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ABSTRACT 

 

 

Predicting the pose parameters during the hand pose estimation 

(HPE) process is an ill-posed challenge. This is due to severe self-

occluded joints of the hand. The existing approaches for 

predicting pose parameters of the hand, utilize a single-value 

mapping of an input image to generate final pose output. This 

way makes it difficult to handle occlusion especially when it 

comes from the multimodal pose hypothesis. This paper 

introduces an effective method of handling multimodal joint 

occlusion using the negative log-likelihood of a multimodal 

mixture-of-Gaussians through a hybrid hierarchical mixture 

density network (HHMDN). The proposed approach generates 

multiple feasible hypotheses of 3D poses with visibility, unimodal 

and multimodal distribution units to locate joint visibility. The 

visible features are extracted and fed into the Convolutional 

Neural Networks (CNN) layer of the HHMDN for feature 

learning. Finally, the effectiveness of the proposed method is 

proved on ICVL, NYU, and BigHand public hand pose datasets. 

The imperative results show that the proposed method in this 

paper is effective as it achieves a visibility error of 30.3mm, 

which is less error compared to many state-of-the-art 

approaches that use different distributions of visible and 

occluded joints.   

 

ARTICLE INFO 

Submitted: July 5, 2022 

Revised: August 9, 2022 

Accepted: October 18, 2022 

Published: December 30, 2022 

 

Keywords: Deep learning, Convolutional neural networks, Self-occluded joints, Unimodal gaussian 

distribution, Multiple feasible hypotheses 

  

INTRODUCTION 

Modern computer interactions such as virtual 

reality, augmented reality, somatosensory 

games and gesture interaction require a non-

invasive interface that achieves a greater user 

experience (Ge et al., 2018). Hand pose 

estimation is a vital component of these 

seamless human-machine interactions. Hand 

pose estimation has the potential to provide a 

natural and non-contact solution.  

 There has been a considerable research 

effort in this area in the last two decades 

(Duan et  

al., 2019). Many of these researches have 

been developed from data-driven 2D 

interfaces to 3D joint positions and have 

achieved accurate results (Farahanipad et 

al.,2021). However, because of the 

complexity of hand and self-occlusion 

among other factors, hand pose estimation 

is still a challenging task.  
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 In recent years, deep learning has 

gradually become the mainstream approach 

for solving problems in computer vision 

and pattern recognition (Ge et at., 2018; 

Duan et al.,2019; Banzi et al., 2020).  

 Previous research results show that CNN-

based methods perform better when 

estimating hand pose. The existing methods 

for 2D position estimation of hand joints 

have attained high accuracy(Farahanipad et 

al.,2021). However, since the depth 

information in the original image cannot be 

fully utilized due to occlusion, HPE results 

are not ideal. Recently, many meaningful 

models have been proposed to address this 

issue (Zhang et al., 2021; Xiong et al., 2019). 

However, self-occlusion still hides some 

potential information and eventually 

misleads the accuracy of the pose estimator 

(Xiongwei and Hoi, 2020). This paper 

therefore, attempts to address the problem of 

handling multimodalities of occluded finger 

joint locations by introducing a hybrid 

hierarchical mixture density network 

(HHMDN). The proposed HHMDN provides 

an end-to-end learning ability through 

differentiable density functions with a 

complete description of the hand poses of the 

given images under occlusions.  

The idea behind HHMDN is to model the 

probability distribution of the joint locations 

of the fingers in a two-level hierarchy for 

both single and multivalued mapping under 

conditioned joint visibility and detection 

score. The first level hierarchy represents 

the distribution of a latent variable for the 

joint visibility. The second level hierarchy 

represents the distribution of the finger joint 

locations using a single Gaussian model for 

visible joints or a Gaussian mixture model 

(GMM) for occluded joints through 

detection score. The entire network is 

trained end-to-end through differentiable 

density functions.  

In the first place, this paper presents a 

probabilistic framework for detecting hand 

fingers based on detection scores to 

determine the visibility correlation of the 

visible finger. Then, the Gaussian labels 

were extracted from the detection scores to 

form multiple labels of a GMM with i 

components. These components are 

hierarchically regressed in visibility 

distribution, uni-modal distribution, and 

multimodal units to determine the joint 

visibility through CNN and facilitate feature 

learning. It also models several states in two 

hierarchical levels to unify a single and 

multiple-valued mapping in its output. The 

novelty of the proposed approach over other 

existing methods includes the integration of 

the detection score in line with the CNN to 

estimate visibility probability which is 

finally used to predict the probability that an 

input window is the hand pose. Also, using 

the negative log-likelihood of a multimodal 

mixture-of-Gaussians through HHMDN 

enhances the accuracy of HPE.  

