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A comprehensive, multidisciplinary analysis of the latest developments 

in digital agriculture is conducted with the use of artificial intelligence 

(AI), machine learning (ML), and the Internet of Things. By automation 

and the use of modern, scalable technology solutions that reduce risks, 

support sustainability, and give farmers predictive advice, traditional 

agricultural processes are being updated and improved to maximize 

production. In this paper, the applications of AI, IoT, and ML in 

agricultural production systems are discussed in detail. The 

applications that have been explored can be broadly categorized into 

three areas: soil management, livestock management, and crop 

management. Weed detection, disease identification, and yield 

forecasting are some of the applications for crop management. Two 

applications of livestock management are animal welfare and 

production. The use of AI, IoT, and ML will make it possible to collect 

data from agricultural activities for analysis and the extraction of 

insightful knowledge, facilitating prompt and accurate decision-

making to increase agricultural productivity. This will result in farming 

that is more exact and efficient while requiring less labour and 

producing high-quality produce. 
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INTRODUCTION 

The agriculture industry plays a major role 

in the economic growth of any given 

nation. With population growth, climate 

change occurring more frequently, and 

resources becoming scarce, it is becoming 

more challenging to feed the world's 

population. A cutting-edge method to solve 

current concerns with agricultural 

sustainability is smart farming, often 

known as precision agriculture. According 

to Fountas et al., 2020, the technology's 

revolutionary motor is machine learning, or 

ML. It can now be used to teach the 

machine without explicit programming. 

Machine learning and farm equipment with 

Internet of Things (IoT) capabilities will be 

major forces behind the next agricultural 

revolution. 

The digital revolution is changing 

agriculture by using information and 

communication technologies (ICTs) to 

increase production and decision-making 
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through automated tools, sophisticated 

technology, and ICTs. Increased yields, 

cheaper prices, and fewer environmental 

effects are the outcomes of emerging 

technologies in agriculture, including 

robotics, artificial intelligence, machine 

learning, big data analytics, remote sensing, 

and the Internet of Things (IoT). Data-

driven solutions open the door to 

production potential that is sustainable and 

resource-efficient. Technologies for 

managing precision agriculture enable 

growers to profit from the recent big data 

revolution. Systems for data mining sift 

through enormous amounts of data in 

search of trends and answers. They assist 

farmers in managing the unpredictability of 

their agricultural systems by adjusting 

inputs to produce the intended outcomes 

(Fountas et al., 2020). Devices on farms 

can now remotely measure a variety of data 

kinds thanks to the Internet of Things, and 

the farmers may get this information 

instantly. Proximal sensors, drones, and 

satellites are examples of agricultural 

remote sensing technology (Oza et al., 

2008).  

These sensors enable early decisions on 

fertilization, irrigation, and pest control by 

utilizing the reflectance characteristics of 

plants to determine biomass, yield, acreage, 

vegetative vigor, drought stress, and 

phenological development. Since very 

high-resolution satellite data with different 

viewing geometry, techniques, spatial 

resolutions, and spectral ranges are 

commercially available, new views on the 

use of earth observation products in 

agricultural monitoring have emerged (Oza 

et al., 2008). Remote sensing instruments 

that operate at low altitudes, such as 

Unmanned Aerial Vehicles (UAVs), can 

gather comparable data. These devices 

capture a broad range of electromagnetic 

spectrum using thermal, hyperspectral, and 

multispectral cameras. These photos have a 

far lower coverage area than satellite 

products, despite the fact that data retrieval 

is less weather-sensitive.  

 

IoT data, such as multispectral sensors and 

satellite data hubs, is used by machine 

learning algorithms to create machine 

learning models. Machine learning 

techniques use training data to teach 

algorithms how to accomplish specific 

tasks. A practice-enhancing performance 

indicator is used to assess the effectiveness 

of a task-specific machine learning model. 

ML models and algorithms are assessed 

using a variety of statistical and 

mathematical approaches. The trained 

model can be applied to test data to perform 

classification, prediction, or clustering after 

the learning process (Liakos et al., 2018). 

Supervised and unsupervised learning are 

the two types of learning that occur in 

machine learning. The learning models are 

divided into four categories: dimensionality 

reduction, regression, clustering, and 

classification. Artificial intelligence (AI)-

enabled solutions use machine learning 

algorithms in conjunction with data from 

IoT sensors for predictive analytics and 

precision farming. 

