPI1692033. TOx 4004-43-1-2-1 and WITA 12. There was enhanced seed germination of WITA 12 at all the heat intensities except at 60°C. High dry heat temperatures (50°C, 55°C and 60°C) for 24 hours was sufficient to break seed dormancy that promoted seed germinatation in BW 348-1, WITA 1, CISADANE and WAB 189-B-B-B-H1. Seed dormancy in ITA 230, WITA 12 and TOx 4004-43-1-2-1 was almost completely broken under natural conditions. Beneficial carry-over effects beyond seed germination and vigor stages would need further investigations.

Key words: Heat intensity, seed dormancy, seed quality, seedling vigor index

Introduction

To the seeds man, the most essential role a seed has is its generative function, the capacity to produce that from which it came. Sadly, this biological function ignores other uses to which seeds are put. A high germination percentage is an essential characteristic of high quality seed. Imperfect, but the best routine test available for assessing the field sowing value. Dormancy, when in place, prevents seed from germinating, even when all conditions for germination are provided.

Quality of seed for sowing is an important factor, which affects rice production. Seed is a biological input which determines the effectiveness of other inputs in crop production. Seed dormancy is a survival mechanism by which seeds maintain their viability in unfavorable conditions. In order

*Corresponding author

Tanzania J.Agric.Sc. (2007) Vol. 8 No.2, 149–160 Accepted April, 2008

that a species is not obliterated during harsh weather. natural dormancy measures developed by species and cultivars must be deliberately confronted for good stand establishment (Ajala, 2003). In rice, it creates a problem in seed analysis (Nugraha and Soejadi, 1991). Rice seeds exhibit dormancy which. given time. could be completely broken under natural conditions or accomplished through application of certain chemicals or heat treatments (Lee et al., 2002).

Dry heat is a convenient and effective method for large-scale treatment in many seed crops. The dry heat treatment of seeds is used mainly for two purposes. One is to control the external and internal seed borne pathogens including fungi, bacteria, viruses and nematodes (Nakagawa and Yamaguchi, 1989; Fourest et al., 1990; Grondeau et al., 1992; Detry, 1993; Lee et al., 2002). The other is to break the dormancy of seed (Zhang, 1990; Seshu and Dadlani, 1991; Lee et al., 2002).

Moreover, there exists contradictory results in literature concerning the improvement of seed quality by means of presowing treatment. The range of dry heat temperature differs from one researcher to the other, and varies according to crops and purpose of treatment. Lee et al. (2002)reported that at higher temperatures (29.4°C and 32.2°C). percentage germination was significantly reduced in Korean rice varieties compared to the control, whereas treatment at relatively

lower temperatures (21.1°C to 18.3ºC) had no adverse effects. An earlier study by Dadlani and Seshu (1990) showed that in rice, dry heat treatment at 18°C for 7 days considerably lowered fungal incidence and had no adverse effect on seed germination and seedling vigor before or after storage. However, Rast and Stijger (1987) observed that dry heat application (21.1ºC. days) eliminated 3 Capsicum mosaic virus. but adversely affected seed germination.

In general, the use of high temperatures in dry heat treatment of crop seeds (as in high temperature seed drying) invariably reduces seed viability and seedling vigor, but optimum temperature for breaking dormancy promotes seed germination and vigor in cereal crops (Lee et al., 2002). This study views vigor as a measurable physiological trait of seed expressed as rapid, uniform and high germination or emergence even under unfavorable conditions. Among soybean seed lots, vigor differences of a given cultivar are expressed as differences in emergence, total growth and uniformity among individuals of the plant population (Abdul-Baki, 1980). Herranz et al. (1998)reported that the degree of seed germination by dry heat treatments showed a wide intraspecific variation. Most publications on heat treatment deal with foreign rice variety studies and there is a dearth of information on the efficacy of a pre-sowing treatment under laboratory conditions in West African rice varieties.

Therefore, since the modern West varieties were African rice developed from different genetic necessary it is to sources, determine the effect of dry heat treatment on seed germination and vigor and to evaluate whether or not the methods recommended by ISTA and AOSA are still fully effective overcoming seed in dormancy in West African rice varieties.

the West African Rice Development Association (WARDA), International Institute of Tropical Agriculture (IITA) branch in 2003 early season. The list of the rice varieties, status, region, year and genotype utilized. For the study is shown in Table 1.The seeds were stored at roomtemperature for five months to break seed dormancy. The 10 rice varieties were prepared for various dry heat treatments.