The remains of this paper are organized as 

follows: Section 2 describes the related 

works, and section 3 presents the system 

description and theoretical concepts. Section 

4 presents the datasets and model analysis, 

while the experimental setup is explained in 

section 5. Finally, the results and discussion 

are explained in section 6. 

MATERIALS AND METHODS 

Related work 

HPE approaches are generally classified 

into generative, discriminative, and hybrid 

paradigms(Roy et al.,2017). Discriminative 

and generative are the two complementary 

approaches, while the hybrid approach 

combines both generative and 

discriminative approaches to complement 

the significant advantages of both methods 

(Tang et al. 2018). Many of the previous 

works for HPE were developed based on 

the generative approach in which multiple 

hand models called hypotheses are 

generated and  a suitable model that best 

matches the observed data were found 

(Ling et al., 2018; Pavllo et al., 2019; 

Xiongwei and Hoi, 2020). In the generative 

approach, the predicted pose parameters 

usually originate from the prior stage. An 

optimization framework is used to find a 
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model that minimizes a certain cost 

function (Banzi et al., 2019).  

A self-learning procedure based on Deep 

Reinforcement Learning (DRL) with a 

bounding box was proposed by Saha 

(2018), to localize gesture location. 

However, the approach did not perform 

well under self-occlusion, requiring enough 

memory due to the number of iterations 

needed during training. 

Generative approaches face numerous 

challenges, including a tremendous 

overhead in rendering candidate 

poses(Banzi et al., 2019). Generally, 

generative methods are computationally 

expensive and sometimes need to be 

implemented on GPU to meet a real-time 

performance (Banzi et al., 2020). Most 

recent works are based on a discriminative 

approach, which requires the hand pose to 

be extracted from a single-depth image 

through the mapping process using 

classification and regression techniques 

(Jariwala and Parmar, 2017). In particular, 

the tree-structured Region Ensemble 

Network (REN) was proposed by Guo et 

al., (2018) to recover a 3D hand pose by 

dividing the convolution outputs into 

regions while integrating the results from 

multiple regressors on each region.  

A hierarchical tree-structured CNN 

discriminative approach was proposed by 

Madadi et al., (2017) to predict different 

parts of the kinematic tree and obtain the 

local poses as a subset of hand joints. Yuan 

et al., (2018) employ a CNN discriminative 

approach to minimize a mean square error 

function when mapping the 3D joints of the 

hand from a given set of hand input images 

and their corresponding pose labels. 

However, the mapping was considered a 

single-valued with a precise conditional 

average if all the finger joints from the 

given image are visible. This conditional 

average provides a limited description of 

the joint locations with reduced accuracy. 

Since occlusion frequently occurs in the 

egocentric view, the mapping must be 

multivalued because occluded joints exhibit 

multiple locations under the same images. 

Oberweger and Wohlhart (2015) use CNN 

to predict the joint locations and extract 

potential features to generate small heat 

maps for joint locations. The joints were 

then converted to hand skeletons using an 

inverse kinematics process. However, only 

2D locations of joints were predicted, and 

the approach was computationally 

expensive and unable to predict the 

occluded joints. Generally, discriminative 

approaches have proven to have some 

difficulties with occluded joints, or high 

inaccuracies at fingertips (Oberweger et al., 

2018).  

The hybrid method was developed by (Chen 

et al., 2020) to leverage the merits of 

generative and discriminative learning 

techniques. The approach first provides the 

poses of the candidate through discriminative 

methods and uses them as an initial state of 

the generative technique to optimize the full 

hand poses. The early hybrid approach 

presented by Oberweger and Wohlhart 

(2015) trains a CNN of real labelled data 

annotated using a slower generative 

approach to regress the body pose. The 

works of (Zhou et al., 2019; Yuan et al., 

2018)  use hybrid techniques in different 

scenarios to provide a smooth and robust 

HPE. Still, their approaches were weak in 

generalizing to a new unseen object and had 

less pose estimation accuracy. Tang et al., 

(2017) demonstrated an adaptive hierarchical 

classification method to improve the 

efficiency of forest regression by regressing 

all the joints in one forest channel per frame. 

