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ABSTRACT 

The effects of vegetation-changes on land-

surface temperature (LST) in Kainji-Lake 

National Park was evaluated. Hitherto, the 

possible interaction(s) between land-

use/cover, vegetation-index (NDVI) and 

LST were unknown. This study utilized 

cloud-free Landsat images within five data-

periods (i.e., 1986-1990-1999-2009-2020). 

The red and near-infrared bands of the 

images were processed using ArcGIS for 

NDVI (bands 4 and 3 of Landsat 5 and 7, and 

bands 5 and 4 of Landsat 8 OLI/TC). 

Emissivity and LST were determined using 

thermal-bands 6 for Landsat 5 and 7, and 10 

for Landsat 8. Data were analyzed using 

descriptive statistics and Pearson-

correlation. The results revealed that LST 

increased from 28.46±3.01°C (1986) to 

34.13±2.07°C (2020). However, highest 

mean-temperature (41.35±1.16°C) was in 

1999, with the lowest (28.46±3.01°C) in 

1986. Area with highest temperature had 

NDVI of 0.120±0.071, while the NDVI of 

the area with lowest temperature was 

0.436±0.062. Thus, there were inverse-

correlations between NDVI and LST (r = -

0.934, -0.931, -0.992, -0.942 and -0.972) for 

1986, 1990, 1999, 2009 and 2020, 

respectively. With the decrease of NDVI 

(vegetation cover), the LST were found to 

increase. Therefore, there is need to 

discourage forest-conversions, as losses in 

vegetation-covers were consequent upon 

intense anthropogenic-activities such as 

overgrazing, illegal-logging, fuel-wood 

exploitation and mining.  

Keywords: Forest-conversion - land-surface 

temperature - land-use/land cover changes. 

INTRODUCTION 

The world is currently experiencing an 

unanticipated wave of environmental 

changes. Abiodun et al. (2011) noted that 

heat waves occur once the maximum 

temperature is greater than 35oC for 3 days, 

or more consecutively.  Pertinent, therefore, 

among other requirements, is the assemblage 

of long-term, consistent and comprehensive 

data series for climate change research to 

monitor and offer useful advice on the best 

approach to environmental manipulation or 

modifications (Ajibade 2013). An increase in 

temperature tends to increase the capacity of 

the atmosphere to hold water and thus, 

precipitation may increase. However, its 

effect on climate is spatio-temporal, being 

controlled by local or regional factors such as 

topography, vegetation and wind velocity. 

Hence, both increase and decrease in 

precipitation rate is envisaged (Panwar and 

Chakrapani 2013) with rise in temperature.  

According to Cernusak et al. (2013), 

combination of high temperature, high 

irradiance and high vapour pressure deficit 

can lead to pronounced midday depressions 

of stomata conductance and CO2 uptake in 

tropical forest tree leaves at the upper-

canopy. The unique location of the country, 

traversing three climatic zones and seven 

ecological zones, makes Nigeria even more 

vulnerable to the impacts of changing 

climatic and environmental externalities 

(Abiodun et al. 2011). Despite these events, 

few studies have concentrated on evaluating 

the effect of vegetation modification or 

clearance on changing land surface 

temperature in most natural forest. 

Specifically, Kainji Lake National Park has 
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not been assessed against this background. 

More so, there is little documentation on 

reliable data from weather stations in most 

cases. In the same vein, study of sorts using 

remote sensing in the study area, are very 

rare. Thus, the main objective of this study is 

to assess the effects of variations in 

vegetation cover on land surface temperature 

changes.  

It is important to explore how local and 

national climates may already be changing 

using the most-widely used climate change 

indicators. This will enable policymakers, 

environmental managers and authorities at 

local and national levels to design 

appropriate and effective mitigation and 

adaptation mechanisms (Amadi and Udo 

2015). This kind of information provides 

baseline data for developing a long-term 

strategy of investments to diversify the 

economy away from climate-sensitive 

sectors, and strengthening institutional 

capacity to respond effectively to climate 

change. 