Despite any conventional perceptions 

people may have of agricultural practice, 

agricultural science diligence today is more 

exact, precise, data-driven, and aggressive 

than ever. Nearly every industry, including 

"smart agriculture or precision agriculture," 

has been transformed by the Internet of 

Things (IoT) technologies other examples 

include smart cities, smart health, smart 

grids, and smart homes (Liakos et al., 

2018), and (Mustafa et al., 2021). To boost 

the amount and quality of crop and animal 

production from farmland to meet the rising 

food demand, machine learning would be 

applied by utilizing IoT data analytics in 

the agricultural industry (Mustafa et al., 

2021). These groundbreaking discoveries 

rely on conventional farming practices and 

offer the greatest prospects, but they also 

have a number of disadvantages. Precision 

agriculture strives to achieve optimal 

results from precise inputs by arming 

farmers with technology. Smart sensors, 

actuators, robotics, drones, satellite images, 

and other significant technological 
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advancements have all been made possible 

by the Internet of Things (IoT), which has 

helped the agricultural sector expand 

(Mustafa et al., 2021). These elements are 

crucial and play a Critical role in gathering 

real-time data and making decisions 

accordingly without human assistance. 

artificial intelligence. The automation of 

intelligent behaviour, which benefits our 

world and aids farmers in numerous ways 

and features of the crop and animal yield 

production. 

The Fourth Industrial Revolution (4IR) in 

agriculture has resulted in several 

innovations, which are together referred to 

as precision agriculture. Modern 

technology makes it possible to operate 

precisely, efficiently, and effectively 

process all data, among other things that 

will elevate agriculture to a new level. 

Accuracy and correctness are implied by 

the term "precision agriculture" (Liakos et 

al., 2018). With the premise of carrying out 

interventions in the correct place, with the 

right intensity, and at the right time, 

precision agriculture's primary goal is to 

adapt operations to the actual geographical 

conditions and aid to guarantee global food 

security (Mustafa et al., 2021).  

One of the modern farming methods, 

precision agriculture gathers, processes, 

and analyses data to increase agricultural 

yield while consuming less resources. 

Agriculture contributes significantly to the 

Gross Domestic Product (GDP) of our 

country. Precision agriculture uses wireless 

sensor networks (WSN) and the Internet of 

Things (IoT) to build smart farm 

management systems (Madhumathi, et al., 

2022). Farmers may access field data 

instantly thanks to the Internet of Things 

(IoT) in agriculture through the usage of 

decision support tools. IoT technologies in 

agriculture change the game since they 

monitor and send data without the need for 

human intervention. Agricultural IoT 

systems are built using sensors and 

actuators that sense and respond to a variety 

of inputs and provide instantaneous 

feedback (Madhumathi, et al., 2022). 

The goal of precision farming is to 

maximize crop yields while minimizing the 

amount of resources used. It involves 

performing agricultural operations 

accurately and responsibly. Sensor nodes 

are positioned in the fields to gather data 

about the farm and analyse it analytically in 

order to boost crop productivity 

(Madhumathi, et al., 2022). The base 

station, which connects these nodes, relays 

the gathered data to the primary server and 

then to other platforms for processing and 

archiving. Additional data processing and 

machine learning techniques are applied to 

gain insight from the data. 

 

 
  

 

Figure  1: Overview  of  Major  Components  in  Precision  Agriculture (Madhumathi,  et  al.,
2022).
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Additionally, Precision agriculture, often 

known as digital agriculture or data-driven 

sustainable farm management, is a 

technology-enabled sustainable farm 

management approach. Basically, it 

involves implementing contemporary 

software tools, embedded smart devices, 

and information technologies for Figure 1 

depicts agricultural decision-support 

systems aiding in precision agriculture 

(Sharma et al., 2020). 

 
Figure 2: Precision Agriculture Overview (Sharma et al., 2020). 

METHODS AND MATERIALS  

Literature Review 

Agriculture has numerous difficulties 

ranging from Crop disease infestations, 

poor storage management, pest, and weed 

control, and ineffective irrigation systems 

are a few of them. The population of the 

globe is growing quickly, and with it, so 

does the demand for food. Farmers' 

traditional methods of dealing with 

agricultural problems are unable to meet 

the growing demand. IoT, machine 

learning, and artificial intelligence can help 

with these challenges by maximizing 

production to meet the growing demand. 

