
Tanzania Journal of Engineering and Technology 2023, 42(2): 65-83  

OPEN ACCESS articles distributed under Creative Commons Attribution 

Licence [CC BY-ND] 

Websites: https://ajol.org/tjet; https://tjet.udsm.ac.tz 
 

Copyright © 2023 College of Engineering and Technology, 

University of Dar es Salaam 

ISSN 1821-536X (print); ISSN 2619-8789 (electronic)  

https://doi.org/ 10.52339/tjet.v42i2.853 

 

Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 42 (No. 2), Apr. 2023 65 

 

Review Manuscript 

Deep Learning Model Compression Techniques: Advances, 

Opportunities, and Perspective  
 

Hubert G. Msuya⸷ and Baraka J. Maiseli 

Department of Electronics and Telecommunications Engineering, College of Information and 

Communication Technologies, University of Dar es Salaam, P. O. Box 33335, 14113 Dar es 

Salaam, Tanzania  

⸷Corresponding author: hubertmsuya@udsm.ac.tz;  

ORCID: https://orcid.org/0000-0002-7640-5229  

ABSTRACT  

Recently, deep learning (DL) models have excelled in a wide 

range of fields. All of these successes are built on intricate DL 

models. The hundreds of millions or even billions of parameters 

and high-performance computing graphical processing units or 

tensor processing units are largely responsible for their 

achievement. DL model integration into real-time devices with 

tight latency limitations, limited memory, and power-constrained 

requirements is the key driving force behind investigation of DL 

model compression techniques. Also, there is an increase in data 

availability that encourages multimodal fusion in DL models to 

boost the models' predictive accuracy. In order to create compact 

DL models for deployment that is memory- and computationally 

efficient, the data included in the network parameters is 

compressed as much as possible, leaving only the bits necessary 

to carry out the task. A better trade-off between compression rate 

and accuracy loss should be established to take model 

acceleration and compression into consideration without severely 

reducing the model's performance. In this paper, we examine 

various DL model compression techniques used for both single-

modality and multi-modal deep learning tasks. We explore over 

numerous DL model compression methods that have advanced in 

a number of applications. We then come up with the benefits and 

drawbacks of various compression and acceleration methods 

such as ineffectiveness in compressing more complicated 

networks with dimensionality-dependent complex structures, and, 

ultimately, the field's future prospects are given.  
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INTRODUCTION 

Deep learning (DL) models have advanced 

remarkably, significantly impacting 

various sectors (e.g., agriculture, health, 

education, and finance, among others) 

responsible for socio-economic 
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development (Long et al. 2019). These 

accomplishments, all based on intricate DL 

models, result from hundreds of millions or 

even billions of parameters and high-

performance computing graphics 

processing units and tensor processing 

units. Most DL models contain convolution 

layers, activation layers, pooling layers, 

and fully connected layers in which the 

model parameters to be trained are handled. 

Additional layers and neurons may be 

integrated depending upon the complexity 

of the network structure that necessitates 

increased model size, memory usage, and 

energy consumption (Long et al. 2019). 

The difficulty is how to integrate these 

performance metrics (model size, memory 

usage, and energy consumption) into real-

time applications with severe latency 

constraints, little memory resources, and 

power-limited requirements (Cheng et al. 

2020). A better trade-off between 

compression rate and accuracy loss should 

be established to take model acceleration 

and compression into consideration without 

severely reducing the model's performance. 

This work discusses various model 

compression techniques and their potential 

applications in reducing DL model 

parameters. It explored advances made so 

far as well as opportunities for further 

research.  Noting the promising future of 

multimodal fusion, we have also discussed 

future prospects of compression techniques 

in advancing DL models under 

multimodality conditions. 

 

REVIEW APPROACH 

Compression Strategies 

Authors have been actively investigating 

different methods and techniques for 

compressing DL model parameters, the 

goal being to provide  memory- and 

computational-efficient compact models 

(Choi et al. 2020). This objective may be 

accomplished by maximally compressing 

the data included in the network 

parameters, thereby leaving the bits 

required to complete the task (Wiedemann 

et al. 2020). Techniques for parameter 

compression can be categorized based on 

the classification strategies and 

characteristics: parameter pruning and 

quantization, low-rank factorization, 

knowledge distillation (KD), and 

transferable convolutional filters (Cheng et 

al. 2020). Compression techniques may 

also be categorized based on universality 

(Choi et al. 2020, Wiedemann et al. 2020)  

or dimensionality (single modality or 

multimodality), as shown in Table 1. 

 

 

Table 1: Categories of DL Model Compression Techniques 

DL Model Compression Techniques 

Pruning and 

Quantization 

Low Rank 

Approximatio

n 

Knowledge 

Distillation 

Universal 

Compression 

Multimodal 

Compression 

• Removal of 

unnecessary 

parameters/filter

s from 

convolutional 

layers. 