According to Effat et al. (2016), land surface 

temperature is the detection of surface 

temperature by considering the emissivity of 

vegetation and emissivity of soils. This can 

be achieved by analyzing the thermal 

infrared band of satellite sensors, especially 

of the Landsat. This is one of the best 

observations of Land surface temperature to 

determine the temperature distribution as 

well as the change in local or global scale, 

used in climate and climate change models in 

particular (Himayah et al. 2019). Land 

surface temperature calculated from remote 

sensing data, is used in many areas including 

hydrology, agriculture, climate change, 

urban planning, forestry, among others 

(Anbazhagan and Paramasivam 2016). 

Thermal infrared remote sensing provides a 

unique method for obtaining LST 

information at the regional and global scales 

since most of the energy detected by the 

sensor in this spectral region is directly 

emitted by the land surface (Jimenez-Munoz 

and Sobrino 2008).  

Adoption of a meaningful approach would 

help to improve the accuracy of weather 

forecasting for extended periods. It would 

also help in studying the factors that 

determine the statistical properties of the 

general atmospheric circulation, which 

would lead to a better understanding of the 

physical basis of climate. This can be 

achieved by capitalizing on the availability 

of high resolution and repetitive coverage of 

remote sensing techniques (Ojo 2011, Jakub 

et al. 2015). Therefore, this study intends to 

bridge this gap by implementing algorithms 

for processing satellite images to analyze 

changes in temperature of Borgu Sector of 

the Kainji Lake National Park. 

 

MATERIALS AND METHODS 

The Study Area 

The Borgu Sector of the Kainji Lake 

National Park lies between Borgu and 

Baruten Local Government areas of Niger 

and Kwara States, on latitudes 9º34'30"N and 

10º16'27"N, and longitude 3º34'30"E and 

4º37'30"E (Figure 1). It covers an area of 

about 392,900 ha. The area is bordered to the 

east by Kainji Lake and in the west by the 

Republic of Benin. The mean annual rainfall 

is 1200 mm with a temperature of 30°C and 

relative humidity of 53%. The amount of 

rainfall increases to the south-east, from 

Borgu towards Niger valley. This is due to 

the leeward nature of the park, being east of 

Yoruba hills. The number of rainy days 

averages about 200 in a year. The wet season 

starts around mid-April and ends early 

November, giving about seven months of 

wet season, while the dry season lasts five 

months, from late November to early April 

(Bako et al. 2015). 

The vegetation of the area lies within the 

Northern Guinea Savannah, and dominated 

by tree species such as Afzelia africana, 

Isorberlinia tomentosa, Burkea africana, 

Isoberlinia doka, Crossopteryx ferbrifuga, 

Anogeissus leicarpus, Khaya senegalensis, 

Terminalia avicennioides, Butryospermum 

paradoxum, Terminalia macroptera, 

https://www.google.com/search?client=firefox-b-d&q=Terminalia+avicennioides&spell=1&sa=X&ved=2ahUKEwjslb3v0YH1AhVLsKQKHUmwAYEQkeECKAB6BAgCEC8
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Retarium microcarpum, Diospyros 

mespiliformis and Maytenus senegalensis. 

Prominent shrubs include Piliostigma 

thonningii and Anona senegalensis. The herb 

layer is dominated by Andropogon gayanus, 

Andropogon tectorum and Hyparrhenia sp. 

as well as woody forbs such as 

Cochlospermum tinctorium. 

Figure 1: Map of Borgu Sector of Kainji Lake National Park 

Remote Sensing Image Data 

Remote sensing data for detecting land 

surface temperature are obtained from the 

thermal bands, which are the sixth band of 

Landsat TM and ETM, and 10th and 11th 

bands for Landsat OLI/TC. To maintain the 

consistency of data radiation characteristics 

as well as investigating the detailed thermal 

structure of land surface more effectively, 

Landsat images of 1986, 1990, 1999, 2009 

and 2020 were chosen as the data sources 

used for further processing. Landsat TM, 

ETM+, and OLI/TC scenes covering the 

study area were selected for the analyses. 

The images were carefully sourced to 

eliminate all atmospheric noises such as 

cloud cover and image scan lines of the years 

1986, 1990, 2009 and 2020. All images were 

acquired from United State Geological 

Survey (USGS), which were preprocessed to 

eliminate radiometric and geometrical 

distortions. 