Materials and Methods

Seed preparation

Seeds of 10 rice varieties were collected, soon after harvest, from

Table 1: A list of rice varieties, status,	origin,	year and	type utilized for study
--	---------	----------	-------------------------

S/N	DESIGNATION	Status	Origin	Year	Туре
1	BW348-1	not released	Srilanka	4.92	
2	CISADANE (FARO 51)	released	Indonesia	1995	lowland
3	FARO 11 (056)	released	Nigeria	***	upland
4	ITA 230 (FARO 50)	released	IITA	91/92	lowland
5	SIPI 692033 (FARO 44)	released	Taiwan (China)	87/88	lowland
6	Tox 4004-43-1-2-1	not released	IITA		lowland
7	WAB 99-1-1	not released	WARDA		upland
8	WAB 189-B-B-HB	released	WARDA		upland
9	WITA 1	not released	WARDA		lowland
10	WITA 12	released	WARDA		lowland

Dry heat treatment

Seeds were pre-treated to reduce moisture content at 40°C for 48 bag before hours in paper treatment. Water content of seed was about 10% after predrying. Seeds of the 10 rice varieties were subjected to different dry heat temperatures of 40°C, 45°C, 50°C, 55°C and 60°C for 24 hours and repeated twice between January 5 using February 6, 2004 and oven at the Seed ventilated of University Laboratory. Agriculture, Abeokuta, Nigeria.

Control treatment was included at ambient room temperature (32°C). After treatment, seeds were kept at room temperature for 5 days and thereafter subjected to the following seed tests:

Germination: One Seed hundred seeds were placed on filter moistened with 10ml paper. put inside distilled water and incubator at 30°C for germination test. All treatments were tested in a completely randomized design with Germinated replications. three seeds were defined as those with a 2mm radicle at least long.

Percentage germination was recorded at 8 days after sowing. Speed of Germination Index (SGI): This was calculated as described in

Speed of Germination Index (SGI) = <u>No. of germinated seed 1st Count</u> + Days to 1st Count

Seedling Vigour Index: Seedling vigor level of each genotyp∈ was calculated by multiplying percent normal germination by the average of seedling length of each genotype after 8 days of germination and divided by 100 (Adebisi and Ajala, 2000).

Statistical Analysis

Data analyses were performed using the SAS statistical (Version 8) software. Data for each trait were analyzed for statistical the handbook of the Association of Official Seed Analysts (AOSA) (1983), using the following formula:

No. ol germinated seed 2nd Count	No. seed germ final count
Days to 2 rd Count	Days to fanal Count

significance using ANOVA and differences among treatment means were determined using Duncan's Multiple Range Tests at 5% probability level.

Results

Data in Table 2 show that heat and variety effects as well as interaction effects of heat x variety were highly significant for the three seed quality traits examined.

Table 2: Summary of analysis of var	iance (ANOVA) of seed germination, speed
of germination and seedling	vigor of rice varieties evaluated

Sources of variation	Dſ	Mean squares Seed germination Speed of gern (%)	mination. Seedling	vigor index
Heat	5	2331.180**	2135.046**	8.926**
Variety	9	10174.096**	9223.781**	37.273**
Heat x Genotype	45	125.150**	635.606**	4.102**
Error	120	40,967	43.450	0.537
Total	180			
** Significant at P = 0	0.01			

The results in Table 3 indicate that the percentage seed germination, speed of germination and seedling vigor index under different heat intensities considerably differed. Seed germination values of heattreated samples ranged from 51%

to 70%. Seed germination under control was lowest with 51%, whereas seed germination and speed of germination were significantly highest at 50°C with 70% and 11.3 respectively.

500000			
Temperature (°C)	Seed germination	(%) Speed of germinatic	on index Seedling vigor index
Control (32°C)	51 _d	7.3 ^{cd}	3.2°
	56 _c	8.0 ^{cd}	3.76
40 45 50 55	55c	8.2ª	4.1ª
50	70 ^a	11.3ª	3.9ab
55	66 ^b	10.26	3.5 ^{bc}
60	626	10.1 ^b	3.0°
Mean	59	9.2	3.6

Table 3:	Effect of dry he	at treatment	on	seed	germination	and speed	1 of
	germination						

Values within a column followed by a common letter are not significantly different according to Duncan's multiple range test at P = 0.05.