• Weight sharing. 

• Reduction in 

the depth of 

convolutiona

l layers. 

• A compressed 

model (student) 

is trained under 

the guidance of a 

more sizeable 

pretrained model 

(teacher). 

• Adjust its 

probability 

model to a 

variety of 

various 

input 

distributio

ns. 

• Handles an 

increase in 

the volume of 

multimodal 

data during 

the feature 

structure 

learning 

phase. 

Most of the articles related to DL model 

compression techniques are discussing 

pruning and quantization-based approaches 

(about 58% of the reviewed articles in this 

paper). Its popularity comes from the fact 

that, pruning and quantization of the DL 
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models is one of the earliest approaches to be 

used in DL model compression techniques. It 

is followed by low-rank approximation and 

KD approaches, each having about 19% of 

the reviewed articles, and lastly universal and 

multimodal compression approaches, each 

having about 2% of the reviewed articles. The 

implication of these outcomes is that, the 

field of DL model compression strategies is 

still expanding, with new approaches being 

discovered. The majority of these studies 

focused on deep learning problems for a 

single modality, while very few studies have 

attempted to compress DL model under 

multimodal fusion environments. Also, some 

few researches have been done to address the 

problem of model compression universally. 

 

Pruning and Quantization Approaches 

Deep learning models typically have a lot of 

parametric redundancy, which uses up 

storage and computational resources and 

increases power consumption in embedded 

systems (Denil et al. 2013). Parameter 

pruning and quantization techniques can be 

used to examine redundancy of model 

parameters. These techniques optimize the 

model's efficiency by reducing the amount of 

redundant and unimportant parameters. 

CNNs are commonly known to have 

redundancies, which allow for the removal of 

unnecessary filters/parameters from 

convolutional layers to reduce the size of the 

network while maintaining adequate 

performance. Pruning and parameter sharing, 

according to prior studies, perform well in 

lowering model complexity and in avoiding 

network overfitting (Gong et al. 2014).  

The work by Han et al. (2016), which used a 

three-stage pipeline consisting of pruning, 

trained quantization, and Huffman coding, is 

one of the best works on pruning and 

quantization. Through learning the crucial 

connections, the approach initially prunes the 

network and then ensures weight sharing by 

quantization and Huffman coding. This 

approach could decrease the storage 

requirements of AlexNet and VGG-16 from 

35 ×  to 49 ×  without significantly 

compromising their accuracy (Han et al. 

2016). However, the approach provides the 

modest experimental network structure for 

pruning, which generally applies to the 

clipping of full-connection networks, and 

thus is unable to generate a meaningful 

acceleration effect in larger convolutional 

network layers (Wen et al. 2016, Long et al. 

2019). 

Other works directly train CNNs using binary 

weights (Courbariaux and David 2015, 

Courbariaux and Hubara 2016, Rastegari et 

al. 2016). Networks trained via back 

propagation may be resistant to particular 

weight distortions, such as binary weights 

distortion (Merolla et al. 2016). By binarizing 

the network weights in forward propagation 

and backward propagation into 1 or -1 and 

keeping the weights in floating point during 

parameter updates, the number of matrix 

operations, training time, and memory usage 

can significantly be reduced. Binary Connect 

produced outstanding experimental results on 

the MNIST, CIFAR-10, and SVHN 

(Courbariaux and David 2015). Ordonez and 

Redmon (Rastegari et al. 2016) creatively put 

forth the XNOR-Net concept, which roughly 

approximates simultaneous binarization of 

all weights and inputs. The point 

multiplication of two binary vectors is 

identical to a shift operation if all operations 

in the convolution process are binary, which 

can significantly lower the computational 

cost and memory savings. However, when 

dealing with big CNNs (e.g., GoogleNet), the 

accuracy of the binary nets is dramatically 

reduced.  

Based on sparsity constraints, further pruning 

methods for compressing DL models were 

proposed. These sparsity constraints are often 

introduced as 𝑙0 − or 𝑙1 −norm regularizers 

in the optimization problem. To generate 

structured brain damage, Lebedev and 

Lempitsky (2016) applied a group sparsity 

restriction on the convolutional filters, which 

involved group-wise convolution kernel 

entry pruning. The authors discovered that 

applying the sparse regularization term 

significantly lowers the computing cost of 

convolutional computation and significantly 



Deep Learning Model Compression Techniques: Advances, Opportunities, and Perspective 

68 Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 42 (No. 2), Apr. 2023 

 

increases the acceleration effect (Long et al. 

