Effect of dexmedetomidine on miR-144-3p expression and epithelial mesenchymal transition in gastric cancer cells

Zong Chen1, Yong Ding1, Ying Zeng2, Zhifeng Chen1, Xueping Zhang3, Jianyan Chen1,2*

1Department of Anesthesiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou; 2Department of Anesthesiology, Shenzhen Hospital of integrated traditional Chinese and Western Medicine, Shenzhen; 3Department of Anesthesiology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen Anesthesiology Engineering Center, Shenzhen 518020, China

*For correspondence: Email: yan19o@163.com

INTRODUCTION

Gastric cancer is second only to lung cancer as a leading cause of death in the world [1]. The onset of most gastric cancer cases is insidious, but they progress very rapidly. An understanding of the key factors that affect the malignant behavior of gastric cancer cells is very important in the clinical diagnosis and treatment of the disease. Dexmedetomidine (DEX), a frequently-
used intravenous anesthetic, affects different biological processes in the body by regulating a variety of signal pathways [2,3]. The importance of DEX in malignant tumors has been progressively revealed. Many studies have indicated that DEX is involved in regulating the biological behavior of tumor cells [4,5]. However, the effect of DEX on gastric cancer cells, and its exact mechanism remain to be elucidated.

Micro-RNAs (miRNAs) are important post-transcriptional regulatory factors which participate in various biological processes, including the pathogenesis of malignant tumors [6,7]. In this study, bioinformatics methods and in vitro experiments were used to investigate the regulatory effect of DEX on gastric cancer cell-related miRNA and malignant behavior, in order to provide a new insight into the use of DEX in malignant tumors.

EXPERIMENTAL

Materials

Dexmedetomidine was purchased from Absin Bioscience Inc (Shanghai, China), while RPMI-1640 medium and Gibvco FBS were bought from ThermoFisher Scientific (Shanghai, China). Trypsin was product of Invitrogen (Shanghai, China). Reverse transcription kit was obtained from Luoqi Biotechnology (Henan, China). Fluorescent dye SYBR Green I was purchased from Takara (Beijing, China). Protein lysate and protease inhibitor were products of Beyotime Biotechnology, (Shanghai, China). Antibodies for ZEB1, E-cadherin, Vimentin and β-actin were got from Proteintech Company (Proteintech, Wuhan, China), while Cell Counting Kit (CCK-8) was obtained from Topscience Co. Ltd (Shanghai, China).

Cell culture

HGC-27 cells (Shanghai Institute of Cell Biology, China, Shanghai) were cultured at 37 °C in 90 % RPMI-1640 containing 10 % FBS in a 5 % CO2 cell incubator at relative humidity > 95 %. Cells in logarithmic growth phase were divided into control group treated with normal saline, and three groups treated with DEX at doses of 0.01, 0.1 and 1 μmol/L. All treatments lasted for 48 h.

Quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was extracted from the cells in each group with TRIzol reagent. Then, the total RNA was reverse-transcribed to cDNA using reverse transcription kit (Takara, Japan) according the manufacturer's instructions. The primers for miR-144-3p, ZEB1, E-cadherin, Vimentin and β-actin which were used for qPCR (Table 1) were synthesized by Sangon Biotech (Sangon, Shanghai, China). The qRT-PCR reaction system was constituted in line with the operating instructions in a 7500 real-time fluorescence quantitative PCR instrument (Applied Biosystems, American, CA). The reaction steps were as follows: 50 °C for 2 min, 95 °C for 10 min, 95 °C for 15 min x 40 cycles; 95 °C for 15 sec, 60 °C for 1 min, 95 °C for 30 min, and 60 °C for 15 sec. The mRNA expression levels of the genes were calculated using the 2-ΔΔCt method.

Western blot assay

Total protein was extracted with IP lysing solution containing protease inhibitor, and the protein concentration of the lysate was determined using BCA kit. Equal amounts of protein (50-μg) were resolved on 10 % polyacrylamide gel electrophoresis, followed by transfer to PVDF membrane. The membrane was blocked with 10 % skimmed milk at room temperature for 2 h, prior to incubation with primary antibodies for ZEB1, E-cadherin and Vimentin (each at 1:1000 dilution) at 4 °C overnight. Thereafter, the membrane was incubated with secondary antibody at room temperature for 1 h. The blots were subjected to enhanced chemiluminescence (ECL) analysis for 1 h. Image analysis was done with ChemiDoc XRS Chemiluminescence Imager (Bio-Rad, USA).

Table 1: Primer sequences for qRT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>5´-3´</th>
<th>3´-5´</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-144-3p</td>
<td>GCCGCCTACAGTAGATAGTG</td>
<td>GCTGTCAACGATACGCTACG</td>
</tr>
<tr>
<td>ZEB1</td>
<td>GCTTCTCAGCTCTGGGCTTATA</td>
<td>CCTATTCTCCTGGCTTCTTACC</td>
</tr>
<tr>
<td>E-cadherin</td>
<td>CCCGCCTTATGATTCTGGCTGTCC</td>
<td>TCCGTACATGTCAGCGCTTCTTGA</td>
</tr>
<tr>
<td>Vimentin</td>
<td>TTTCTCCAGCGCTTCTAGTT</td>
<td>ATGCTTCTCCGCCAGGTTGT</td>
</tr>
<tr>
<td>β-Actin</td>
<td>GCCAGGTCATCACCATCGCGG</td>
<td>CGTGTGCGCGTAGAGGCTT</td>
</tr>
</tbody>
</table>

Determinant of cell proliferation

Cells in each group were inoculated in 96-well plate at 0, 12, 24, 48 and 72 h, with 5 replicates at each time point. After adherence, 10 μL CCK-8 solution was added to each well. The wells were cultured in the dark for 2 h, after which the optical density (OD) of each well was read at 450nm in a microplate reader.