There were significant differences in seed quality traits the three evaluated the varieties among regardless of temperatures as shown in Table 4. Mean seed germination was ranked highest with WITA 12 (88%) and TOx 4004-43-1-2-1 (85%), followed by ITA 230 with (80%) and SIPI 692033 with 79%. Conversely, BW348-1, CISADANE, WAB 189-B-B-B-HB and WITA 1 recorded seed germination of less than 50%.

Speed of germination of ITA 230 was ranked highest with 14.2 value. closely followed by WITA 12 with 13.3 value. Seedling vigor was significantly highest with TOx 404-43-1-2-1 (5.2) ITA 230 (5.0) and in FARO 56 (3.2) whereas CISADANE, WAB 189-B-B-B-HB and WITA 1 lowest seedling vigor recorded indices of less than 2.0 value. low corresponding their to germination values.

Table 4: Effect of varies	y on seed	germination and seedling	vigor of rice seed
---------------------------	-----------	--------------------------	--------------------

Genotype	Seed germination (%)	Speed of germination index	Seedling vigor index		
BW 348-1	40 ^e	6.0 ^e	4.6ª		
CISADANE (FARO 51)	25s	3.8 ⁱ	1.3 ^c		
FARO 11 (056)	63 ^d	8.9ª	3.2 ^b		
ITA 230 (FARO 50)	80 ^b	14.2ª	5.0ª		
SIPI 692033 (FAR0 44	t) 79 ⁶	12.2°	4.7ª		
TOX 4004-43-1-2-1	85ª	12.7°	5.2ª		
WAB 99-1-1	70 ^c	10.1ª	3.8 ^b		
WAB 189-B-B-B-HB	311	4.8e ⁱ	1.4 ^c		
WITA 1	321	5.7 ^e	1.9 ^c		
WITA 12	88ª	13.3 ^b	4.6ª		
Mean	59	9.2	3.6		

Values within a column followed by a common letter are not significantly different according to Duncan's multiple range test at P = 0.05.

Results in Table 5 show that the percentages of seed germination for the 10 rice varieties were different according to dry heat intensities. Seed germination of WITA 12 was significantly highest at 40°C to 55°C and control. However, ITA 230 had highest seed significantly germination of 94% and 95% under control treatment and 40°C heat intensities respectively. Variety ITA 230 recorded 91% germination at 45°C which was significantly above 89%. 88%. 73% and 64% recorded TOx by SIPI692033. 4004-1-2-1, 99-1-1 and FARO 11 WAB respectively. Five varieties (BW 348-1, CISADANE, WAB 189-B-B-11 and WITA 1) had low seed germination of less than 30% at

control 40°C. 45°C and heat TOx intensities. Germination of 4004-43-1-2-1 was 87% at 50°C. which was significantly higher than 83%, 80%, 73% and 68% recorded for SIPI692033, CISADANE, ITA 230, and WAB 99-1-1 BW 348 - 1respectively. Variety TOx 4004-43-1-2-1 recorded 86% germination at 55°C and was significantly above 74% and 70% obtained for BW 348-1 and ITA 230 respectively. When the dry heat treatment was increased to 60°C, TOx 4004-43-1-2-1 and BW had significant highest 348 - 1germination values of between 78% 77% respectively. Variety and lowest CISADANE had the germination of 15% at 60°C.

10 rice v	varieties						
Variety	32(Control)	40	45	50	55	60	Mean
BW 348-1	4g	4g	13g	69 ^r	74 ^c	77a	40
CISADANE (FARO	8g	11f	11g	80 ^d	22^{h}	15 ^e	25
51) FARO 11(056)	58e	71 ^d	64 ^e	62g	61	60°	63
ITA 230(FARO 50)	94ª	95ª	91 ^b	73e	70 ^d	58 ^d	80
SIPI 692033 (FAR0 44)	77°	95ª	89°	83°	65 ^e	64 ^b	79
TOX 4004 - 43-1- 2-1	86 ^b	86 _b	88°	876	86 ^b	78 ^a	85
WAB 99-1-1	68 ^d	81c	73d	68 ^r	65e	65 ^b	70
WAB 189 -B-B- HB	23 ^r	24e	26 ^r	29 ^h	31g	54 ^d	31
WITA 1	2^{h}	2^{h}	4 ^h	58s	62f	64 ^b	32
WITA 12	92ª	93ª	94ª	95ª	93ª	61°	88
Mean	51	56	55	70	63	60	

Table 5: Effect of dry heat treatment on percentage seed germination of 10 rice varieties

Values within a column followed by a common letter are not significantly different according to Duncan's multiple range test at P = 0.05.