2019). In order to learn compact CNNs with 

reduced number of filters, a group-sparse 

regularizer on neurons was included during 

the training phase (Zhou et al. 2016). In order 

to eliminate petty filters, channels, or even 

layers, Wen et al. (2016) introduced a 

structured sparsity regularizer on each layer. 

Hao et al. (2017) selected and pruned 

irrelevant filters using the 𝑙1 -norm. Sparse 

decomposition was effectively employed by 

B. Liu et al. (2015) to remove redundant 

parameters from the neural network model, 

resulting in a 90% reduction in the number of 

parameters with just a 1% loss in accuracy 

(Long et al. 2019). However, compared with 

generic approaches, pruning with 𝑙1 − or 𝑙2 

regularization requires many iterations to 

converge. Furthermore, all pruning criteria 

need for manual layer sensitivity 

configuration, which necessitates fine-tuning 

of the parameters and may be time-

consuming for some applications. 

Additionally, network pruning often only 

reduces the size of the model, not its 

effectiveness (Cheng et al. 2020). 

Ding, Ding, Guo, and Han (2019) presented 

a Centripetal Stochastic Gradient Descent—

an optimization method which can train 

many filters to collapse into a single filters 

point. Similar filters can prune the network 

without significantly impacting performance, 

necessitating no fine-tuning. Y. He et al. 

(2019) suggested filter pruning using the 

geometric median approach to compress the 

model regardless of the size of the filters' 

norm deviation and their minimal norm. 

Instead of focusing on filters of relatively 

lower value, the strategy compresses CNN 

models by removing redundant filters and 

putting more emphasis on the relationships 

between filters. To increase performance, 

more research needs to be done on how to 

combine this approach with other 

acceleration algorithms, including matrix 

decomposition. 

A network pruning method, FilterSketch, by 

M. Lin et al. (2021) offered information-

preserving pre-trained network weights. The 

off-the-shelf frequency direction approach is 

used to solve the problem, which is presented 

as a matrix sketch problem. With the ability 

to regain the representation capacity of a 

pruned network using a basic fine-tuning 

process, FilterSketch encodes the second 

order information pretrained weights. 

However, the method is based on the fact that 

each layer of the CNN's filter weights 

approximates zero mean, a condition that 

might not be met by alternative networks, 

such as multi-layer perceptron. 

To improve compression outcomes, Predić et 

al. (2022) looked into the feasibility of 

mixing DL model compression techniques. 

For the compression of ResNet18, they 

carried out pruning, quantization, weight 

clustering, quantization-aware training, 

preserve cluster quantization-aware training, 

and knowledge distillation. However, the 

baseline model's accuracy deteriorates as a 

result of the procedures.  

There are other pruning and quantization 

related approaches which can be seen from 

the works by Hansont and Pratt (1989), 

Hassibi et al. (1993), Vanhoucke et al. 

(2011), Gong et al. (2014), Srinivas et al. 

(2015), Han et al. (2015), W. Chen et al. 

(2015), Gupta et al. (2015), Wu et al. (2016), 

Z. Lin et al. (2016), Ullrich et al. (2017), 

Zhaowei et al. (2017), Luo et al. (2017), Hou 

et al. (2018), Leng et al. (2018), Y. He et al. 

(2018), (Long et al. 2019), He and Fan 

(2019), Frankle and Carbin (2019), S. Lin et 

al. (2019), Lemaire et al. (2019), You et al. 

(2019), Molchanov et al. (2019), C. Zhao et 

al. (2019), Ding et al. (2019), Z. Liu et al. 

(2019), Dong and Yang (2019), H. Wang et 

al. (2019), J. Yu and Huang (2019), Peng et 

al. (2019), C. Wang et al. (2019), Meng and 

Cheng (2020), S. Lin et al. (2020), Yawei Li 

et al. (2020), Kusupati et al. (2020), Guo et 

al. (2020), M. Lin, Ji, Zhang, et al. (2020), 

Chin et al. (2020), M. Lin, Ji, Wang, et al. 

(2020), Nasif et al. (2021), P. Wang et al. 

(2021), Z. Chen et al. (2021), and 

Abrahamyan et al. (2021). Most of these 

works cover pruning techniques based on the 

Hessian of the loss function, data-free 

pruning strategy, a low-cost hash function, 

soft weight-sharing, k-means scalar 
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quantization, 8-bit quantization of the 

parameters, stochastic rounding-based CNN 

training, a variational Bayesian, binarization, 

transformable architecture search, an 

incremental regularization scheme, binary 

search, ternary values, group sparsity, 

structured sparsity, generative adversarial 

learning, artificial bee colony algorithm, and 

the likes. The details of these techniques can 

be seen from the referred papers. 