However, the method was prone to error 

propagation due to self-occlusion leading to 

wrong poses estimate.  

 

Theoretical descriptions of the proposed 

system 

The hand pose was first described as an 

articulated object before considering the 

probabilistic of the two-level hierarch to 

handle the hand poses under joint occlusion. 

CNN is then used to learn model parameters 

discriminatively. The detection scores vector 

given as λ=[λ1,λ2,…λk]
T
 are obtained first 

before estimating the visibility probability p 
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as  p(h|λ). The visibility probability is finally 

used to predict the probability that an input 

window is the hand pose. The present 

detection window is represented by ω while 

the detection score λ of the k parts is denoted 

by λ=[λ1, λ2, …, λk]
T
. Accordingly, it is 

assumed that both the deformation scores 

and appearance scores have been integrated 

by the part-based model into λ.  

A probabilistic framework is designed in this 

study to effectively estimate the visibility of 

fingers before learning their visibility 

relationship based on a deep discriminative 

model. This considers the finger visibility of 

the k parts represented by 

h=[h1,h2,…,hk]
T
ϵ{0,1}

T
 with hi=1 meaning 

visible and hi=0 meaning invisible. The study 

considered h as a hidden random vector 

because it was not given during training or 

testing phases such that 
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A special case framework is considered for 

pedestrian detection approaches by setting 

hi=1 or taking the visibility hi based on λi 

while ignoring the visibility power of the 

framework. Other approaches construct a 

deep model based on this power to learn the 

visibility relationship between finger parts. 

In this study, the finger visibility relationship 

p(hi|h|hi,λ) is integrated with the joint 

visibility, which is given by the hierarchical 

mixture density network (HMDN) proposed 

by (Ye and Kim 2018)  to form what is 

presented in this study as a hybrid 

hierarchical mixture density network 

(HHMDN).  

The study exploits three publicly available 

datasets ICVL, NYU, and BigHand which 

lack visibility information on the finger 

joints, as shown in Table 1. This helped to 

investigate those with a higher proportion of 

occluded joints in the experiment. The 

learning datasets in our proposed study 

contain {Xn, Yn, hn
d
 |n=1, …, N; d = 1, …, D} 

where  {Xn, Yn, and hn
d
} represents n

th
  hand 

depth image, the pose labels (represents 3D 

locations of the d
th

 joint of the n
th

 image) and 

the visibility variable, respectively. The d
th

 

joint is connected with multiple labels Yn
d
 = 

ym
d
 where ym

d
ϵ R

3
 is the m

th
 label i.e., 3D 

location. The binary variable was given to 

the visibility label to signify whether the d
th

 

joint of the n
th

 image was visible or not. The 

D joints are handled independently. The 

discriminative model was divided into two 

levels to model occluded hand poses. The 

top-level which model the visibility 

constraint and the bottom level send-witched 

between a uni-model distribution and 

multimodal distribution based on the joint 

visibility. The visibility variable hn
d
 provides 

the binary variable, which follows the 

Bernoulli distribution given as    

    )1(
1)(

d
n

d
n hd

n

hd

n

d

n

d

n vvvhp


                       (2)                                                                                                    

The term vn
d
 is the probability that the joint 

is visible. Detection scores are used to 

generate visibility labels from the available 

pose labels. However, detection scores can 

only infer the detection of fingers. 

Nevertheless, the visible finger may be 

embedded with some occluded joints. 

Therefore, a sphere model is applied in this 

study, similar to Qian et al. (2014), to 

generate visible labels based on the existing 

pose labels.  

The finger joints whose spheres have several 

pixels below a threshold are considered 

occluded. As described earlier, the visibility 

is given as a binary value, i.e. hn
d
 =1 when 

the joint is visible in the image and the 

location can be determined. The noise label   

ym
d
 is generated only from a single Gaussian 

distribution 

)()1( d

m

d

m

d

m

d

n

d

m yNhyp                         (3)                                                                                              

For the occluded joint, i.e.,   hn
d
 = 0, multiple 

labels are drawn from a GMM with i 

components such that  

)()0(
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d

n

d
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                (4)                                                                    

where cni
d
 is the center and sni

d
  is the 

standard deviation of the i
th

 components. 

