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Abstract
Prolactin receptor (PRLR) is a single transmembrane protein belonging to the 
cytokine receptor super family through which prolactin plays a wide variety of 
physiological roles such as mammary gland development, milk production, 
reproduction and immune function in vertebrates. Many non synonymous single 
nucleotide polymorphisms (nsSNPs) at the PRLR locus in vertebrates are suspected 
to impact protein function. This study, therefore, aimed at predicting the likelihood of 
non synonymous (amino acid change) coding SNPs to cause functional impact on 
protein at the PRLR locus of cattle and chicken using the MEGA MD bioinformatics 
tool. In cattle, sixteen out of the first twenty non synonymous amino substitutions 
obtained: V5A, T9V, T12I, N18S, T19V, C20S, L26S, E32K, F34V, R49E, T52A, S61T, 
R66K, M72I, I79K and H87Y were beneficial, one was likely neutral, two were 
deleterious while one was likely deleterious. However, in chicken, L131V, E132N, 
A134T, V135L,  I157A and T161S mutations were found harmless, three were likely 
neutral, eight were deleterious while three were likely deleterious. This was 
substantiated by the Evod (–10.70 65.32 versus 0.00-80.03), PolyPhen 2 (0.000-
0.859 versus 0.000-0.990) and SIFT (0.16-1.00 versus 0.00-1.00) values in cattle 
and chicken, respectively. Theoretically, the harmful amino acid substitutions would 
result in altered spatial structure and functions of the PRLR molecules. Further 
studies, however, are required to determine whether the beneficial amino acid 
substitutions obtained will affect the milk yield, reproductive and immune functions 
of Nigerian livestock species.
Keywords: prolactin receptor; non-synonymous substitutions; bioinformatics tool; protein 
function; livestock.
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Description of problem
Prolactin (PRL) is secreted by 
lactotrophs in the anteriorpituitary gland 
under dopaminergic control from the 

hypothalamus and exists in numerous 
molecular forms, primarily because of 
a l t e r n a t i v e  p o s t t r a n s l a t i o n a l  
modifications (1). PRL was originally 
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The method to identify functional SNPs 
from a pool, containing both functional 
and neutral SNPs is challenging by 
experimental protocols. Therefore, 
computational predictions have become 
indispensable for evaluating the impact 
of non-synonymous single-nucleotide 
var ian ts  d i scovered  in  exome 
sequencing (10). A review of existing 
computational approaches to estimate 
the deleteriousness of single nucleotide 
variants has been recently published by 
Cooper and Shendure (11). The most 
common approaches to estimate 
deleteriousness exploit the fact that 
sequences observed among living 
organisms are those that have not been 
removed by natural selection. Hence, 
homology searches and conservation 
analysis are 2 main components of 
majority of such predictive systems 
(12). There is dearth of information on 
the use of in-silico methods to detect the 
presence of beneficial or harmful amino 
acid substitutions in PRLR gene. 
Therefore, the present study was 
undertaken to predict the functional 
e f f e c t s  o f  n o n - s y n o n y m o u s  
substitutions at the PRLR locus of cattle 
and chicken using MEGA-MD 
computational tool.

Materials and Methods
The Gene Search tab of the Mutation 
Explorer window of The Molecular 
Evolutionary Genetics Analysis 
software with mutational diagnosis 
(MEGA-MD) was used to search for 
prolactin receptor (PRLR) amino acid 
variants of cattle and chicken. The 
amino acid sequence of human prolactin 
receptor isoform 1 precursor was used as 
the reference sequence (Peptide ID: 
NP_000940). MEGA-MD is a suite of 