Pruning necessitates numerous iterations 

before converging, which takes a lot of 

training time. It makes parameter fine-tuning 

exceedingly laborious and increases 

calculation complexity. Weight sharing 

would also somewhat lower the model's 

training accuracy (Long et al. 2019). 

However, pruning and quantization 

techniques typically offer a respectable 

compression rate without significantly 

degrading accuracy. These techniques are 

therefore preferable for applications that 

demand steady model performance (Cheng et 

al. 2020). 

The main goal of pruning strategies is to cut 

out links within neurons, which immediately 

shrinks the model and narrows the feature 

map. Channel removal may significantly 

alter the input of the subsequent layer. 

Additionally, pruning techniques are 

effective on basic networks, including VGG 

and AlexNet, but are ineffective for 

compressing more complicated networks 

(e.g., ResNets) with dimensionality-

dependent complex structures. 

Dimensionality dependencies cause ResNets' 

structure to be broken by filter pruning, 

making the network untrainable. 

Low Rank Approximation  

The reduction of the convolution layer would 

boost the rate of parameter compression and 

the overall speed, which serve as the 

inspiration for the low-rank factorization-

based technique (Cheng et al. 2020). Matrix 

decomposition is used to estimate the 

informative parameters of the DL model, and 

layer-by-layer low rank approximation is 

carried out. Reduction in the depth of 

convolutional layers indicates that the whole 

model is compacted because the convolution 

process dominates the computational load of 

DL models. Any weight vector in the 

convolutional layer can essentially be 

thought of as a four-dimensional tensor, and 

the existence of a significant amount of 

redundant information in the four-

dimensional tensors allows for the low-rank 

estimation.  

A learned full rank filter bank can be 

approximated as combinations of a rank-1 

filter basis to take advantage of the redundant 

representation in CNN convolutional layers. 

By utilizing cross-channel or filter 

redundancy to build a low rank basis of filters 

that are rank-1 in the spatial domain, 

Jaderberg et al. (2014) proposed strategies for 

accelerating convolutional layers. They used 

combinations of a rank-1 filter basis to mimic 

a learned full rank filter bank. The low-rank 

tensor decomposition approach devised by 

Tai et al. (2016) determines the precise global 

optimizer of the decomposition and removes 

redundant convolution kernels. Additionally, 

they introduced a technique for creating low-

rank constrained CNN models from scratch, 

which outperformed non-constrained 

versions, on the challenges of overfitting and 

local minima. In several instances, the 

constrained model had a higher training error 

but performed better generalization, which 

indicated space for advancement in both 

numerical techniques and CNN model 

regularizations. 

Y. D. Kim et al. (2016) introduced a one-shot 

compression approach using a single generic 

low-rank approximation method and a global 

rank selection strategy. The system 

comprised of Tucker decomposition on the 

kernel tensor, rank selection with variational 

Bayesian matrix factorization, and fine-

tuning to regain aggregated performance 

loss. However, the method was not 

thoroughly examined to see whether the 

chosen rank is truly the best or not, hence 

opportunity was left for further research. 

Diverging components are frequently found 

when training the convolutional tensors using 

mathematical optimization strategies. In 

order to achieve effective compression while 
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maintaining the functionality of the neural 

networks, Phan et al. (2020) studied 

degeneracy in the tensor decomposition of 

convolutional kernels, and offered a strategy 

that might stabilize the low-rank estimate of 

convolutional kernels. Swaminathan et al. 

(2020) proposed a sparse low rank approach, 

which sparsifies singular value 

decomposition matrices to obtain greater 

compression rate by keeping lower rank for 

insignificant neurons. Based on the factors, 

such as absolute weight, activations, or cost 

change, neurons were chosen for 

sparsification. Moreover, there was still an 

opportunity for further research on effective 

ways to combine numerous neuron selection 

criteria and calculate distinct sparsity rates 

for input and output neurons. 

Yin et al. (2022) introduced a budget-aware 

Tucker decomposition-based compression 

method that effectively determines optimal 

tensor ranks through one-shot training. They 

give the deconstructed DL models the ability 

to automatically learn the appropriate rank 

from data by incorporating the rank selection 

into the training process. A low-rank 

compression technique based on tensor-train 

decomposition on permuted kernel weight 

tensor with autonomous rank determination 

was proposed by Gabor and Zdunek (2022). 

Rather than starting from scratch, the 

approach enables the fine-tuning of neural 

networks using the deconstructed variables. 

To expand the current method to higher order 

CNNs and study the compression of bigger 

CNNs on the ImageNet dataset, more 

research is required. 