Image Processing 

Different processes for analyzing the 

Landsat images were used, including 

derivation of NDVI, retrieval of LST for 

each image (i.e., radiance, brightness 

temperature and emissivity). All image 

processing and analysis were done in ArcGIS 

10.5. Thermal bands 61 and 62 were used for 

LST extractions from Landsat TM and 

ETM+, while bands 10 and 11 were used in 

Landsat 8 OLI/TC for the extractions. 

Estimation of LST includes radiometric 

calibration and conversion of digital number 

(DN), and normalized difference vegetation 

index analysis, as presented in Figure 2.  
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Figure 2: Flow chart for LST and NDVI analyses 

Conversion of Digital Number (DN) to 

Spectral Radiance (Lλ) 

Digital number (DN) of bands in Landsat 

data were converted to spectral radiance in 

Landsat 5 and 7, as follows:  

Lλ =
(𝐿𝑚𝑎𝑥𝜆 − 𝐿𝑚𝑖𝑛𝜆)

(𝑄𝐶𝐴𝐿𝑚𝑎𝑥 − 𝑄𝐶𝐴𝐿𝑚𝑖𝑛)
× (𝑄𝐶𝐴𝐿 − 𝑄𝐶𝐴𝐿𝑚𝑖𝑛) + 𝐿𝑚𝑖𝑛𝜆 … (1) 

Where:  

Lλ = spectral radiance at the sensor's 

aperture in watts/m2.sr.µm2; 

QCAL = quantized calibrated pixel value 

in DN; 

Lminλ  = spectral radiance scaled to 

QCALmin in watts/m2.sr. µm2; 

Lmaxλ = spectral radiance scaled to 

QCALmax in watts/m2.sr. µm2; 

QCALminλ = minimum quantized calibrated 

pixel value; 

QCALmax  = maximum quantized 

calibrated pixel value. 

While the derivation of spectral radiance for 

Landsat 8 was determined using: 

𝐿λ = 𝑀𝐿 ×  QCAL +  𝐴L … … … … … … . … … … … (2) 

Where:  

ML = band-specific multiplicative rescaling 

factor from the metadata; 

AL = band-specific additive rescaling; 

QCAL = quantized calibrated pixel value in 

DN. 

 

Conversion of Spectral Radiance to 

Brightness Temperature in Kelvin  

To convert the spectral radiance values to 

brightness temperature (in kelvin), the 

surface brightness temperature of the study 

area was computed, as follows: 

𝐵𝑇 = 𝐾2/ln (1 + K1/Lλ … … … … … … … … … (3) 

Where: 

BT = brightness temperature of the study 

area, which equals T𝑘; 

K1/K2 = default pre-launch constants; 

Lλ = radiance of thermal band. 

Conversion of Temperature in Kelvin to 

Celsius 

The final apparent surface temperature in 

Celsius (˚C) was computed as: 

T𝑐 =  T𝑘 –  273.15 … … … … … … … . … … … … . (4) 

Where:  

Tc = temperature in Celsius (˚C); 

Tk = temperature in Kelvin (K). 

Normalized Difference Vegetation Index 

Normalized difference vegetation index 

(NDVI) is a measure of the amount and 

vigour of vegetation at the surface (Sundara 

et al. 2012). The NDVI is the vegetation 

index of a pixel. It has been used in a wide 

variety of studies including those on global 

vegetation, crop estimation and vegetation 
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growth, land cover and climate (Benkouider 

et al. 2013). It is expressed as: 

NDVI =
NIR −  RED

NIR + RED
… … … … … … … … … … … … … … (5) 

Where: 

NIR = reflectance in the near-infrared band; 

RED = reflectance in the visible red band. 

Normalized difference vegetation index 

analyzes the percentage variation of vegetal 

cover in the area showing different 

vegetation properties. Thus, NDVI has a 

threshold of -1 to 1. 