identified in the late 1920s and named 
for its ability to stimulate mammary 
growth and lactogenesis in several 
species (2). Since then, more than 300 
roles for PRL have been identified in a 
wide range of species including 
mammals, fish, and birds (3). Among its 
various target organs, the mammary 
gland is one of the most sensitive to PRL. 
More importantly, PRL exerts multiple 
effects on this organ, ranging from the 
stimulation of growth to the initiation of 
milk synthesis and the maintenance of 
lactation. The actions of PRL are 
mediated by several PRL receptor 
(PRLR) isoforms, including its long 
form and various short PRLR variants 
that are generated by alternative splicing 
in a species- and tissue-dependent 
manner (4). PRLR belongs to the 
superfamily of class I cytokine 
receptors, which presumably arose as the 
result of multiple gene duplications and 
subsequent divergent evolution (5). The 
single nucleotide polymorphisms 
(SNPs) are the most frequent type of 
genetic variation. In the marker assisted 
selection (MAS) of livestock, the PRLR 
seems to be promising candidates.  
Therefore, SNPs occurring within PRLR 
g e n e  m a y  r e g u l a t e  i m p o r t a n t  
physiological functions such as milk 
p r o d u c t i o n ,  e g g  p r o d u c t i o n ,  
reproduction and immune function or at 
least be effective DNA markers for this 
subregion of the livestock genome (6, 7, 
8).  A great proportion of the known 
disease-related mutations stems from 
non-synonymous SNPs, manifested in 
amino acid mutations (9). Recent 
a d v a n c e s  i n  h i g h - t h r o u g h p u t  
technologies have generated massive 
amounts of genome sequence and 
genotype data for a number of species. 
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substantiated by the Evod (–10.70-65.32 
versus 0.00-80.03), PolyPhen-2 (0.000-
0.859 versus 0.000-0.990) and SIFT 
(0.16-1.00 versus 0.00-1.00) values in 
cattle and chicken, respectively. The 
different patterns of amino acid 
substitutions observed in cattle and 
chicken reflect adaptive changes (15) 
Molecular genetic markers are widely 
used for the characterization of milk 
production trai ts ,  detect ion of  
genetically inherited diseases and the 
determination of the desired breeds; thus 
they can be utilized to improve livestock 
production (16, 17). SNP is the most 
abundant form of genetic variation and a 
resource for useful genetic traits (18, 
19). Identification of sequence 
variations across the targeted region of 
candidate gene ultimately leads to 
genotyping of the animals based on the 
identified genetic variants that affect the 
trait of interest (8). Therefore, the 
beneficial amino acid of prolactin 
receptor may be exploited in improving 
milk production, reproductive ability 
and immune functions of Nigerian 
livestock species through well-
structured selection and breeding 
programmes. The harmful amino acid 
substitutions obtained in this study may 
perturb the structure of the á-helix in 
protein molecules (20), thereby 
changing the physical and chemical 
properties of PRLR molecules (19) and 
overall functions of proteins (21, 22, 23). 
The obtained results from MEGA-MD 
may be reliable, since the tool is 
s e n s i t i v e  t o  t h e  e v o l u t i o n a r y  
conservation of the positions harbouring 
the amino acid change which, according 
to Gray et al. (24), tends to give better 
accuracy to predictions. 

tools developed to forecast the 
deleteriousness of nsSNVs using 
multiple methods (EvoD, PolyPhen-2 
and bjSIFT) and to explore nsSNVs in 
the context of the variability permitted in 
the long-term evolution of the affected 
position (13). In its graphical interface 
for use on desktops, it enables 
interactive computational diagnosis and 
evolutionary exploration of nsSNVs. As 
a web service, MEGA-MD is suitable 
for diagnosing variants on an exome 
scale. The MEGA-MD suite intends to 
serve the needs for conducting low- and 
high-throughput analysis of nsSNVs in 
diverse applications. MEGA-MD 
automatically retrieves a 46-species 
protein sequence alignment that comes 
from the UCSC resource (14), which has 
been cached in the MD-DB for quick 
access. For the selected position, there 
exists the option to request diagnosis for 
a specific variant or all possible variants 
(13).

Results and Discussion
Although there were numerous amino 
acid substitutions in the prolactin gene, 
only the first twenty amino acid 
substitutions for each of cattle and 
chicken are shown in Tables 1 and 2. 
A m o n g  t h e  n o n - s y n o n y m o u s  
substi tutions in catt le,  sixteen 
substitutions: V5A, T9V, T12I, N18S, 
T19V, C20S, L26S, E32K, F34V, R49E, 
T52A, S61T, R66K, M72I, I79K and 
H87Y were beneficial, one was likely 
neutral, two were deleterious while one 
was likely deleterious. However, in 
chicken, L131V, E132N, A134T, 
V135L,  I157A and T161S mutations 
were found harmless, three were likely 
neutral, eight were deleterious while 
three were likely deleterious. This was 
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Table 1. Functional analysis of amino acid mutations in prolactin gene of cattle  
Position 
(AA)  

Reference 
(AA)  

Mutant 
(AA)  

Consensus  Evod  PolyPhen-2  SIFT  

5
 

V
 

A
 

Neutral
 

43.29
 

0.01
 

0.38
 8

 
A

 
R

 
Deleterious

 
57.41

 
NA

 
NA

 9

 
T

 
V

 
Neutral

 
25.55

 
NA

 
NA

 12

 

T

 

I

 

Neutral

 

20.99

 

0.001

 

1.00

 18

 

N

 

S

 

Neutral

 

42.62

 