The applications of artificial intelligence, 

machine learning, and the internet of things 

in precision agriculture are reviewed in the 

following literature. 

Internet of Things Applications for 

Precision Agriculture 

Smart Irrigation Techniques 

Water is a scarce resource that has an 

impact on agricultural output because it is 

required for crop growth and development. 

Water requirements vary due to the 

agricultural growth cycles of various crops. 

Using IoT, proper irrigation methods may 

be selected, hence reducing flood irrigation 

and solving water scarcity. This in turn 

improves crop lodging resistance as well as 

productivity. In Khriji, et al.,2021 a cloud-

based smart irrigation system was 

designed. This system uses sensors to 

collect moisture data from the soil, then 

transfers the data to the cloud via an 

Arduino, where it is stored and farmers 

access the data through a mobile 

application. The information proprietor 

makes an order, and the fundamental 

activity is done based on the results. The 

method ensures efficient use of water and 

saves farmers time by allowing remote 

monitoring of their fields; nevertheless, its 

large-scale implementation would be more 

expensive.  Hou et al., 2012 designed an 

intelligent irrigation system for orchards 

that considers both the large-scale 

development paradigm of modern orchards 

and the precision agricultural construction 

needs. The system used ZigBee Wireless 
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Sensor Networks (WSN) to communicate 

data to the gateway, which then sent the 

data to the cloud through GPRS. This 

system covers a broad area, making it 

suited for large-scale implementation, and 

the sensor nodes consume less energy. 

In view of recent advancements in IoT and 

WSN technologies that can be utilized in 

the construction of these systems to support 

precision agriculture, (Garcia et al., 2020) 

provided an extensive assessment with the 

goal of summarizing the present state of the 

art concerning smart irrigation systems. 

Irrigation systems' monitoring of soil 

characteristics, weather, and water quantity 

and quality were the variables selected. An 

overview of the most widely used wireless 

technologies and nodes, along with their 

pros and cons, was also provided. 

Environmental Parameter Monitoring 

Environmental factors that are vital to crop 

growth are monitored via sensors. The air 

temperature, humidity, light intensity, soil 

temperature, and soil pH are these 

characteristics. The sensors then send the 

data they have acquired to the cloud. 

ZigBee ad hoc network technology was 

used in (Li et al., 2021) to gather 

information from several sensor nodes in 

the WSN. This allowed for the real-time 

collection and upload of environmental 

data, including carbon dioxide, 

temperature, and humidity. By reducing 

disease and insect pests, this approach 

minimizes the need for pesticides and 

fertilizers while still providing high-quality 

produce. 

For a farm, (Hwang et al., 2010) created an 

environmental monitoring system that uses 

GPS, WSN, and solar power to gather, 

transmit, store, and evaluate agricultural 

environmental data. The sensor nodes of 

the system have a long lifespan due to 

energy collection, which allows them to 

produce high-quality food without being 

limited by battery use. 

A precision agriculture decision support 

system was created by ref   where a network 

of Internet of Things devices with sensors 

for soil moisture, temperature, and air 

quality Rain was prepared to gather real-

time moisture information about a field to 

make the best crop decision, Akhter, 2021 

This research helped to increase crop 

output by maximizing the use of fertilizers 

and water. Akhter, 2021 also proposed an 

IoT framework in the area of precision 

agriculture, Different sensors were used by 

the proposed system to measure soil 

moisture, temperature, and humidity. All of 

these sensor data were downloaded via a 

raspberry pi and immediately uploaded to a 

cloud server, where the readings are further 

evaluated to raise crop productivity. 

Livestock monitoring 

Farmers may ensure their animals' health 

by using sensors to gather data from them 

about their physiological and nutritional 

status. A ZigBee-based system for 

monitoring animal health has been 

developed (Kumar and Hancke, 2014). It 

can identify vital information about the 

monitored animal, including its 

environment, chewing habits, body 

temperature, heart rate, and temperature. It 

can also assess the values detected based on 

indices of humidity and temperature. 

For effective grazing and pasture 

management conditions, it is crucial to 

comprehend the mechanisms by which 

livestock grazing behavior modification is 

enabled (Singh et al., 2019) (Vrchota, 

2022). Monitoring the animal is crucial, 

and it also makes accurate grazing 

management easier. Small adjustments in 

location, feeding strategy, or other 

behaviors can have a significant effect on 

the flock's overall health and welfare if 

each animal in the flock is closely 

observed. When an animal behaves 

differently than what is deemed "normal" 

for that specific animal, the farmer is 

alerted and can take the necessary action. 

