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Abstract 

Purpose: To investigate the potentials of notoginsenoside R1 (NGR1) in ameliorating inflammation and 
pulmonary vascular remodeling in rats with pulmonary arterial hypertension (PAH) induced by 
monocrotaline (MCT), and to examine the mechanisms underlying such effects. 
Methods: Eight-week-old male Sprague Dawley rats were randomly divided into groups: control, MCT, 
MCT+5mg/kg NGR1, MCT+12.5mg/kg NGR1, and MCT + 25 mg/kg NGR1. Right cardiac 
catheterization was used to measure pulmonary hemodynamics. Pulmonary morphology was evaluated 
with the aid of H & E staining. Serum levels of inflammatory cytokines were measured using ELISA, 
while levels of inflammation-associated factors in the lung were measured using RT-PCR. NF-κB 
(nuclear factor kappa-light-chain-enhancer of activated B cells) and IκBα (nuclear factor of kappa light 
polypeptide gene enhancer in B cells inhibitor, alpha) protein levels were determined by western blot. 
Results: Pulmonary hemodynamics and pulmonary morphology worsened following MCT injection and 
were accompanied by NF-κB pathway activation and elevated levels of inflammation-associated factors. 
In contrast, MCT treatment followed by NGR1 treatment ameliorated MCT-induced PAH by improving 
pulmonary hemodynamics and pulmonary vascular remodeling while reducing NF-κB activation and 
levels of inflammation-associated factors. 
Conclusion: NGR1 exerts ameliorative effects on MCT-induced PAH by inhibiting NF-κB pathway. 
Therefore, NGR1 may be a new potential therapy for PAH. 
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INTRODUCTION 
 
Pulmonary arterial hypertension (PAH), a 
multifactorial and life-threatening illness, 
presents as a persistent increase in pulmonary 
artery pressure and ultimately results in right 

ventricular failure and death [1]. The 
pathogenesis of PAH includes pulmonary 
vasoconstriction, thrombosis, inflammation, and 
oxidative stress [2-4]. Accumulating evidence 
reveal pulmonary vascular inflammation has an 
essential role in PAH [3,5]. Inflammatory 
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responses promote abnormal contraction of 
pulmonary vessels and proliferation of pulmonary 
arterial smooth muscle cells (PASMCs), resulting 
in pulmonary arterial remodeling and pulmonary 
hypertension [6,7]. 
 
Nuclear factor-kappa B (NF-κB) is closely 
associated with inflammation and cell 
proliferation [8]. Nuclear Factor-κB increases the 
expression of tumor necrosis factor (TNF-α), 
intercellular adhesion molecule-1 (ICAM-1), and 
monocyte chemoattractant protein-1 (MCP-1), all 
of which are involved in the development of 
pulmonary hypertension [9,10]. Nuclear Factor-
κB activation is also a pathological characteristic 
of PASMC in patients with idiopathic PAH, and 
inhibition of NF-κB activity is an effective therapy 
for PAH [11-13].  
 
Classically, PAH is treated with calcium channel 
blockers, but current therapeutic strategies are 
focused on targets such as phosphodiesterase 
type 5 inhibitors, endothelin receptor antagonists, 
and prostanoids [14]. Although these 
medications provide clinical benefits, PAH 
patients continue to suffer from poor prognoses 
and low survival rates [15]. Therefore, it is urgent 
to develop novel therapeutic strategies for PAH 
treatment. Panax notoginseng saponins (PNS) 
are the major active ingredients derived from 
Panax notoginseng, widely used in traditional 
Chinese medicine to stanch bleeding [16]. 
Notoginsenoside R1 (NGR1) is a PNS with anti-
inflammatory, cardioprotective, and anti-oxidative 
properties [17-19]. It alleviates inflammatory 
responses in human epithelial cells and inhibits 
vascular smooth muscle cell proliferation [17,20]. 
Therefore, the present study was designed to 
investigate whether NGR1 had a therapeutic 
effect on MCT-induced PAH in rats and to 
discover the mechanisms underlying any such 
effects. 
 
EXPERIMENTAL 
 
Establishment of PAH model  
 
Eight-week-old male Sprague-Dawley rats were 
acquired from Shanghai SLAC Laboratory 
Animal Co., Ltd. All rats were maintained under 
standard conditions with constant temperature 
(22 ± 2 ℃), constant humidity (60 ± 5 %), and a 
12 h light/dark cycle. All animal experiments 
were carried out in accordance with the 
guidelines of International Ethical Guidelines for 
Biomedical Research [21], and were approved by 
the Ethics Committee of Huazhong University of 
Science and Technology (no. EC2017HU0048). 
 