There other low rank approximation related 

approaches which can be seen from the works 

by X. Yu et al. (2017), Astrid and Lee (2017), 

H. Kim et al. (2018), Ma et al. (2019), T. Kim 

et al. (2020), H. Yang et al. (2020), Ruan et 

al. (2021), Chu and Lee (2021), Liebenwein 

et al. (2021), F. Yang et al. (2021), Yuchao 

Li et al. (2021), and Zhang et al. (2022). 

These works cover low rank approximation 

techniques based on 

CANDECOMP/PARAFAC (CP)-

decomposition and the tensor power, low-

rank kernel decomposition, channel grouping 

and decomposition, Bayesian optimization, 

global compression rate optimization, and the 

likes. The details of these techniques can be 

seen from the referred papers. 

Some low-rank approximation approaches 

compress each layer separately rather than all 

at once, which deforms each layer to a 

variable degree (Long et al. 2019). Therefore, 

to find a compromise between inference 

precision and training pace, especially when 

compression ratio is high, the approaches 

necessitate continual fine-tuning and cross-

validation. The lengthy training process and 

need for a large training set make fine tuning 

challenging.  

When end-to-end solutions to a problem are 

required, low-rank approximation and 

transferable convolutional filters techniques 

are typically taken into account. However, it 

is important to remember that because these 

strategies are orthogonal, they can be coupled 

to increase the gain. For instance, in models 

with both convolutional and fully connected 

layers, we can prune the fully connected 

layers and compress the convolutional layers 

using low-rank based methods, respectively 

(Cheng et al. 2020). 

Knowledge Distillation Approaches 

A technique called knowledge distillation 

(KD) involves training one classifier using 

the results from another classifier, that is, a 

compressed model (student) is trained under 

the guidance of a more sizeable pretrained 

model (teacher). This is widely regarded as 

an effective model compression technique. 

By learning the class distributions generated 

via softmax, the major goal of KD-based 

techniques is to transfer knowledge from a 

big teacher model into a small one, that is, to 

duplicate the performance of a larger model 

using a smaller neural network with fewer 

parameters (Cheng et al. 2020, Frosst and 

Hinton 2018, Hinton et al. 2015, Jung et al. 

2019). KD extends much beyond model 

compression, and it can be viewed as a 

general-purpose training approach that, in 

comparison to the conventional training 

method, is more robust to typical problems in 

real-world datasets (Sarfraz et al. 2020).  
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A Patient Knowledge Distillation technique 

was suggested by Sun et al. (2019) to 

compress an original huge BERT model 

(teacher) into a similarly potent lightweight 

shallow network (student). Through a multi-

layer distillation process, the technique 

encouraged the student model to gradually 

learn from and emulate the teacher model 

while enabling the extraction of rich 

information in the teacher's hidden layers. A 

problem with initialization mismatch did 

exist, though, and it was believed that 

pretraining BERT from scratch would fix it. 

Relative knowledge distillation, which 

considers the geometry of the relevant latent 

spaces and enables the transfer of knowledge 

regardless of dimension, was the focus of 

Lassance et al. (2020). They specifically 

presented a method of relative knowledge 

distillation that is graph-based and uses 

graphs to represent the geometry of latent 

spaces. However, more research needs to be 

done on finding more suitable graph 

distances, thoroughly examining how to 

grow the student network, and studying how 

to train a teacher network layer-by-layer. 

A parallel block-wise distillation approach 

was put forth by Blakeney et al. (2021) to 

quicken the distillation of complex DL 

models. The approach used depth-wise 

separable layers as the effective replacement 

block architecture, took advantage of local 

information to perform independent block-

wise distillation, and attempted to solve 

parallelism-limiting variables, including 

dependency, synchronization, and load 

balancing. For time series regression 

problems when the student and teacher are 

employing distinct architectures, Xu et al. 

(2022) presented a contrastive adversarial 

knowledge distillation. To automatically 

align the global feature distribution between 

student and teacher networks, they initially 

suggested adversarial adaptation. Then, 

taking care of the fine-grained features, they 

used a contrastive loss for instance-wise 

alignment between the student and teacher. 

Multi-staged knowledge distillation was a 

strategy that J. Kim et al. (2021) devised for 

condensing deep graph convolution networks 

(GCNs) to single-layered GCNs. While 

maintaining the multi-hop feature grouping 

of deep GCNs by a single effective layer, it 

distilled the knowledge of the aggregation 

from several GCN layers along with task 

prediction. Future research may include 

extending the method to take feature 

semantics into account. 

Weight pruning and knowledge distillation 

were integrated by Aghli and Ribeiro (2021) 

for CNN compression that operated on 

ResNet-based regression and classification 

networks. To prevent damaging the ResNet 

architecture's network structure, they only 

applied the weight pruning technique to a 

specific number of layers. After that, they 

added a loss function and a knowledge 

distillation architecture to condense the 

trimmed layers during the pruning. Future 

research is needed because the method has 

not yet been used on networks trained on 

larger datasets such as ImageNet or on 

architectures other than ResNet. 