Agricultural Uses of Artificial Intelligence 

and Machine Learning 

Yield Prediction 

Accurate prediction of agricultural yields 

before harvest offers significant benefits. It 

empowers farmers to reduce production 

costs and increasing crop yields. This 
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foresight in turn is invaluable for 

governments as it enables them to 

proactively develop programs, 

transportation logistics planning, establish 

sound purchasing mechanisms, allocate 

storage capacity and manage the nation’s 

financial liquidity before crops reach the 

market, Sinwar et al., 2020. The research 

by Aggarwal et al, 2021 presented a novel 

ML application for efficiently counting 

coffee fruits on trees in a non-destructive 

manner. The system not only automates the 

counting process but also divides the fruits 

into three categories: harvestable, not 

harvestable and those at an irrelevant stage 

of maturation. Furthermore, the approach 

calculates the weight and maturity 

percentage of the fruits. This provides the 

coffee farmers with useful information for 

optimizing economic returns and 

effectively managing agricultural 

operations. Lu et al., 2018 developed a 

novel algorithm for detecting immature 

green citrus fruits in the tree canopy in real 

outdoor environments. This method 

included two approaches: shape analysis to 

improve fruit detection and texture to 

reduce false positives. The study aimed to 

provide growers with early yield forecasts, 

allowing them to make informed decisions 

about site-specific grove management, 

thereby increasing both fruit production 

and profitability. In (Ali et al., 2016) the 

scientists developed models that predict 

grassland biomass using multiple linear 

regression (MLR), artificial neural network 

(ANN), an adaptive neuro-fuzzy inference 

system (ANFIS). The simulations were 

based on data gathered by space-borne 

sensors. (Ramos et al., 2017) proposed a 

method for detecting tomatoes in fields 

using unmanned aerial vehicle (UAV) 

equipped with cameras capturing red-

green-blue (RGB) images. Their approach 

used techniques like Bayesian information 

criterion (BIC), Expectation Maximization 

(EM), self-organizing map (SOM). Table 1 

below summarizes the above yield 

prediction papers.

 

Table 1: Yield prediction Table 

Article Crop IoT Hardware Model Results 

Ramos et al., 

2017 

Coffee The camera of a 

mobile device 

SVM ripe:82.5–87.8%  

Semi-ripe:68.25–85.3% 

Unripe:76.9–81.3 %  

Sengupta et al., 

2016 

Lemons Camera SVM 80.4% accuracy 

Scurlock, 2002 Grass Spaceborne 

sensors 

ANN 

ANFIS 

Moorepark: R2 = 0.85, 

RMSE = 11.07 

Grange: R2 = 0.76, RMSE 

= 15.35 

Senthilnath et al., 

2016 

Tomatoes Camera using 

UAV 

Clustering 

EM 

Recall: 0.6066 

Precision: 0.9191 

F-Measure: 0.7308 

Disease Detection 

Pest and disease control is a significant 

challenge in agriculture, both in open fields 

and greenhouses. Traditional approach 

relies on regular spraying of insecticides 

across entire crop area. While effective, this 

approach has significant financial and 

environmental drawbacks. These include 

pesticide residues in crops, groundwater 

contamination and harm to local wildlife 

and ecosystems. Precision agriculture 

provides a promising alternative, 

integrating IoT, machine learning, and 

artificial intelligence (AI) to optimize 

pesticide application based on specific 

demands and real time data. This section 

discusses how this combination of 

technologies can be used for disease 

detection in crops. (Truong et al., 2017) 
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proposed an IoT-based system for detecting 

agricultural fungal diseases. This system 

comprises of multiple sensors that collect 

real-time environmental data which is then 

transmitted to the cloud for storage and 

analysis. The system utilizes a SVM 

algorithm to predict weather conditions 

based on collected data. Furthermore, the 

authors highlighted the potential of 

Integrating IoT with image processing for 

more accurate disease detection.  (Ebrahim 

et al., 2017)   Investigated the use of SVM 

to detect thrips in crop canopy photos. A 

novel image processing technology was 

used to detect possible parasites on 

strawberry plants. These parasites were 

subsequently classified using SVM method 

which incorporated a modified kernel 

function. (Krishna et al., 2019) 

Implemented a system to detect different 

plant diseases and automate responses. 