Speed of germination of ITA 230 was consistently and significantly ranked highest at all the heat intensities including control with speed of germination of 12.7 (for 60°C) to 15.9 (for 55°C)(Table 6). However, WITA 12 and SIPI 692033 had comparable speed of germination with ITA 230 at low treatments (40 and 45°C) while BW 348-1, CIDADANE, WAB 189-B-B-B-H and WITA 1 recorded significantly low speed of germination under low heat

intensities of 40°C, 45°C and control.

Table	6:	Effect	of	dry-heat	treatment	on	speed	of	germination	of	10	rice
		variet	ies									

Variety	Temperature (ºC)						
	Control	40	45	50	55	60	Mean
BW 348-1	0.3h	0.5g	0.5g	11.0d	11.1d	12.8a	6.0
CISADANE (FARO 51)	1.1g	1.5f	1.7f	12.5c	3.3i	2.6e	3.8
FARO 11 (056)	7.7e	8.1d	8.3d	8.9f	9.6g	10.7b	8.9
ITA 230 (FARO 50)	13.6a	13.8a	13.9a	15.4a	15.9a	12.7a	14.2
SIPI 692033 (FAR0 44)	11.6c	13.5a	14.2a	12.7c	10.8f	10.2a	12.2
TOX 4004-43-1-2-1	12.1b	12.6b	12.6b	12.7c	12.9c	13.0a	12.7
WAB 99-1-1	9.2d	11.1c	10.8c	10.5e	9.8f	9.2d	10.1
WAB 189-B-B-B-HB	2.7f	3.8e	4.3e	4.5g	4.8h	9.0d	4.8
WITA 1	1.0g	1.4f	1.8f	10.0f	10.3e	10.7b	5.7
WITA 12	13.8a	13.9a	13.9a	14.6b	13.6b	10.1c	13.3
Mean	7.3		8.0	8.2	11.3	10.2	10.1

Values within a column followed by a common letter are not significantly different according to Duncan's multiple range test at P = 0.05.

In Table 7, seedling vigor index of ITA 230 was significantly highest under control heat treatment with (5.4), followed by TOX 4004-43-1-2-1 with 5.0. Variety SIPI 692033 recorded the highest seedling vigor index (6.5) at 40°C and maintained it at 45°C (6.4) together with ITA 230 (5.6) and TOX 4004-43-1-2-1 (5.3). At 50°C, ITA 230 was significantly outstanding in seedling vigor with 6.2, followed by

BW 348-1. However, when the heat intensity was increased to 55°C and 60°C, TOx 4004-43-1-2-1 was ranked highest in seedling vigor with 5.5 and 4.9 respectively compared to other varieties. Three varieties (WAB 189-B-B-B-HB CISADANE and WITA 1) consistently recorded significantly low seedling vigor under all the heat intensities including control.

varieties								
	Temperature (ºC)							
Variety	Control	40	45	50	55	60	Mean	
BW 348-1	4.3c	4.7c	4.7b	5.8b	4.3d	3.8b	4.6	
CISADANE (FARO 51)	0.3g		0.5f	5.3a	1.0g	0.5i	0.3g	1.3
FARO 11 (056)	2.5e	3.3d	3.5d	3.8e	3.4f	2.5f	3.2	
ITA 230 (FARO 50)	5.4a	5.4b	5.6a	6.2a	4.6c	2.8e	5.0	
SIPI 692033 (FARO 44) 4.5c	6.5a	5.4a	4.9d	3.4f	3.3c	4.7	
TOX 4004-43-1-2-1	5.0b	5.3b	5.3a	5.4c	5.5a	4.9a	5.2	
WAB 99-1-1	3.6d	4.5c	3.9c	3.9e	3.9e	3.1c	3.8	
WAB 189-B-B-B-HB	0.7e	0.9e	1.1e	1.2g	1.5h	2.9d	1,4	
WITA 1	1.0f	1.0e	1.2e	1.7f	2.6g	2.6e	1.9	
WITA 12	4.6c	4.7c	4.8b	4.8d	5.0b	3.7b	4.6	
Mean	3.2	3.7	4.1	3.9	3.5	3.0		

Table 7: Effect of dry-heat treatment on seedling vigor index of 10 rice varieties

Values within a column followed by a common letter are not significantly different according to Duncan's multiple range test at P = 0.05.

Discussion

There were significant differences in variety and dry heat treatment for seed germination, speed of germination and seedling vigor index. Variation in drv heat intensities influenced the seed quality attributes of the different genotypes examined.