In order to solve the problem of weight 

allocation in the knowledge distillation 

process, M. Zhao et al. (2022) brought 

knowledge distillation and weight 

quantization into the pruning process. The 

fully connected layer of the model, however, 

was not pruned to expedite processing, and 

owing to the experimental constraints, the 

approach had not been tested on a bigger 

dataset. Ji et al. (2022) suggested a KD and 

parameter quantization-based neural network 

compression technique for the detection of 

bearing faults. They also highlighted the 

challenge in the intricate selection and design 

of the student network's structure. Future 

study will be needed to determine the best 

way to choose and construct the structure of 

student networks automatically. 

There other knowledge distillation related 

approaches are based on sequence-level KD 

(Y. Kim and Rush (2016)), data-free 

knowledge distillation which required a little 

amount of additional metadata to be included 

(Lopes et al. (2017), utilization of KD and 

hint learning (G. Chen et al. (2017), 

condensation and passing of the knowledge 

from a pretrained DL model (Yim (2017), 
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maintenance of the pairwise similarities in its 

own representation space (Tung and Mori 

(2019)), examination of the unique instance 

of linear and deep linear classifier (Phuong 

and Lampert (2019)), soft target probabilities 

of the training model itself (Hahn and Choi 

(2019), acquired ensemble information to 

every compressed student model 

(Walawalkar et al. (2020), few-sample 

knowledge distillation (T. Li et al. (2020), 

learning-during-teaching-based knowledge 

distillation (Xu et al. (2021)), and frequency 

domain learning and optimal transport theory 

(Binh and Woo (2022)). The details of these 

techniques can be seen from the referred 

papers. 

Deeper models may become shallower 

through the use of knowledge distillation-

based methods, which also aid in lowering 

computational costs. However, given that the 

capacities of the teacher and student models 

may vary significantly, their presumptions 

are overly rigid (Cheng et al. 2020). KD can 

be used to enhance efficiency in applications 

with small or medium-sized datasets, but not 

with larger datasets. Additionally, knowledge 

distillation techniques can only be used for 

problems with a softmax loss function, which 

restricts their application.  

Universal Compression Approaches  

The joint probability distribution of the input 

source was presumed to be known by the 

decoder in many researches that addressed 

the non-universal DL model compression 

problem, which is not always the case in real-

world situations. As a result, universal DL 

model compression was developed, and its 

codes feature a mechanism that enables it to 

adjust its probability model to a variety of 

various input distributions. Any form of 

neural network should be compatible with the 

strategy; thus, it is not necessary to determine 

their distribution beforehand.  

By using universal vector quantization and 

universal source coding, Choi et al. (2020) 

established universal DL model compression. 

They looked into universal randomized 

lattice quantization of DL models, which 

uniformly randomizes DL model weights 

prior lattice quantization and may operate 

nearly optimally on any source without 

requiring knowledge of its probability 

distribution. They also provided a technique 

for recovering the performance loss 

following quantization by fine-tuning vector 

quantized DL models. Theoretically, vector 

quantization offers a superior rate-distortion 

trade-off. In reality, the benefit of vector 

quantization is constrained for compression 

of a finite amount of data by the codebook 

overhead, which grows significantly as 

dimension rises and eventually takes over as 

the main factor degrading the compression 

ratio. 

Wiedemann et al. (2020) proposed another 

universal DL model compression strategy, 

DeepCABAC—a general-purpose 

compression approach. The strategy is based 

on applying context-based adaptive binary 

arithmetic coder (CABAC) to the DL model 

parameters. Initially developed for the 

H.264/AVC video coding standard, CABAC 

has become the industry standard for efficient 

video compression. DeepCABAC used a 

quantization method that considered the 

effects of quantization on DL model 

performance while simultaneously 

minimizing a rate-distortion function. 

Multimodal Compression Approaches 

Deep learning-based artificial intelligence 

must gather and assess multimodal input to 

develop in comprehending the world around 

it. On the one hand, multimodal deep learning 

must provide models that can correlate and 

evaluate data from several modalities. On the 

other hand, the growth of multimodal data 

outpaces that of computing device speed. As 

a result, multimodal data fusion deep learning 

models trained on existing architectural 

devices may not be able to properly handle an 

increase in the volume of multimodal data 

during the feature structure learning phase, 

necessitating the use of multimodal 

compression techniques. The majority of 

studies on compression methods had focused 

on deep learning problems for a single 

modality, while very few studies have 
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attempted to compress DL models in 

multimodal fusion environments. 