Image recognition is employed to identify 

various plant diseases and upon detection, 

an SMS alert is sent to the farmer, the 

system triggers pesticide spraying 

automatically using NodeMCU ESP8266. 

The system leverages transfer learning, a 

technique which has also been employed in 

the studies conducted in (Ramcharan et al., 

2017), Too et al., 2019. Transfer learning is 

a technique that pre-trains a model on a 

large dataset and then fine-tunes it for a 

specific task like plant disease detection. 

(Hasan et al., 2021) demonstrated that 

transfer learning outperforms a CNN model 

trained from scratch on smaller datasets. 

Another model is the Neural Network 

(NN), which is widely used and 

recommended for plant disease 

identification. Inspired by the human 

nervous system, NN can learn and 

generalize patterns, making it more 

effective for analyzing complex data like 

hyperspectral images. Studies presented by 

Zhu et al., 2017 shown that NNs can 

achieve a higher accuracy compared to 

other ML models in diagnosing TVM. The 

Back-Propagation Neural Network 

(BPNN) model obtained 95% accuracy, 

while the chemometric models achieved 

80%. Using a new pattern recognition 

technology called the Artificial Intelligent 

Nose, it is feasible to build pattern 

recognition methods like random forest and 

support vector machines. 

 
Figure 3: Disease Detection using ML (Nawaz, 2022). 

Weed Detection 

Weed control which is often cited as the 

main crop hazard by many farmers remains 

a significant challenge in agriculture. 

Distinguishing weeds from crops is crucial 

for sustainable practices. Again, ML 

algorithms and sensors can accurately 

detect and distinguish weeds cost 

effectively without environmental harm. 

Leveraging ML for weed detection can 

significantly reduce herbicides dependance 

by facilitating tools and robots to remove 

weeds. Several studies demonstrate the 

potential of this approach. Liakos et al., 

2018 developed a novel approach for 

identifying Silybum marianum, a weed that 

is difficult to eradicate and known to 

decrease crop yields.  Pantazi et al., 2017, 

employed ML and hyperspectral imaging 

to develop a system for crop and weed 
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identification. The focus was mainly to 

detect maize (Zea mays) as a crop plant and 

Ranunculus repens as a weed for economic 

and environmental reasons. In another 

study (Pantazi, et al., 2016), scientists used 

SVM to detect weeds in grassland crops. 

Table 2 below summarizes the above weed 

detection papers.  

 
Table 2: Weed detection Table 

Paper Functionality Model Result 

Liakos et al., 2018 Silybum marianum 

detection and mapping 

ANN/CP 98.87% accuracy 

Pantazi et al., 2017 Identification of Zea 

mays and weeds 

ANN 

SOM 

MOG 

Zea mays: SOM = 100%, MOG = 

100%  

Weed species: SOM- 53–94% 

accuracy 

MOG = 31–98% 

Pantazi, et al., 

2016 

Grass vs. weed 

classifications 

performance reporting 

SVM 97.9% Rumex classification6 

94.65% Urtica classification  

95.1% mixed weed and weather 

 
Figure 4: Weed Detection in Fields (Pantazi, 2016) 

Crop quality 

Machine learning is also being used to 

identify and classify various elements of 

crop quality, resulting in higher prices and 

less waste as in the studies conducted by 

Klompenburg et al., 2020); Ramesh, 2020; 

and Binch et al., 2017. A study by Zhang et 

al., 2017)  developed a method for 

identifying and classifying foreign 

materials trapped in cotton lint during 

harvesting. The study's goal was to increase 

quality and minimize fiber damage. 

Another study (Hu et al., 2017)  employed 

an integration of ML and hyperspectral 

imaging to distinguish between types of 

Korla pears based on their calyx 

characteristics. The authors of (Maione et 

al., 2016)  presented a method using ML on 

chemical components to predict and 

classify the geographical origin of rice 

samples from two distinct regions in Brazil. 

Their research identified four key chemical 

elements crucial for this classification; Cd, 

Rb, Mg, and K. 

Livestock Management 

The application of IoT, ML, and AI in 

livestock falls in two sub-categories; 

animal welfare and livestock production. 

Animal welfare is concerned with the 

health and welfare of animals, with IoT, 

ML, and AI being used to monitor animal 
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behavior for disease diagnosis. In livestock 

production, the main scope of IoT, ML, and 

AI applications is to provide farmers with 

accurate insights and predictions of 

economic balances for farmers based on 

production line monitoring. 