The study vividly revealed that the dry heat treatment remarkably stimulated seed germination when compared with control. Dry heat treatment at 50°C enhanced seed germination and speed of germination above other heat intensities. However, high heat treatment (55°C and 60°C) had no adverse effects on seed germination

and speed of germination. Low temperatures (40°Cand 45°C) enhanced seed germination above the control. Numerous cracks in the hull may have been initiated by drv heat. and this probably enhanced permeability. which promoted seed germination and resulted in increased seedling vigor (Hayashi, 1980). Similar finding was observed by Dandlahi and Seshu (1990) in rice, and by Zaglaer et al. (1987), Nakagawa and Yamaguchi (1989), Forest et al. (1990) and Meng et al. (1999) in other crops. Our study revealed that low temperatures (40°C, 45°C and 50°C) enhanced seedling vigor above the control while high heat

intensity (60°C) failed to increase seedling vigor.

Specifically, dry heat treatment promoted remarkably seed germination of TOx 4004-43-1-2-1 and WITA 12, closely followed by ITA 230, SIPI 692033 and WAB 99-1-1 with correspondingly high speed of germination and seedling vigor indices. It is noteworthy that speed of germination of ITA 230 and WITA 12 was stimulated only treatment. In like after heat manner, five varieties (BW 348-1, ITA 230, SIPI 692033, TOx 4004-1-2-1 and WITA 12) had highest after dry heat seedling vigor treatment. An earlier study by Lee et al. (2002) reported significant varietal differences in seed germination and seedling vigor index in five Korean rice varieties after heat treatment.

The study showed that seed germination, speed of germination and seedling vigor among the 10 rice varieties African West invariably depended on dry heat intensity. There were distinct varietal differences at each of the dry heat intensities suggesting genetic differences in the constitution of the varieties. WITA 12 had distinct seed germination at all the heat intensities including control except at 60°C. Seed dormancy was observed in BW 348-1. WITA 1, CISADANE and WAB 189-B-B-B-HB and this was broken at high temperatures of 50°C, 55°C and 60°C for 24 hours. germination of However, CISADANE seeds was remarkably stimulated at 50°C. Seed dormancy in ITA 230, WITA 12 and TOx almost 4004-43-1-2-1 was completely broken under natural

conditions while low heat temperatures of 40 to 50°C slightly promoted germination of WITA 12 TOx 4004-43-1-2-1. High and (60°C) recorded temperature significant adverse effect on seed germination of WITA 12, WAB 99-1, TOx 4004 -43-1-2-1, SIPI 692033 and ITA 230 but remarkably stimulated germination in BW 348-1. This observation on responses based on varietal differences was also observed by Herranz et al. (1998) who initially pointed out that the enhancement of seed germination by dry heat treatment wide intraspecific showed a variation.

Speed of germination of BW 348-1, CISADANE, WAB 189-B-B-B-HB and WITA 1 varieties was 60°C and enhanced 50°C at temperatures. Variety ITA 230 consistently showed superior speed of germination under all the dry heat intensities including control. Speed of germination of ITA 230, SIPI 692033 and WITA 12 was considerably reduced at the highest temperature (60ºC). Seedling vigor of ITA 230 was strongly stimulated at 45 and 50°C while that of SIPI 692933 was equally promoted even low temperature (40°C). at heat Surprisingly, dry temperatures (40-60°C) failed to seedling vigor in increase 189-B-B-B-HB WAB CISADANE. and WITA 1, an indication that some varieties could be heatspecific. This is a testimony to the fact that varieties may react differently to treatments and stresses, thus reflecting differences standards of excellence in seed commonly referred to as quality (Hampton, 2002).

Metabolic events in living organisms, including seeds, are temperature dependent. Even though, optimum temperature for seed germination is usually a species characteristic, the above findings confirm that it is also cultivar dependent. Optimum temperature for germination may shift close to the maximum in some or in others, to the minimum temperature, depending on the cumulative prevailing environment during seed development and maturation for many years. In general, while low temperatures (40-50°C) appear to have no effect on the speed of germination, medium temperatures were generally found stimulating germination and seedling vigor of others. In a few instances, those varieties with improved germination at high temperatures have both their speed of germination and seedling vigor equally enhanced. High temperatures of 55-60°C were generally stimulatory with respect to germination and overall seedling vigor, a feature that cannot be compromised for good stand establishment under poor field situations.