Therefore, considering all components in 

place, the distribution of the joint locations 

conditioned on the visibility is given as 
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The distribution of joint through ym
d
  and hn

d
 

is given as  
( )

( ) ( ) ( ) ( )

d
hn

i

d d d d d d d d d d d

m n n m n n n i m ni ni

i=1

d- 1-hn

p y ,h = v N y μ σ 1-v π N y c s
 

     
  (6) 

This equation is the joint distribution that 

defines the loss function. Both the multilevel 

mixture density generation and the joint 

distribution equations are conditioned by xn. 

All model parameters are functional, xn and 

the joint distribution equation is 

differentiable. The CNN then learns the loss 

function and parameterizes the distribution 

through the output, as shown in Figure 1. 

The image xn is an input to the CNN with the 

detected scores and the output is HHMDN 

parameters  

vn
d
, μn

d
, σn

d
, cn

d
, sni

d
, πni

d
 for d = 1, …, D and 

i =1, …, i. The parameters given out have 

been classified into visibility probability 

based on equation 2, the uni-modal Gaussian 

based on equation 3, and the GMM based on 

equation 4. We utilize different activation 

functions to confine with the defined range 

of parameters. For example, exponential 

functions activate standard deviations and 

ensure they remain positive, while the 

SoftMax function ensures that πni
d
 it is 

maintained to [0,1]. The value hn
d
 was used 

to calculate the visibility loss through the 

visibility label sni
d
, vn

d
. Furthermore, the UG 

was calculated for the visible joints or GMM 

for occluded joints based on the visibility 

label presented above. 

Figure 1: Probabilistic framework showing detection scores on the left and a CNN based 

learning frame on the right integrated into one pipeline.  

 

Model Training 

The likelihood for the complete dataset was 

first defined as 
 


N

n

D

d m

d

n

d

mhypp
1 1

)( . 

Then the CNN generates the parameters to 

maximize the likelihood of the dataset. The 

negative logarithmic likelihood was then 

applied to equation 6 as the loss function to 

obtain 

( )
N D

visib single multi

n=1 d=1 m

L=-Log p= L +L +L         (7)                                                              

In Figure 1 above, the Lvisib, Lsingle, and Lmulti 

corresponds to the three branches with their 

negative log described as  

( ) ( ) (1 )
d d d d

visib n n n n
L =-h Log v - 1-h Log -v                (8)  

( ( ))
d d d d

single n m n n
L =-h Log N y μ σ                              (9)  

( ) ( ( ))

i

d d d d d

multi n ni m ni ni

i=1

L =- 1-h Log π N y C s                    (10)                                                                                     

The visibility loss Lvisib can be calculated by 

using the estimated value hn
d
. The Lsingle is 

computed when hn
d
 =0 and the Lmulti is 

computed when hn
d
=1. At the testing stage, 

if the image xn is applied into the network, 

the joint position estimation is classified 

into distinct branches through the visibility 

probability vn
d
. If vn

d
  is larger than a 

specified threshold, the estimation of the 

location is provided by the uni-modal 

Gaussian distribution or the GMM. 

Nevertheless, if the estimation for the 

visibility is accompanied by errors, then the 

position of the joint will also be incorrect. 
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The samples drawn from the estimated 

distribution were used during the training 

stage to avoid bias instead of using binary 

visibility labels hn
d 

to calculate the 

likelihood. When the number of samples is 

adequately greater, the mean of the samples 

becomes vn
d
, and the losses equation 

changes to 

( ( ))
d d d d

single n m n n
L =-v Log N y μ σ         (11)                                                   

( ) ( ( ))
i

d d d d d

multi n ni m ni ni

i=1

L =- 1-v Log π N y C s           (12)     

Experiments 

The experiments conducted to validate the 

proposed occlusion aware system for the 3D 

multimodal joint location of hand pose 

hypothesis are shown in this section. The 

paper briefly presents the experimental 

setup and introduces the dataset used. 

Finally, the results of our experiment were 

compared with several state-of-art 

approaches to evaluate the performance of 

our system. 