Animal welfare 

In the first study (Dutta et al., 2015) , data 

gathered by wearable collar devices with 

magnetometers and three-axis 

accelerometers are used to classify cattle 

behavior and predict estrus cycles, as well 

as detect changes in feeding patterns. It was 

proposed in the second paper (Pegorini et 

al., 2015)  to identify and classify chewing 

behaviors in calves. The scientists 

constructed a system using ML to combine 

data from food supplements like hay and 

ryegrass chewing with behavior data like 

ruminating and inactivity. Optical FBG 

sensors were used to collect data. Another 

work (Matthews et al., 2017)   proposed an 

automated ML based system to track 

animal activities like standing, moving, 

feeding, and drinking. 

Livestock production 

This section explores how ML can be used 

to enhance livestock production economic 

efficiency. In this category, three articles 

deal with cattle and one with eggs. 

(Yerima, 2005)  advocated utilizing milk 

fatty acids to predict rumen fermentation 

trends. To properly anticipate rumen 

fermentations, which are critical for 

evaluating milk output diets. In this 

investigation, milk fatty acids accurately 

predicted rumen volatile fatty acid molar 

ratios. The following study (Liakos, 2018)  

proposed an SVM-based technique for 

early detection and warning of potential 

issues in commercial egg production, 

allowing for timely intervention and 

improved efficiency. A method for 

calculating bovine weight trajectories over 

time was developed (Im et al., 2015). 

Weight estimation is critical for breeders. 

Derived from SVR models and zoometric 

data, the last section predicts carcass 

weight for beef cattle of the Asturiana de 

Los Valles breed. The technique can 

predict carcass weight 150 days in advance. 

(Wang et al., 2018) used convolutional 

neural networks (CNNs) to recognize pig 

faces in digital pictures. Researchers 

wanted to identify animals without 

employing RFID tags, which cause stress to 

animals, have a limited range, and take time 

to scan.

 
Table 3: Livestock production  

Paper Functionality Hardware Algorithm Results 

Dutta et al., 

2015 

Cattle behavior 

classification 

Three-axis 

accelerometer 

and 

magnetometer 

Bagging 

with tree 

learner 

96% accuracy 

Pegorini et al., 

2015 

Calves' chewing 

patterns 

identification and 

categorization 

Fiber Bragg 

Grating 

sensors 

Decision 

Tree 

96% accuracy 

Matthews et al., 

2017 

 

 

 

Animal tracking 

and behavior 

annotation of pigs 

for welfare and 

health monitoring 

Cameras Gaussian 

Mixture 

Models 

Animal tracking: MOTP = 

0.89 accuracy behavior 

annotation: feeding: 

control R2 = 0.86, 

treatment R2 = 0.49 

 

Soil Management 

Good soil management meets 

essential plant needs. Plants need to have 

access to the required quantities of water, 

nutrients, temperature, and oxygen 

(Yerima, 2005) . Soil data can be collected 
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using wireless sensor nodes put on-site. 

The collected data can then be incorporated 

into supervised Machine Learning 

algorithms to predict and analyze soil 

properties, as well as identify soil types. 

The agricultural soil properties which can 

be predicted include; soil moisture content, 

temperature, and soil drying conditions 

(Liakos, 2018)  Soil properties prediction 

and identification is important because it 

influences crop selection, seed selection, 

land preparation, fertilizer or manure type 

selection, and crop yield (Beck et al., 2006) 

, which reduces unnecessary fertilizer 

expenditures, eliminates the need for soil 

analysis experts, increases profitability, and 

improves soil health.  (Wang et al., 2016)   

deployed Extreme Learning Machine 

(ELM) to predict nutrient levels in soilless 

cultivation, reducing reliance on manual 

measurements. The model was used by the 

authors to calculate the amounts of SO2 4 

and H2PO4 in a nutrient solution. The 

authors reported an average RMSE for SO2 

4 predictions of 1.2414 and 0.8892 for 

H2PO4 predictions of 0.8892. Park S (Im et 

al., 2016) used machine learning 

techniques to estimate soil moisture using 

MODIS data. AMSR2 soil moisture data 

were downscaled to 1KM using Random 

Forest (RF) and Cubist algorithms. These 

algorithms were used to determine soil 

moisture levels. The machine learning 

results were compared to the statistics 

results of regular least squares. The 

machine learning model had an R2 of 0.96 

and a root mean squared error of 0.06, 

whereas the statistical ordinary least 

squares model had an R2 of 0.47 and a root 

mean squared error of 0.16. 