0.009

 

0.46

 
19

 

T

 

V

 

Neutral

 

37.20

 

NA

 

NA

 
20

 

C

 

S

 

Neutral

 

16.73

 

0.000

 

0.88

 
26

 

L

 

S

 

Neutral

 

28.18

 

0.000

 

1.00

 
29

 

G

 

E

 

Likely deleterious

 

55.82

 

0.859

 

0.16

 

32

 

E

 

K

 

Neutral

 

33.85

 

0.01

 

0.98

 

33

 

I

 

L

 

Likely Neutral

 

48.07

 

0.178

 

1.00

 

34

 

F

 

V

 

Neutral

 

51.15

 

0.008

 

0.55

 

40

 

N

 

G

 

Deleterious

 

65.32

 

NA

 

NA

 

49

 

R

 

E

 

Neutral

 

38.50

 

NA

 

NA

 

52

 

T

 

A

 

Neutral

 

42.47

 

0.000

 

0.37

 

61

 

S

 

T

 

Neutral

 

13.08

 

0.005

 

1.00

 

66

 

R

 

K

 

Neutral

 

– 12.48

 

0.001

 

1.00

 

72

 

M

 

I

 

Neutral

 

27.14

 

0.000

 

0.60

 

79

 

I

 

K

 

Neutral

 

14.50

 

0.000

 

1.00

 

87

 

H

 

Y

 

Neutral

 

–10.70

 

0.002

 

1.00

 

AA=amino acid, I=isoleucine, L=Leucine, V=valine, F=phenylalanine, M=methionine, C=cysteine, A=alanine, G=glycine, 
T=threonine, S=serine, Y=tyrosine, N=asparagine, H=histidine, E=glutamic acid, K=lysine, R=arginine

 

 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

       
       

Table 2. Functional analysis of amino acid mutations i n prolactin gene of chicken  
Position 
(AA)

 

Reference 
(AA)

 

Mutant 
(AA)

 

Consensus  Evod  PolyPhen-2  SIFT

128
 

D
 

G
 

Deleterious
 

70.05
 

0.073
 

0.07
129

 
P

 
S

 
Deleterious

 
59.78

 
0.776

 
0.04

131

 
L

 
V

 
Neutral

 
13.70

 
0.001

 
1.00

132

 

E

 

N

 

Neutral

 

0.00

 

NA

 

NA
134

 

A

 

T

 

Neutral

 

–0.44

 

0.000

 

1.00
135

 

V

 

L

 

Neutral

 

–8.00

 

0.000

 

1.00
137

 

V

 

T

 

Deleterious

 

66.25

 

NA

 

NA
139

 

Q

 

R

 

Likely deleterious

 

55.97

 

0.003

 

0.12
140

 

P

 

S

 

Likely neutral

 

55.75

 

0.003

 

0.93
141

 

E

 

A

 

Likely deleterious

 

71.80

 

0.011

 

0.15
142

 

D

 

N

 

Likely Neutral

 

57.15

 

0.014

 

0.48
143

 

R

 

I

 

Likely Neutral

 

69.51

 

0.001

 

0.22
149

 

I

 

A

 

Deleterious

 

58.03

 

NA

 

NA
155

 

T

 

L

 

Deleterious

 

69.33

 

NA

 

NA
157

 

I

 

A

 

Neutral

 

54.17

 

NA

 

NA
159

 

L

 

A

 

Deleterious

 

69.30

 

NA

 

NA
160

 

K

 

N

 

Likely deleterious

 

64.19

 

0.013

 

0.01
161

 

T

 

S

 

Neutral

 

–23.11

 

0.002

 

1.00
163 W S Deleterious 80.03 0.990 0.00
167 L H Deleterious 67.12 NA NA
AA=amino acid, I=isoleucine, L=Leucine, V=valine, C=cysteine, A=alanine, G=glycine, P=proline, T=threonine, S=serine, 
W=tryptophan, Q=glutamine, N=asparagine, H=histidine, E=glutamic acid, D=aspartic acid, K=lysine, R=arginine
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Conclusions and applications
1. Considering the fact that PRLR gene 

is involved in multiple biological 
processes  in  mammals ,  the  
beneficial amino acid substitutions 
obtained in this study may guide 
subsequent wet and dry laboratory 
experiments with the ultimate aim of 
improving genetically the milk 
yield, reproductive and immune 
functions of Nigerian livestock 
species.

2. However, future studies should 
involve a comparative study using 
MEGA-D and some other known 
bioinformatics tools for detecting 
the deleteriousness of amino acid 
substitutions in genes of interest. 
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