Rats were randomly divided into five treatment 
groups (n = 8 per group): control, MCT, MCT + 5 
mg/kg NGR1, MCT + 12.5 mg/kg NGR1 and 
MCT + 25 mg/kg NGR1. A single dose of MCT 
(50 mg/kg; Sigma-Aldrich) was injected 
intraperitoneally (IP) to induce experimental 
PAH. Sham-treated animals were injected with 
an equivalent volume of saline. Subsequently, 
rats in the MCT + NGR1 groups were 
administered with NGR1 (Shanghai Tauto 
Biotech Co., Ltd.) by oral gavage daily for 21 
days. Rats in control group and MCT-only treated 
control group were administered with equal 
volume of normal saline. 
 
Hemodynamic measurements  
 
Rats were anesthetized with 10 % chloral 
hydrate (IP injection; 3 ml/kg; Sigma-Aldrich) 21 
days after MCT injection. A polyethylene catheter 
equipped with a pressure sensor was inserted 
into the jugular vein and directed through the 
right atrium and right ventricle into the pulmonary 
artery. Various parameters for assessing 
pulmonary artery pressure were then recorded. 
Finally, heart tissues of rats were excised and 
dissected into three parts: left ventricle (LV), 
interventricular septum (S), and right ventricle 
(RV). Right ventricular hypertrophy index (RVHI) 
was assessed as as in Eq 1.  
 
RVHI = weight

RV
/(weight

LV 
+ weight

S
) ……. (1) 

 
Hematoxylin and eosin (H & E) staining  
 
The right lower lung lobe was harvested and 
fixed in 4 % paraformaldehyde (Sigma-Aldrich). 
The lung was embedded in paraffin and 
sectioned into tissue slices (5 μm). H & E 
staining was carried out at room temperature 
with hematoxylin (0.5%; ZSGB-BIO) staining for 
3 min, followed by eosin (0.5 %; ZSGB-BIO) 
staining for 2 min. Subsequently, the tissue slices 
were dehydrated and sealed. Finally, a light 
microscope (Olympus) was used to observe and 
photograph the H & E-stained slides. 
 
Evaluation of serum cytokines  
 
Rat plasma was harvested by retro-orbital 
injection, and the serum was separated by 
centrifugation (6000 rpm, 10 min) before 
collection. Levels of serum cytokines IL-6 and 
TNFα were measured by ELISA (R & D 
systems). 
 
Determination of tissue RNA  
 
RNA was isolated from exercised rat lung tissues 
which were homogenized in TRIzol reagent 
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(Invitrogen) with Tissuelyser-192 (Shanghai 
JingXin). Message RNA (mRNA) was further 
purified using RNeasy Plus Micro and Mini Kits 
(QIAGEN). Complementary DNA (cDNA) was 
synthesized using the PrimeScriptTM RT Reagent 
Kit (Takara), and quantitative RT-PCR was 
performed on an ABI 7900 instrument (Applied 
Biosystems). The primer sequences used to 
amplify Icam1 (intercellular adhesion molecule 
1), Hmgb1 (high mobility group box 1), and Actb 
(actin) are listed in Table 1. 
 
Western blotting 
 
Harvested rat lung tissues were homogenized in 
sterile physiological saline and total protein 
extracts were prepared using RIPA lysis buffer 
(Beyotime). Protein concentrations were 
determined using the BCA Protein Assay Kit 
(Thermo Fisher Scientific). Equivalent amounts 
of protein were loaded into each lane of a 10 % 
polyacrylamide gel containing sodium dodecyl 
sulfate (SDS). Proteins were separated by 
electrophoresis and transferred to PVDF 
membranes (Millipore). Membranes were 
blocked in 5 % skim milk at room temperature for 
2 h before adding primary antibodies against 
IκBα (Abcam), NF-κB p65 (Abcam) and β-actin 
(Abcam).  
 
The membranes and antibodies were incubated 
at 4℃ overnight. Membranes were washed three 
times in Tris-buffered saline containing 0.1 % 
Tween 20 before incubating with HRP-
conjugated secondary antibodies (Abcam) for 1 
h. Proteins were visualized with SuperSignal 
West Dura Extended Duration Substrate 
(Thermo Fisher Scientific) and analyzed using an 
ImageQuant LAS 4000 Mini (GE Healthcare Life 
Sciences). 
 