 

Proposed Approaches in The Integration 

of IoT ML and AI in Precision 

Agriculture 

It is crucial to incorporate and employ 

cutting-edge procedures and strategies to 

study the many options for enhancing 

productivity because the economy of the 

majority of developing countries are based 

on agriculture and have diverse climatic 

conditions. The combination of the Internet 

of Things (IoT), Machine Learning (ML), 

and Artificial Intelligence (AI) provides 

farmers with new tools and approaches for 

sustainable and effective farming, even 

with limited resources. These advances 

open up options like predictive analytics, 

weather forecasting for agriculture, remote 

equipment and crop monitoring, smart 

logistics, and warehousing (Im et al., 

2016). While farmers have extensive 

agricultural knowledge, successfully 

incorporating this new technology requires 

collaboration. User-centered design 

concepts ensure that the development of 

IoT, machine learning, and artificial 

intelligence applications aligns with with 

farmers' goals and supports seamless 

integration into their existing practices. 

Distributed computing paradigms, such as 

edge and fog computing, offer efficient and 

scalable solutions for building the 

underlying infrastructure which include; 

IoT architecture, operational rules, and 

smart processes (Sladojevic et al., 2016). 

These technologies are suggested for a 

communication architecture. The goal is to 

assist farmers in creating intelligent 

systems for both new and existing facilities 

which can increase both crop and animal 

yield through the use of precision 

agriculture. 

 

Discussion and Challenges 

The reviewed studies employed various 

remote sensing technologies for 

agricultural applications and these include; 

space-borne sensors, RFID tags, and UAVs 

fitted with cameras. The space-borne 

sensors offer a wide coverage but their 

performance can be affected by weather 

conditions. RFID tags enable individual 

identification and tracking of animals. 

UAVs equipped with cameras provide high 

resolution data for localized monitoring. 

Machine learning models played a 

significant role in these studies with eight 

different models being used. Five models 

from the eight were applied to crop 

management applications, four models 
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were used for livestock management 

applications and four models were 

employed for soil management purposes. 

SVM emerged as the most frequently used 

technique from the eight. Additionally, the 

studies explored deep learning techniques 

for agricultural applications which included 

CNNs and ANNs (Sladojevic et al., 2016), 

(Abioye et al., 2022). 

In a related case study related to precision 

agriculture, a sensor network system was 

implemented in which every piece of 

equipment is connected to Raspberry Pi 

models zero and three B, as well as a 

channel, is made to examine how the soil 

behaves and the atmosphere. The study's 

network prototype made use of current 

information on soil conditions 

(temperature, moisture) and atmospheric 

conditions (temperature, humidity) 

(Kamath et al., 2019). The read-out number 

of the Raspberry Pi 3B collected data from 

various sensors. used to publish, together 

with another Raspberry Zero device the 

ThingSpeaks readings on the cloud server. 

An online platform called ThingSpeak 

offered analytical data services for Internet 

of Things applications. The suggested use 

case demonstrated that it is a practical and 

affordable method for sending field data to 

remote servers and analyzing the behavior 

of the crop and field (Kamath et al., 2019). 

In (Kamir et al., 2020) machine learning 

models were used to identify the hotspots 

of the yield difference in wheat production. 

Between 2009 and 2015, academics used 

data from many sources to produce very 

high-resolution yield maps. Data was 

acquired from a variety of sources, such as: 

The MOD13Q1 data set was used to gather 

the following information: (a) NDVI time-

series data for the entirety of Australia; (b) 

rainfall and temperature data from 

historical climate data at the Australian 

Bureau of Metrology; and (c) maps for 

observed grain yield obtained directly from 

intelligent harvesting equipment. The 

machine learning models employed in the 

wheat yield prediction study by included k-

Nearest Neighbors (k-NN), Random Forest 

(RF), XGBoost, Multilayer Perceptron 

(MLP), Support Vector Regression (SVR), 

Gaussian Process, and Multivariate 

Adaptive Regression Splines (MARS). 

This highlights the diverse range of 

machine learning techniques applicable in 

agricultural contexts. The authors 

combined predictions from each of the 

algorithms into one to achieve prediction 

optimization (Beck et al., 2006). 