Surface Emission Rate Determination 

Surface emissivity has a considerable effect 

on the accuracy of LST extraction and the 

important sources of error. Emissivity was 

estimated as: 

𝐸 = 0.004P𝑣 +  0.986 … … … … … … … … … … … … … … (6) 

Where: 

Pv = proportional vegetation, as is estimated 

as: 

𝑃𝑣 = √
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
… … … … … … ..  … … . (7) 

Land Surface Temperature 

The average atmospheric temperature (LST) 

was obtained as follows: 

𝐿𝑆𝑇 =
𝐵𝑇

1
+ 𝑊 ×

𝐵𝑇

𝑃
× ln 𝐸 … … . . … … … … … … (8) 

Where: 

P = planks constant; 

W = wavelength of the emitted radiance as 

corresponding to the used thermal bands; 

BT = brightness temperature; 

E = emissivity. 

Land-use and Land-over Classification 

Unsupervised (Iso-cluster) classification 

technique was adopted to determine the land-

use/land-cover (LULC) classes. Field data 

were collected by obtaining the geographic 
coordinate values of the different land-cover 

characteristics of the study site using a hand-

held GPS receiver. The vector data were then 

overlaid on the pre-classified Landsat 8 

OLI/TC. In addition, topographic map along 

with the classified image-data and GPS 

receiver were used to find the location of the 

ground-control points (GCPs) in the field 

during ground truthing. Thereafter, re-

classifications were done to delineate the 

exact land-use types and their corresponding 

area coverage in the area. In determining the 

LULC, land-use/land-cover layers of the 

selected dates were overlaid in the GIS 

environment, as done by Adeyemi and 

Adeleke (2020), Adeyemi and Ibrahim 

(2020), Adeyemi and Oyeleye (2021). 

Change analysis was then performed by 

intersecting the different multi-temporal 

image layers (for the selected dates: 1986, 

1990, 1999, 2009 and 2020). A contingency 

matrix of change was then developed using 

appropriate statistics.   

LULC Classification Accuracy Assessment 

The accuracy for each class was estimated 

and the accuracy statistics were done based 

on Rwanga and Ndambuki (2017), as 

adopted by Adeyemi and Adeleke (2020), 

Adeyemi and Ibrahim (2020), Adeyemi and 

Ayinde (2022), as follows: 

P =
∑ 𝑛𝑖𝑖

𝑘
𝑖=1

𝑛
× 100 … … … … … … … … … … . … . … (9) 

Where: 

nii = number of correct points;  

n = total number of ground control points;  

P = overall accuracy, expressed in percentage. 

Sensitivity

=
𝑎

𝑎 + 𝑏
 (equivalent to Producer′sAccuracy) … 10) 

Specificity =
𝑑

𝑏 + 𝑑
… . … … … … … … . . … . … . … (11) 

Commision error = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 … … … … (12) 

Ommision error = 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 … . … ….  . (13) 

Positive Predictive Power

=
𝑎

𝑎 + 𝑏
 (Equivalent to User′s accuracy) …  . . (14) 

Positive Predictive Power

=
𝑑

𝑐 + 𝑑
 … . … … … … … … … … … … …  … … … … (15) 

Where:  

a = number of times a classification agreed 

with the observed value;  

b = number of times a point was classified 

as X when it was observed to not be X; 
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c = number of times a point was not 

classified as X when it was observed to be 

X;  

d = number of times a point was not 

classified as X when it was not observed to 

be X.  

Total points (accurately classified) = n = (a 

+ b + c + d)  

The Khat statistics produced by Kappa 

analysis was computed as: 

K =
𝑁 ∑ 𝑥𝑖𝑖 −𝑟

𝑖=1 ∑ (𝑥𝑖𝑗 + 𝑋𝑥+1)𝑟
𝑖=1

𝑁2 − ∑ (𝑥𝑖𝑗𝑋𝑥+1)𝑟
𝑖=1

… . … … . . … (16) 

Where: 

r = number of rows and columns in error 

matrix; 

N = total number of observations (pixels); 

Xii = observation in row i and column i; 

Xij = marginal total of row i; 

X+i = marginal total of column i. 

A Kappa coefficient equal to 1 means perfect 

agreement between the observed and the 

expected, whereas a value close to zero 

means that the agreement is no better than 

would be expected by chance.  

RESULTS 

Land-use and Land-cover Changes in the 

Study Area 

Table 1 presents the description of the four 

land-use/land-cover (LULC) types 

distinguished in the study area. These 

include forest, savannah, water body/swamp 

and bareland/built-up area.  