Statistical analysis 
 
Data were derived from three independent 
experiments and presented as the mean ± SEM. 
One-way analysis of variance (ANOVA) was 
used to evaluate the statistical differences 
among groups and p < 0.05 was considered 
statistical significant. SPSS and Prism softwares 
were used for data analyses. 

RESULTS 
 
NGR1 improved pulmonary hemodynamics in 
rats with MCT-induced PAH 
 
To determine whether notoginsenoside RI 
(NGR1) might be an effective treatment for 
pulmonary arterial hypertension (PAH), this study 
used monocrotaline (MCT) to induce PAH in 
Sprague-Dawley rats. After an initial treatment 
with MCT (50 mg/kg), rats were treated with 
NGR1 (at concentrations of 0, 5, 12.5, or 25 
mg/kg), once a day, for 21 days and then 
assessed. Hemodynamic parameters, including 
right ventricular systolic pressure (RVSP), mean 
pulmonary arterial pressure (mPAP), pulmonary 
arterial systolic pressure (PASP) and right 
ventricular hypertrophy index (RVHI), were 
significantly increased in the MCT-treated group 
(Figure 1). Notoginsenoside R1 (NGR-1)-
treatment restored normal hemodynamic 
parameters in MCT-treated rats in a dose-
dependent manner. Importantly, in the MCT + 25 
mg/kg NGR1 group, the levels of RVSP, mPAP, 
PASP, and RVHI were similar to their levels in 
the sham-treated control group (Figure 1). These 
results indicate that NGR1 may protect rats from 
MCT-induced PAH. 
 

 
 
Figure 1: Effect of NGR1 treatment on pulmonay 
hemodynamics in MCT-induced PAH. RVSP, PASP, 
mPAP and RVHI were measured for each group 21 
days after initial treatment with MCT (n = 8). ***p < 
0.001 vs. sham group. #p < 0.05, ## p < 0.01, ### p < 
0.001 vs. MCT group 

 
Table 1: Primer sequences for Icam1, Hmgb1 and Actin 
 

Gene Upstream primer Downstream primer 
Icam1 5'-TTCCTTCTCTATTACCCC-3' 5'-GTGAGCGTCCATATTTAG-3' 
Hmgb1 5'-GAGATCCTAAGAAGCCGAGA-3' 5'-CTTCCTCATCCTCTTCATCC-3' 
Actin 5'-ATTTGGCACCACACTTTCTACAATGAGCTGCG-

3' 
5'-
GCAGATGTGGATCAGCAAGCAGGAGTAC
GATG-3' 
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Effect of NGR1 on MCT-induced pulmonary 
morphological changes 
 
To assess whether NGR1 might protect against 
MCT-induced pulmonary artery remodeling, H&E 
staining of lung tissue sections was performed. 
Compared with the sham-treated group, the 
pulmonary arteries of the MCT-treated group had 
thicker walls and narrower lumens (Figure 2). In 
addition, immune cell infiltration was evident, 
indicating the presence of pulmonary interstitial 
inflammation (Figure 2). In contrast, NGR1 
treatment led to a more normal pulmonary 
vascular wall structure and less inflammatory 
infiltration, again in a dose-dependent manner. 
Strikingly, very little pulmonary artery remodeling 
was detected in the MCT + 25 mg/kg NGR1 
group (Figure 2). These results suggest that 
NGR1 ameliorates MCT-induced pulmonary 
arterial remodeling. 
 

 
 
Figure 2: Protective effects of NGR1 on pulmonary 
morphological changes induced by MCT. H & E 
staining of rat lung tissues in different groups (n = 6 - 
8) 
 
NGR1 inhibited MCT-induced pulmonary 
vascular inflammation 
 
To investigate the mechanisms underlying the 
influence of NGR1 on MCT-induced PAH, serum 
protein levels of the proinflammatory cytokines 
tumor necrosis factor-alpha (TNF-α) and 
interleukin-6 (IL-6) were determined. Tumor 
Necrosis Factor-α and IL-6 levels significantly (p 
< 0.001 )increased in rats treated with MCT 
alone, but when MCT treatment was followed by 
NGR1 treatment, a dose-dependent reductions in 
IL-6 and TNF-α levels was observed (Figure 3 
A). Similarly, Icam1 (intracellular adhesion 
molecule 1) and Hmgb1 (high mobility group box 
1) expressions were elevated in lung tissue from 
the MCT-treated group when compared to the 
sham-treated group, but MCT treatment followed 
by NGR1 treatment restored normal expression 
levels (Figure 3 B). These results suggest that 
NGR1 reduces pulmonary inflammatory 
response in rats with MCT-induced PAH. 
 