Researchers were successful in estimating 

the yield with an R2 of 0.77 and an RMSE 

of 0.55 using SVR with RBFNN, 

outperforming the other techniques. The 

findings were validated using 10-fold 

cross-validation procedures across the 

whole dataset, and they significantly 

enhanced precision agriculture in wheat 

output. 

There is a clear indication that employing 

artificial intelligence, the Internet of 

Things, and machine learning in precision 

agriculture can change a lot of things and 

help in yield prediction by estimating the 

crop production to be rewarded to the 

farmer, disease and pest detection in field 

crops as well as livestock in their early 

stages. The weed detection and control, the 

soil management principles with the 

techniques in practice induce precision 

agriculture which has more benefits to the 

farmer in this digital era. Further to that 

livestock production and animal welfare 

are analyzed both by using ML techniques. 

Machine Learning and the Internet of 

Things on big data have opened up new 

avenues for achieving precision agriculture 

objectives due to the openness of datasets 

as it makes ML modeling easier, including 

training and mass prototyping. Hosting, 

growing, and operating an ML Model on 

top of relevant datasets is referred to as 

mass-manufacturing of a prototyped ML 

Model in Precision agriculture which in 

turn improves production and yield 

(Craninx et al., 2008). In-production 

machine learning models must also be 

resilient and adaptable to future 

adjustments and input (Craninx et al., 

2008). The agricultural sector is embracing 
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the digital revolution, mirroring the trend 

across various industries. This shift 

involves collecting vast amounts of farm 

data through wireless networks, IoT 

devices, robotics, and AI systems. The key 

lies in harnessing the power of artificial 

intelligence algorithms, which can sift 

through this data deluge and extract 

valuable insights and knowledge to 

empower informed decision-making and 

optimize agricultural practices. 

(Murugamani et al., 2022) explored how AI 

can identify diseased plant leaves. Their 

research focused on analyzing different 

components of infected leaves to accurately 

detect and categorize various plant 

diseases. This approach not only identifies 

the disease but also paves the way for 

automated solutions like targeted pesticide 

application and user notification, (Al-Hiary 

et al., 2011). demonstrated the 

effectiveness of the SVM algorithm in 

disease detection and control, achieving an 

impressive accuracy of 98.34% for 

diagnosing bacterial blight. These 

advancements highlight the potential of AI 

and machine learning in revolutionizing 

disease management practices and 

improving overall farm efficiency. There 

are various scientific obstacles to the 

development of ML, IoT, and AI 

techniques in precision agriculture. For 

example, (i) developing models that not 

only diagnose diseases in crops and animals 

but also prescribe appropriate solutions for 

prevention and control; (ii) Integrating data 

and models related to grazing, animal 

health, plant health and pest control to 

achieve a comprehensive understanding of 

the agricultural ecosystem; (iii) Enabling 

machine learning models to autonomously 

perfom data analysis tasks and learn from 

experience, reducing reliance on human 

intervention; and (iv) integrating soil 

management and pasture variables because 

the variables used for both animal health 

and animal grazing are only behavioral and 

environmental. Further, the lack of small 

resource-constrained embedded sensors for 

data collection is not precise and needs 

huge machines for ML algorithms 

processing (Morales et al., 2016). The 

future of this work lies in deploying real-

time machine learning, artificial 

intelligence, and IoT models within the 

agricultural sector. These models aim to 

solve potential challenges faced by farmers 

in the agriculture sector with better 

accuracy to help increase productivity for 

both livestock and crop yields. 

 

CONCLUSION AND 

RECOMMENDATION 

This work has explored the integration of 

IoT, remote sensing data, machine learning 

models and Artificial Intelligence in 

precision agriculture. The primary goal is 

to optimize production by leveraging AI 

systems that provide comprehensive and 

insightful guidance for informed decision-

making. Consequently, it is projected that 

the use of IoT, ML, and AI in agriculture 

will increase over the coming years, 

allowing for the development of integrated 

and practical systems. Precision farming 

aims to increase yields through precise 

inputs, empowering farmers with advanced 

technology. Key advancements in this 

sector include intelligent sensors, actuators, 

satellite imagery, robotics, and IoT-enabled 

drones. The integration of these 

components facilitates real-time data 

collection and autonomous decision-

making in agricultural operations. Artificial 

intelligence and ML, which automate 

intelligent behavior, benefits stakeholders 

in precision agriculture and the 

environment in a variety of as stipulated. 
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