Using the deep autoencoder architecture, Ben 

Said et al. (2017) reported a hybrid 

compression and classification strategy of 

electroencephalogram and electromyography 

signals. The encoder-decoder layers in the 

architecture were created to retrieve 

discriminant features from the multimodal 

data representation and to recover the data 

from the latent representation. In order to 

accommodate multimodal data at the encoder 

layer, reconstruction and retrieval were 

included to the autoencoder. However, for 

low compression ratios, the strategy is less 

effective. 

The merging of multimodal inputs was 

presented as a compression task by Sahu and 

Vechtomova (2021), where the goal was to 

preserve as much data from the various 

modalities as feasible. They put forth two 

adaptive methods, Auto-Fusion and GAN-

Fusion, that are designed to combine 

multimodal inputs successfully while 

minimizing shallowness and computing 

overhead issues. To come to a firm 

conclusion, nevertheless, more extensive 

experimentation is needed to investigate the 

consequence of adding more modalities and 

reliability of multimodal features. 

PERSPECTIVES, CHALLENGES, AND 

OPPORTUNITIES  

Perspective 

In DL model compression techniques, 

researchers have classified the methods in 

different perspective. There are those who 

classified the compression strategies base on 

the characteristics or nature of the strategies. 

For instance, parameter pruning based  

method, low-rank factorization, knowledge 

distillation (KD), and transferable 

convolutional filters (Cheng et al. 2020). 

Some have classified the strategies based on 

whether they are application specific or 

universal DL model compression techniques. 

Others have categorized the strategies in 

terms of the dimensionality, that is, whether 

they are for single modal or multimodal DL 

model compression techniques. In this work, 

we have reviewed the works from all those 

viewpoints of categorization to provide a 

broader exploration of available 

opportunities. 

Multimodal data fusion is perceived to be 

very crucial for robust prediction and 

compensation in case of missing data from 

one of the modalities. They also provide a 

deeper comprehension of the underlying 

behavior. For instance, the healthcare 

provider typically uses several physiological 

parameters to make a precise diagnosis, and 

in studies of emotional computing, they 

combine physiological (heat rate, 

temperature, and the like) and physical (facial 

expression, voice, and the likes) modalities to 

come up with a good prediction of 

somebody’s emotional state. These 

applications necessitate multimodal data 

processing, which lead to a significant 

increase in storage and processing power. For 

these applications to be used while 

performing deep learning network 

miniaturization, DL model compression is 

quite important.  

Pruning and quantization techniques 

typically offer a respectable compression rate 

without significantly degrading accuracy. 

These techniques are therefore preferable for 

applications that demand steady model 

performance (Cheng et al. 2020). It is also 

important to remember that because these 

strategies are orthogonal, they can be coupled 

to increase the gain. For instance, in models 

with both convolutional and fully connected 

layers, we can prune the fully connected 

layers and compress the convolutional layers 

using low-rank based methods, respectively. 

Challenges 

DL models support many real-world 

applications, including scene monitoring, the 

plethora of biological sensors used in medical 

diagnostics, mobile phones and apps, robotic 

devices, self-driving vehicles, and similar 

technologies. However, there are stringent 

restrictions for physical size and energy 

consumption for these applications (Long et 

al. 2019). Regarding energy use and 
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bandwidth utilization, data delivery should 

be as effective and optimized as feasible. 

Deep networks' learning capabilities are 

significantly impacted by storage and 

computational costs. Hardware, limitations in 

many small platforms such as mobile, 

robotic, and self-driving cars, continue to be 

a significant obstacle to the expansion of 

deep CNNs. 

Even though the data have diverse properties, 

using multiple modalities can provide a 

deeper comprehension of the underlying 

behavior. Its applications can be made in a 

variety of contexts, including the health 

sector, affective computing, and robotics. For 

instance, the healthcare provider typically 

uses several physiological parameters to 

make a precise diagnosis. There are other 

uses as well, such as emotional computing, 

which combines physiological and physical 

modalities and necessitates multimodal data 

processing, requiring a significant increase in 

storage and processing power, because these 

applications produce data volumes that are 

increasing faster than the speed of computing 

hardware.  

Compression strategies involving layer 

compression poses additional difficulties that 

result in varying degrees of deformation in 

each layer, making training challenging and 

decreasing accuracy. Most of the cutting-

edge methods currently in use are based on 

carefully thought-out CNN models, which 

have limited flexibility when it comes to 

changing configurations such as network 

architectures and hyper-parameters. 

Even though compression techniques have 

achieved significant success, the main 

obstacle to adoption is still the black box 

mechanism. For instance, it is unclear why 

particular neurons or connections are pruned. 

Additionally, there are currently a variety of 

evaluation techniques used for evaluating the 

compression and acceleration of deep 

network models, and no standard 

measurement technique exists (Long et al. 