 

Experimental setup 

In the experiment, the detection scores λ 

were first obtained before using it to 

estimate the visibility probability of the 

positions of the finger to help suggest the 

occluded part. Multilevel mixture density 

was then integrated with the CNN layer to 

help determine the joint visibility and their 

corresponding visibility losses. The 

proposed Occlusion Aware Density 

Networks for 3D Multimodal Joint Location 

of Hand Pose Hypothesis was then 

implemented using C++ OpenCV. The 

number of framerates from different 

contending approaches is presented are 

Table1. 
 

 

Table 1: The total number of frames and rate of the occluded finger joints

SN Dataset Train(R/T) Test(R/T) 

1 ICVL(Wang et al.  2018) 0.08/16,000 0.01/1596 

2 NYU(Tang et al. 2015) 0.09/72757 0.36/8252 

3 BigHand(Asad and Slabaugh 2016) 0.48/969,600 0.24/33,468 

 

RESULTS AND DISCUSSION     

Several models were compared with the 

Single Gaussian Network (SGN) baseline to 

explore the efficiency of our proposed 

approach. The SGN is the neural network 

trained with uni-modal Gaussian 

dissemination.  The tested models are the 

SGN, HMDN, and HHMDN. The samples 

were drawn from the dissemination of various 

approaches. The results are presented in 

Figure 2 to depict the capacity of the proposed  

 

 

method in modelling mapping differences i.e., 

one-valued mapping for visible and many-

valued mapping for occluded joints. For 

occluded joints, the samples generated by 

SGN form a broad range of spheres. The 

samples from HMDN and HHMDN are 

distributed as arc-shaped, indicating the range 

of movement of the fingertips under kinematic 

constraints. However, the SGN and HMDN 

yield the samples situated in a dense form 

around the ground truth position for visible 

joints. 
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Figure 2: Illustration of samples drawn from different distributions for fingertips in visible and 

occluded joints. 

 

The study considers the distribution of each 

method qualitatively. It compares each 

hypothesis with the ground truth joint 

locations to measure the displacement errors 

as reported in Table 2 for visible and occluded 

joints. The comparisons under normally used 

metrics, i.e. the proportion of joints within an 

error threshold were then depicted when the 

number of joints which is the Gaussian 

component, was set to J=20. The results are 

presented in Figure 3. The proposed HHMDN 

outperformed both SGN and HMDN using 

different numbers of the Gaussian component.  

The average errors for both visible and 

occluded joints are reported in Table 2. The 

estimation errors of HHMDN and HMDN, as  

shown in Table 2, do not change much for 

J=10, 20 and 30. Nevertheless, the parameters 

of the model were increased linearly with J. 

 

Table 2: Prediction error of different models with different distributions 

 

SN No. of Gauss(J) Model Visibility error(mm) Occluded error(mm) 

1 10 SGN 33.4 37.5 

2 20 HMDN 30.7 34.7 

3 30 HHMDN 30.3 34.2 

 

 

Figure 3: Self-comparison of the three distributions showing the proportion of errors in a given 

threshold for both visible and occluded joints. 
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Figure 4: Self-comparison showing the minimum error attained against the ground truth for 

both visible and occluded joints.  

 

As depicted in Figure 3, HHMDN performs 

better than SGN and slightly better than 

HMDN for visible and occluded joints using 

various components in Gaussian. When an 

error threshold is 40mm, HHMDN 

outperformed by 8% for visible joints while 

improving the SGN by more than 10% when 

the error threshold is 40mm.  

Furthermore, the samples attained from the 

distributions, as depicted in Figure 4, are 

varied and measured with the least distance 

error. Our HHMDN achieved the lowest 

errors than SGN and HMDN in all samples. 

However, as the samples increase, the error 

gap between the two approaches is decreased. 

The performance of our proposed method was 

evaluated on two publicly available datasets, 

NYU and MSHD, on the recently published 

works of (Chen et al., 2019; Ye and Kim 

2018), with a considerable number of 

occluded joints. Although different evaluation 

metrics have been used in the literature, we 

focus on the segment of sample error distance 

in a metric of threshold to measure the 

fraction of success frames with the error 

distance of each joint less than a certain 

threshold. A single mistaken joint in this 

evaluated metric may depreciate the whole 

hand, making this the most challenging 

evaluation criterion.   

 

 
Figure 5: Evaluation with the state-of-the-art approaches on the NYU dataset for visible and 

occluded joints.  