Table 2 presents spatial distribution of land-

use and land-cover in the study area. In 1986, 

grassland covered 205,142 ha (49%) 

followed by forest with about 118,337 ha 

(28%). Water body/swamp covered about 

21,990 (5%), while the bareland/built-up 

area occupied 75,560 ha (18%) of the area. 

In 2020, savannah increased to 294,332 (ha), 

constituting about 70% of the total area, 

reclaiming parts of forest and water 

body/swamp. Thus, forest and water 

body/swamp declined to 76,804 ha (10%) 

and 5,725 ha (1.4%), respectively (Figure 3).  

 

Table 1: Description of land covers 

LULC  Description 

Forest Dense vegetation consisting of trees and other flora. 

Savannah 
Areas dominated by grasses with some scattered shrubs and trees in very 

sparse arrangements. 

Water body/swamp Areas covered by rivers, streams, drains, lakes, ponds and swamps. 

Bareland/built-up area 
Areas with no vegetation and/or with building structures and other 

infrastructures. 

Table 2: Spatial extent of LULC between 1986 and 2020 

LULC 
1986  1990  1999  2009  2020  

Area % Area % Area % Area % Area % 

F 118,337 28.1 124,592 29.6 93,363 22.2 27,431 6.5 76,804 18.2 

SV 205,142 48.7 173,410 41.2 309,012 73.4 173,547 41.2 294,332 69.9 

WB/S 21,990 5.2 8,636 2.1 5,372 1.3 624 0.1 5,725 1.4 

BB 75,560 17.9 114,393 27.2 13,282 3.2 219,427 52.1 44,168 10.5 

Total 421,030 100 421,030 100 421,030 100 421,030 100 421,030  100 

N.B.: F - forest; SV - savannah; WB/S - water body/swamp; BB - bareland/built-up area 

Table 3: Changes in LULC between 1986 and 2020 

LULC 

class 

1986 1990 1999 2009 2020 1986-2020 

Area (ha) Area (ha) Area (ha) Area (ha) Area (ha) ΔLULC (ha) % Δ 

F 118,337 124,592 93,363 27,431 76,804 -41,533 -35.1 

SV 205,142 173,410 309,012 173,547 294,332 89,190 43.5 

WB/S 21,990 8,636 5,372 624 5,725 -16,265 -74.0 

BB 75,560 114,393 13,282 219,427 44,168 -31,392 -41.5 

Total 421,030 421,030 421,030 421,030 421,030 - - 

NB.: F - forest; SV - savannah; WB/S - water body/swamp; BB - bareland/built-up area 
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Figure 3: LULC maps of Borgu Sector between 1986 and 2020 

Table 3 presents the trend of changes in 

LULC in the area between 1986 and 2020. 

Forest area and water body/swamp shrank by 

35.1% and 74.0%, respectively. Savannah, 

however increased by 43.5% of its original 

extent in 1986, while 42% of the 

barelands/built-up areas were reclaimed by 

savannah in 2020.  

The confusion matrix for LULC 

classification accuracy assessment is shown 

in Table 4. The correct values for each class 

are arranged diagonally (20, 58, 16 and 24). 

Table 5 presents the result of LULC 

classification accuracy assessment. The 

overall accuracy was 88.7%, producer’s 

accuracies ranged between 0.8 and 0.83, 

while user's accuracies were between 0.87 

and 0.857. The overall Kappa's coefficient 
obtained for the classification was 0.84, 

implying that the classification accuracy was 

substantial. 
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Table 4: Confusion matrix 

LULC class Forest Savannah Water 

Body/Swamp 

Bareland/built-up 

area 

Total 

Forest 20 0 1 2 23 

Savannah 2 58 1 0 61 

Water body/swamp 2 0 16 3 21 

Bareland/built-up area 1 1 2 24 28 

Column total  25 59 20 29 133 

 