2019).  

In case of pruning techniques, they are 

effective on basic networks, including VGG 

and AlexNet, but are ineffective for 

compressing more complicated networks 

(e.g., ResNets) with dimensionality-

dependent complex structures. 

Dimensionality dependencies cause ResNets' 

structure to be broken by filter pruning, 

making the network untrainable. 

In case of low-rank approximation 

approaches, some of them compress each 

layer separately rather than all at once, which 

deforms each layer to a variable degree (Long 

et al. 2019). Therefore, to find a compromise 

between inference precision and training 

pace, especially when compression ratio is 

high, the approaches necessitate continual 

fine-tuning and cross-validation. The lengthy 

training process and need for a large training 

set make fine tuning challenging.  

Other challenge can be pointed out when 

using KD compression approach. Deeper 

models may become shallower through the 

use of KD-based methods, which also aid in 

lowering computational costs. However, 

given that the capacities of the teacher and 

student models may vary significantly, their 

presumptions are overly rigid (Cheng et al. 

2020). KD can be used to enhance efficiency 

in applications with small or medium-sized 

datasets, but not with larger datasets. 

Additionally, knowledge distillation 

techniques can only be used for problems 

with a softmax loss function, which restricts 

their application.  

Opportunities 

In supporting many real-world applications 

using DL models, in small platforms with 

hardware limitations there are still future 

research opportunities available. There are 

issues that need to be solved, such as how to 

utilize the limited computational source to its 

greatest potential and how to create unique 

compression techniques for such systems 

(Cheng et al. 2020). The DL models can be 

compressed and included in medical 

diagnostic tools, mobile phones and apps, 

robotic devices, self-driving vehicles, and the 

likes. 

Multimodal data fusion can provide a deeper 

comprehension of the underlaying behaviour 

or scenario at hand. They can also produce 
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data volumes that are increasing faster than 

the speed of computing hardware, which 

necessitate multimodal DL model 

compression. However, there hasn't been 

much research on the issue of multimodal DL 

model compression in the context of 

health/mHealth, affective computing, and 

similar topics. These kinds of applications 

have a significant demand for multimodal 

compression techniques in order to speed up 

network computation and make it easier to 

use compact platforms. There is an 

opportunity for researches to modify 

successful single-modality compression 

techniques to fit into these multimodal data 

environments.  

In the case of layer compression, we have 

seen that it poses additional difficulties that 

result in varying degrees of deformation in 

each layer, which makes training challenging 

and decreasing accuracy. With this challenge, 

there is a research opportunity to find an 

adaptable compression technique depending 

on the various layer situations.  

Most of cutting-edge methods currently in 

use are based on carefully thought-out CNN 

models. However, CNN models have limited 

flexibility when it comes to changing 

configurations such as network architectures 

and hyper-parameters. Future work should 

offer more logical configuration options for 

the compressed models to perform more 

challenging tasks. 

There is also an opportunity of exploring the 

interpretability of knowledge behind 

significant success of DL model 

compression. It is still the black box 

mechanism, for example, it is unclear why 

pruning particular connections or neurons 

(Cheng et al. 2020). Additionally, future 

studies must put out a single evaluation 

standard that can be used for various models 

of various data sets. 

CONCLUSION 

In this paper, we examine various DL model 

compression techniques with a goal of 

exploring over numerous DL model 

compression methods that have advanced in 

a number of applications. We used the 

articles for the review based on foundational 

studies for DL model compression 

techniques, including early development and 

ground-breaking DL model compression 

algorithms, as well as the recent studies 

relevant to the subject. Techniques for data 

compression can be categorized based on 

their characteristics: parameter pruning and 

quantization, low-rank factorization, 

knowledge distillation (KD), universal 

compression, and multimodal compression-

based approaches. Most of the articles related 

to DL model compression techniques are 

discussing pruning and quantization-based 

approaches (about 58% of the reviewed 

articles in this paper). Its popularity comes 

from the fact that, pruning and quantization 

of the DL models is one of the earliest 

approaches to be used in DL model 

compression techniques. However, it is worth 

noting that, the majority of these techniques 

operate independently, but may generate 

outstanding results if integrated.  

We have discussed the challenges, 

opportunities, and developments in DL 

model compression strategies, and realized 

that the field is still expanding, particularly in 

applications involving multimodal fusion. 

Multimodal deep learning is generating 

amounts of data that are growing faster than 

the speed of computing hardware. As a result, 

multimodal data fusion deep learning models 

trained on current architectural devices may 

not be able to effectively handle an increase 

in the volume of multimodal data throughout 

the feature structure learning process. 

Multimodal DL model compression 

techniques are, thus, one of viable areas for 

further study in addressing the problem.  
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