NF-κB signaling pathway mediates the 
protective effects of NGR1 in MCT-induced 
PAH rats 
 
The inflammatory response depends, in part, on 
the activation of NF-κB and the degradation of 
IκBα. Therefore, to investigate how NGR1 might 
inhibit the expression of pro-inflammatory factors 
like TNF-α and IL-6, NF-κB and IκBα protein 
levels were determined by western blot analysis. 
Compared to the sham-treated group, rats 
treated with MCT had significantly (p < 0.001) 
increased NF-κB levels and decreased IκBα 
levels (Figure 3 C). Conversely, in the MCT + 
NGR1 groups, NF-κB levels decreased, whereas 
IκBα levels increased significantly (p < 0.001) 
(Figure 3 C). These results demonstrate that the 
NF-κB signaling pathway is crucial for the 
protective effects of NGR1. 
 

 
 
Figure 3: Effect of NGR1 treatment on the 
expressions of MCT-induced markers in pulmonary 
vascular inflammation. (A) Levels of IL-6 and TNFα in 
rat serum determined by ELISA. (B) Expressions of 
Icam1 and Hmgb1 in rat lung tissue determined by 
qRT-PCR. (C) Protein levels of NF-κB and IκBα in rat 
lung tissue. ***p < 0.001 vs. sham group. #p < 0.05, 
###p < 0.001 vs. MCT group 
 
DISCUSSION 
 
In the current study, rats with MCT-induced PAH 
exhibited increases in pulmonary hemodynamics, 
pathological changes in pulmonary structure, and 
pulmonary vascular inflammation. In rats treated 
with MCT followed by treatment with NGR1 for 
21 days, these monocrotaline-induced effects 
were attenuated. Mechanistically, the protective 
effect of NGR1 on MCT-induced PAH depends 
on the suppression of NF-κB signaling pathway. 
MCT, a two-pyrrole alkaloid, is transformed into 
MCT pyrrole (MCTP) in the liver by P450 
monooxygenase [22]. MCT pyrrole is harmful to 
pulmonary arterial endothelial cells leading to 
vascular injury, remodeling, and inflammation 
[22]. The pathological symptoms induced by 
MCT in rats are comparable to the symptoms of 
human PAH, making the MCT-induced PAH rat 
model suitable for PAH studies [22]. In the 
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present study, MCT treatment significantly 
increased RVSP, PASP, mPAP, and RVHI; 
thickened the pulmonary artery wall and 
narrowed its lumen; and enhanced inflammatory 
infiltration, thus validating the MCT-induced PAH 
rat model. These MCT-induced effects were 
alleviated by NGR1 administration. 
 
High levels of the pro-inflammatory cytokines 
TNF-α and IL-6 might induce pulmonary artery 
endothelial cell damage and abnormal PASMC 
proliferation, and contribute to PAH [3,7]. ICAM-
1, an intercellular adhesion molecule present in 
endothelial cells, facilitates leukocyte endothelial 
transmigration [23]. High Mobility Group Box-1 
Protein, produced by activated immune cells, 
acts as a cytokine mediator of inflammation [24]. 
Therefore, ICAM-1 and HMGB1 can be regarded 
as biomarkers of inflammation. In this study, 
NGR1 reduced the elevated levels of IL-6, TNF-
α, ICAM-1 and HMGB1 induced by MCT, thereby 
demonstrating that NGR1 has possible anti-
inflammatory effects. 
 
NF-κB, a major transcription factor, regulates 
many genes involved in both the innate and 
adaptive immune responses [25]. Normally, 
dimers of NF-κB bind to inhibitory IκB proteins in 
the cytoplasm. Upon stimulation, IκB kinase 
phosphorylates the IκBs, thereby targeting them 
for degradation and freeing NF-κB to translocate 
into the nucleus to induce inflammatory cascades 
[26]. In the current study, the MCT-induced 
increase in NF-κB protein levels and decrease in 
IκBα levels were inhibited by NGR1. These 
findings indicate that suppression of the NF-κB 
signaling pathway contributes to the molecular 
mechanism underlying the anti-inflammatory 
effects of NGR1. 
 
CONCLUSION 
 
The findings of the present study demonstrate 
that NGR1 exerts effects that counter MCT-
induced PAH, and these effects are associated 
with NF-κB pathway. Thus, NRG1 is a potential 
novel therapy for PAH. 
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