Table 5: Classification accuracy assessment results  

LULC class UA PA Sensitivity Specificity CE OE 

Forest 0.87 0.80 0.80 0.97 0.028 0.200 

Savannah 0.95 0.98 0.98 0.96 0.041 0.017 

Water body/swamp 0.76 0.80 0.80 0.96 0.044 0.200 

Bareland/built-up area 0.86 0.83 0.838 0.96 0.039 0.172 

UA - user’s accuracy; PA - producer’s accuracy; CE - commission error; OE - omission error 

Normalized Difference Vegetation Index 

(NDVI) of Borgu Sector between 1986 and 

2020 

Table 6 and Figure 4 present the NDVI 

results for Borgu Sector of Kainji Lake 

National Park. The maximum NDVI (0.436 

± 0.062) was in 1990, which shows the 

appearance of denser vegetation and canopy 

in that year compared to other periods, 

however, this does not imply more vegetated 

areas in comparison to other years studied, 

but only shows that vegetation was thickest 

in some areas during that period. The lowest 

value (-0.036 ± 0.061) was in 2009, 

indicating presence of less-dense vegetation.  

Land Surface Temperatures (LST) of 

Borgu Sector between 1986 and 2020 

Table 7 and Figure 5 present LST of Borgu 

Sector in the five periods studied. The results 

revealed that high temperature areas 

correspond to built-up areas, bareland and 

dried or silted water body/swamp whereas 

the cooler areas were forests and then 

grassland. Temperature was highest in 1999 

with a mean of 41.35 ± 1.16°C, while 1986 

had the least mean temperature of 28.46°C ± 

3.01. However, in 1990, 2009 and 2020 the 

mean temperatures were 34.93°C ± 2.90, 

32.05°C ± 2.92 and 34.13°C ± 2.07± 2.07, 

respectively.  

Table 8 presents correlations (r) between 

NDVI and LST for the five periods. There 

was inverse relationship between NDVI and 

LST, implying that as NDVI value drops, 

temperature begins to rise. In other words, 

areas with low NDVI values tend to have 

high temperature, and vice-versa (Figure 6). 

Table 6:  NDVI values for Borgu Sector between 1986 and 2020 

Year NDVI values Mean ± SD 

1986 -0.364 0.017 0.071 0.128 0.178 0.546 0.120 ± 0.071 

1990 -0.756 -0.042 0.006 0.061 0.128 0.787 0.436 ± 0.062 

1999 -0.538 -0.183 0.072 0.172 0.235 0.527 0.194 ± 0.059 

2009 -0.434 -0.212 -0.077 -0.021 0.041 0.283 -0.036 ± 0.061 

2020 -0.049 -0.003 0.006 0.015 0.027 0.076 0.010 ± 0.010 
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Figure 4: NDVI maps of Borgu Sector between 1986 and 2020. 

Table 7: Spatial distribution of LST in Borgu Sector between 1986 and 2020 

Year LST (°C) 

Min. Forest Savannah WB/S BB Max. Mean ± SD 

1986 21.06 27.90 31.14 37.61 49.49 66.94 28.46 ± 3.01 

1990 24.92 31.74 34.65 37.01 47.24 64.45 34.93 ± 2.90 

1999 22.86 27.84 28.80 30.24 33.12 41.35 41.35 ± 1.16 

2009 21.82 29.65 32.53 34.80 45.51 74.36 32.05 ± 2.92 

2020 22.51 31.17 33.04 34.68 36.32 52.35 34.13 ± 2.07 

SD - standard deviation; WB/S - water body/swamp; BB - bareland/built-up area 
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Figure 5: Land surface temperature maps of Borgu Sector between 1986 and 2020 

Table 8: Correlation between NDVI and LST  

Year r 

1986 -0.934 

1990 -0.931 

1999 -0.992 

2009 -0.942 

2020 -0.958 
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Figure 6: Relationships between NDVI and LST in Borgu Sector from 1986 to 2020. 

DISCUSSION 

The results showed that areas with more 

green vegetation were lower in average land 

surface temperature, when compared to areas 

with little or no vegetation, as in bare 

land/built-up areas within the study area. 

This is similar to the observation of Himayah 

et al. (2019), who noted that when the LST 

value is high, the value of green vegetation is 

low, and if the LST value is low then the 

green vegetation value would be high. The 

bareland/built-up areas in the study area 

occurred as a result of occasional 

anthropogenic disturbances in forms of 

forest clearances, illegal-logging, 

overgrazing by cattle herders and mining. 