Conclusion

The result of this investigation suggests that dry heat temperatures for improving seed germination and vigor depended on heat intensity and duration of exposure and has proved effective in overcoming dormancy in some modern West African rice varieties. Also dry-heat treatment for improving seed germination and

vigor varied with rice varieties, implying that it is a varietal attribute. As a consequence, further investigation is necessary to classify rice varieties according to seed quality and to determine the critical temperatures of dry heat treatment with resultant modification of seedling growth behavior of new West African rice seeds.

Acknowledgements

The authors wish to express appreciation to the West Africa Rice Development Association (WARDA) for providing seeds of the rice varieties. We are also grateful to Dr. D. K. Ojo and Dr. I.O. Daniel. for technical assistance and Mr. Dau'd Taofeek of Institute of Agricultural Research and Training, Moor Plantation, Ibadan, Nigeria for data analysis.

References

- Abdul- Baki, A. A. 1980. Biochemical aspects of seed vigor . *HortScience* 15 (6): 765-771.
- Adebisi, M. A. and Ajala, M. O. 2000. Effect of seed dressing chemicals and period of storage on soybean seedling vigour. Journal of Tropical Forest Resources 16(1): 126 -135.
- Ajala, M .O.2003.Influence of seed quality attributes on field emergence of pigeon pea (Cajanus cajan, L) and winged bean (Psophocarpus

tetragonolobus, L). Trop. Agric. (Trinidad) 80 (2): 118-122.

- Association of Official Seed Analysts (AOSA) 1993. Seed vigour testing handbook. No 32.
- Dadlani, M. and Seshu, D. V. 1990. Effect of wet and dry heat treatment on rice seed germination and seedling vigour. International Rice Research Newsletter 15: 21-22
- Detry, J. F. 1993. Seed dry-heat treatment against transmission of *Pseudomonas fuscoragivae*, causal agent of bacterial sheath brown rot of rice (BSR). International Rice Research Notes 18: 27-28.
- Fourest, E.: Rehms, L. D; Sands, D. C; Bjarko, M. and Lund, R. E. 1990. Eradication of Xanthomonas campestres Pv. translucent from barley seed with dry heat treatments. Plant Disease, 74, 816-818.
- Grondeau. C; Ladonne, F; Fourmond, A: Poutier, F. and Samson, R. 1992. Attempt to eradicate *Pseudomonas syringae* PV. Pisi from pea seeds with heat treatments. *Seed Science and Technology* 20: 515 -525.
- Hampton, J. G. 2002. What is seed Quality? Seed Science & Technol. 30: 1-10.
- Hayashi, M.1986. Physiological studies on the relationship between levels of the

endogenous inhibitors and the dormancy of rice seeds. Bulletin of the Faculty of Agriculture, Kagoshima University, Japan.

- Herranz, J. M., Ferrandis, P. and Martinez, S. J. 1998. Influence of heat on seed germination of seven mediterranean leguminosae species. *Plant Ecology*, 135: 95-103.
- Jeffery, D. J.; Holmes, P. M. and Revele, A. G. 1988. Effect of dry seed germination in selected indigenous and alien legume species in South Africa. South African J. of Botany 54: 28-34.
- Lee, S. Y; Lee, J. H. and Kwon, T. O. 2002. Varietal differences in seed germination and seedling vigour of Korean rice varieties following dry heat treatment. Seed Science and Technolo. 30: 311-321.
- Meng, S. C. Kong, X. H.Meng, S .C.1999. Effect of dry heat treatment on seed vigour of raddish seeds. China Vegitables 3: 20-22.
- Nakagawa, A. and Yamaguchi, T. 1989. Seed treatment for control of seed-borne *Fusarium roseum* on wheat. *CJARQ* 23: 94 – 99.
- Nugraha, U. S. and Soejadi, S. 1991. Pre-drying and soaking of IR 64 rice seeds as an effective method for overcoming dormancy. Seed

Science & Technol.y 19: 207 - 213

- Rast, A. T. B. and Stijger. C.C.M.M.1987. Disinfection of pepper seed infected with different strains of *Capsicum* mosaic virus by trisodium phosphate and dry heat traet ment. *Plant Pathology* 36. 583-588.
- Seshu, D. V. and Dadlani, 1991.Mechanism of seed dormancy in rice Seed Science Research 1: 187-194.

- Zhang, X. G. 1990. Physiochemical treatments to break dormancy in rice International Rice Research Newsletter 15; 22-24.
- Zeigler, R S; Ribiano, M and Alvarex, E.1987. Heat and chemical therapy to eradicate *Pseudomonas fuscovaginae* from rice seeds. *International Rice Research Newsletter 12:* 18-19.