 

The study was compared with five state-of-

art approaches on the NYU dataset based on 

the fraction of success frame whose distance 

between all predicted joints is within a 

certain threshold. These approaches are 

Spatial attention Ye et al. (2016), 

DeepModel Oikonomidis et al. (2011), 
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DeepPrior Oberweger and Wohlhart  

(2015), DeepPrior++ Oberweger and Lepetit 

(2017), REN Guo et al. (2018) and HMDN 

(Ye and Kim,2018). Most of the joints in 

this dataset are visible, especially in the 

training set, with up to 36% of occluded 

joints in the testing set.  As depicted in 

Figure 5, our approach was the third best for 

occluded joints and the second best for 

visible joints because it has detection with 

favorable error in (mm) compared to other 

approaches with the given proportions of 

joints. 
 

 

 
Figure 6: The number of success samples against the ground truth for different visible and 

occluded joints. 

 

 

 
 

Figure 7: Illustration of samples for one tip joint scattered along the skeletons for visible and 

occluded joints.  
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For example, in Figure 5, when the error 

threshold is between 20 and 30, our 

method performed 8% better than Spatial 

attention and more than 5% better than 

the conventional HMDN and REN. 

Based on the number of success samples 

against the ground truth in Figure 6, our 

method also outperforms all the 

contending approaches with a slight 

improvement over HMDN. 

We relate our technique with the three 

state-of-the-art approaches, Spatial 

attention Ye et al., (2016), open the 

black box Tang et al., (2015), and 

HMDN Ye and Kim (2018) by varying 

the number of distributed samples and 

measuring the least displacement error. 

Ye et al., (2016) proposed spatial 

attention predicts the joint by utilizing 

the CNN as a uni-modal Gaussian. 

On the contrary, the Open Blackbox by 

Tang et al. (2015) used a decision forest 

with trees each modeled by GMM.  

Our method outperformed all three 

methods in visible and occluded joints, 

indicating that a HHMDN improves 

awareness of the multiple modes of 

occluded joints more than the traditional 

HMDN. Finally, the distributions of 

joints with different samples are 

presented in Figure 7, from which the 

samples from Tang et al. (2015) are 

more diverse for fingertips and span a 

large region, while that of Ye and Kim 

(2018) are less diverse and compact but 

deviate more from the ground truth. Part 

of Figure 7 for other methods is obtained 

from the work of (Ye and Kim 2018). 

 

CONCLUSION AND 

RECOMMENDATIONS 

This paper presents an occlusion 

handling approach for hand pose 

estimation. Handling occlusion is an 

essential process for accurate hand pose 

estimation system. An accurate hand 

pose estimation system provides 

accurate interaction platform that 

achieves greater user experience. 

Handling occlusion caused by fingers 

can improve the accuracy of hand pose 

estimation which ultimately provides the 

possibility for developing a future 

seamless multi-touchless interaction. 

Posed as a probabilistic based 

framework, fingers detection can be 

performed using detection scores. By 

representing finger parts as detection 

scores, the probability framework 

models the visibility of parts as a hidden 

variable or label. 

Additionally, the visible label is 

generated by a single Gaussian 

distribution. To model occluded hand 

poses, the presented discriminative 

model is divided into two levels. 

The top level which models the visibility 

constraints and the bottom level send-

witched between uni-model distribution 

and multi-model distribution, based on 

the joint visibility. Evaluation of the 

approach was performed against two 

publicly available datasets consisting of 

several users and a significant 

percentage of occluded joints. The 

success joints were compared against the 

ground truth for both visible and 

occluded joints and the errors generated 

are presented in mm. The approach was 

compared with five state-of-the-art 

approaches Spatial attention, Deep 

model, DeepPrior, DeepPrior++, REN, 

and HMDN. While their approaches 

utilized large numbers of CNN layers 

like for example 20 CNN layers by 

DeepPrior and 50-Resnet layers, by 

DeepModel, their systems performed 

similar or slightly better with our 

proposed method.  

Different from the contending 

approaches, the presented method in this 

paper is less ambiguous and cost-

effective and can be run in a 

conventional CPU desktop computer. 

Expanding the proposed method to 
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accommodate hand flexibility i.e. degree 

of freedom using machine learning 

algorithms would be the future 

expansion of this proposed work. 
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