The sensitivity of vegetation indices to 

variations in land surface temperature 
observed in this study agrees with the work 

of Mohammed et al. (2019), who noted how 

sensitive vegetation indices were to changes 

in land surface temperature. A similar 

observation was made by Yuan and Bauer 

(2007) that, areas with high NDVI are 

usually found to have lower land surface 

temperature and vice versa. Mallick et al. 

(2008) also examined the relationship 

between the NDVI and the LST using 

Landsat 7 ETM+ data and found 

significantly strong relationship between the 

two variables. The land-cover category of 

dense vegetation (forest) and highly-dense 

built-up areas showed the highest (r = -0.752) 

and the lowest (r = -0.394) inverse 

relationships. This is, however, contrary to 

the report by Sun and Kafatos (2007), who 

observed positive correlation between LST 

and NDVI in temperate region during winter, 

perhaps due to the accumulation of snow and 

cold weather.  

We found that seasonal streams and swamps 

without water, or those that were silted-up 

due to vegetation clearances, or forest 

degradation, through overgrazing, illegal 

logging and mining, were higher in 

temperature compared to streams or swamps 
in better conditions with water and less-

silted. This corroborates the finding of Joshi 

and Bhatt (2012), who reported that areas 

with vegetation and water body had lower 

temperatures than built-up areas or areas 

without these two components. Essentially, 

land surface temperatures were significantly 

influenced by land-use practices or land 

cover-types, as areas with lower vegetation 

cover s were higher in temperature and 
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hotter. Increases in temperatures were also 

found in areas with lesser water, which 

resulted either from reduced precipitation, or 

siltation due to vegetation losses. This is in 

line with the observations of Spracklen et al. 

(2012), who noted that persistent large-scale 

land-use changes and forest conversion have 

great potentials to alter or influence rainfall 

patterns.  

According to Salih et al. (2012), alteration in 

rainfall patterns may affect the vegetation of 

a given area, just as it is also possible that 

there could be reduced rainfall in forested 

areas as resulting from deforestation 

occurring somewhere else. Hasler et al. 

(2009) observed that reduction in rainfall as 

a result of deforestation can lead to reduction 

in evapotranspiration, up to 80% reduction in 

annual rainfall in deforested areas. Abbas et 

al. (2010) stated that change of land-

use/land-cover significantly aggravates 

surface runoff, soil erosion, land 

degradation, sedimentation, siltation, 

drought, migration, desertification, loss of 

biodiversity, and ultimately, decrease in land 

productivity.  

Moreover, during the period investigated, 

changes in land-use and cover-types were 

becoming more intense, and mainly linked to 

anthropogenic pressure in quest for human 

livelihood supports. Anthropogenic 

activities including overgrazing by cattle 

herders, illegal-logging and mining were 

observed to be the major drivers of 

vegetation losses in the area, as identified in 

the course of fieldwork and ground-truthing, 

all of which were unauthorized since the area 

is under protection. This is in line with 

Meduna et al. (2009), who observed that 

illegal activities were the main drivers of 

gross forest disappearances, especially in the 

tropics.  

 

CONCLUSION AND 

RECOMMENDATIONS 

The study has shown that there were land-

cover/use changes in Borgu Sector of the 

Kainji Lake National Park between 1986 and 

2020. It is established that LST increases 

with a decrease in vegetation cover. There 

was a strong indication that anthropogenic 

activities (forest conversion, overgrazing and 

mining) significantly influenced the 

variations in LST. Thus, LST inversely 

correlated with NDVI. This may have 

negative implications for forest/soil 

biodiversity. The capability of the area to 

sequester carbon may also be affected by 

losses in vegetation. Therefore, it is 

recommended that further losses in 

vegetation be checked. One of the means to 

maintain biodiversity conservation is to 

sustainably manage the area while educating 

the surrounding communities on better 

approaches to conservation. Remote sensing 

was adequate for evaluating relationship 

between vegetation cover (NDVI) and 

variation in LST. The overall classification 

accuracy was very good, suggesting a 

reasonable-measure of reliability of the 

classification scheme used. 
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