Transwell assay

Matrigel glue (50 mg/L) was diluted in serum-free RPMI-1640 medium at a volume ratio of 8:1. It was evenly spread in the center of Transwell chamber, and air-dried at 37 °C for 2 h as basement membrane reservoir. Cells in each group were digested, centrifuged and resuspended in serum-free RPMI-1640 hydrated basement membrane. In each group, 3×10^4 cells were inoculated on the basement membrane as invasion model, while 1×10^4 cells were inoculated in Transwell chamber without Matrigel glue (migration model). After addition of 600 μL of RPMI-1640 containing 10 % FBS solution to the lower chamber, the cells were cultured in a constant temperature incubator for 24 h. Thereafter, the cells were fixed with 4 % paraformaldehyde for 15 min, and stained with 0.1 % crystal violet for 30 min. Then, the cells were examined under a light microscope and counted using ImageJ software.

Statistical analysis

The SPSS 23.0 software was used for statistical analysis. Statistical differences in measurement data amongst the groups were analyzed using analysis of variance, while Student’s t-test was used for pairwise comparison. Statistical significance was assumed at p < 0.05.

RESULTS

Influence of DEX on miRNA expression profile

Results from GSE126106 chip analysis (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126106) showed that the expressions of miR-871-5p and miR-881-3p were significantly up-regulated after DEX treatment, while the expressions of miR-451-5p and miR-144-3p were markedly reduced (p < 0.01). These results are presented in Figure 1.

Effect of DEX on the proliferation of HGC-27 cells

Compared with the control group, the proliferative potential of HGC-27 cells in high DEX concentration group was decreased significantly at 48 h and 72 h, while there were no significant changes in cell proliferation at the low and middle DEX concentration groups (p > 0.05; Figure 3).
Figure 3: Cell proliferation potential in each group. **p < 0.001, compared to the control group

Effect of DEX on the invasion and migration of HGC-27 cells

As shown in Figure 4, the invasion and migration potential of cells in the middle- and high-DEX concentration groups were significantly higher than those in the control group (p < 0.05).

Figure 4: Cell invasion and migration potential in each group. *P < 0.05, compared to the control group; **p < 0.001, compared to the control group

DISCUSSION

Dexmedetomidine (DEX) is a frequently-used intravenous anesthetic in clinics. In recent years, it has been discovered that DEX regulates the malignant behaviors of tumor cells. A study revealed that DEX significantly upregulated the phosphorylation levels of the transmembrane protease serine 2 (TMPRSS2) and STAT3 Tyr705 in breast cancer cells i.e., MCF-7 and MDA-MB-231, and promoted their migration [4]. Moreover, it has been reported that DEX enhanced the invasion and metastasis of A549 lung cancer cells and HCT116 colorectal cancer cells, through a mechanism related to upregulation of matrix metalloproteinases MMP-2 and MMP-9, and hypoxia-induced factor-1α (HIF-1α) [8]. Dexmedetomidine (DEX) up-regulated the expression of miR-155 in ovarian cancer cells, thereby inhibiting the tumor-promoting effect mediated by HIF-1α [9]. It has also been demonstrated that DEX promoted the expression of miR-143-3p and inhibited the malignant behavior of esophageal cancer cells [10]. These results indicate that DEX exerts different effects on different malignant tumor cells. However, its effect on gastric cancer cells, and the related mechanisms are still unclear. In the present study, it was found that DEX significantly downregulated the expression level of miR-144-3p in rat myocardium in the GEO database chip (GSE126106). Thus, it can be reasonably speculated that miR-144-3p may serve as a potential target of DEX.

Low expression of miR-144-3p is often closely associated with malignant tumors [11-13]. It has been reported that in gastric cancer, the expression level of miR-144-3p was significantly lower than those of adjacent tissues, and it was negatively correlated with lymph node metastasis and TNM stage, suggesting that miR-144-3p may be a protective factor for gastric cancer [14]. *In vitro* studies have shown that miR-144-3p promoted the radiosensitivity of gastric cancer cells by inhibiting the expression of zinc finger transcription factor ZEB1 [15]. Moreover, it has been reported that miR-144-3p regulated the target molecules PBX3 and CBX4, and inhibited epithelial-mesenchymal transformation, proliferation and metastasis of gastric cancer cells [16,17].

In the present study, human gastric cancer cells HCG-27 were used as an *in vitro* model. It was found that the expression of miR-144-3p was significantly and dose-dependently reduced after DEX treatment. This finding was consistent with the sequencing data of the GSE126106 chip. At the same time, the expression of EMT-related molecules downstream of miR-144-3p were significantly changed, and the EMT process was enhanced. Moreover, the levels of invasion and migration were significantly increased. These results indicate that DEX inhibited the expression of miR-144-3p and promoted the EMT process of gastric cancer cells. Interestingly, cell proliferation was inhibited on treatment with the high concentration of DEX, due to the cytotoxicity produced the drug through other mechanisms.

CONCLUSION

DEX promotes the metastasis of gastric cancer cells by regulation of miR-144-3p and EMT. This finding provides a new insight into the treatment of gastric cancer.
DECLARATIONS

Acknowledgement

This study was supported by the Shenzhen Municipal Commission of science and technology innovation (Grant no.JCYJ20170306144452663).

Conflict of Interest

No conflict of interest associated with this work.

Contribution of Authors

We declare that this work was done by the authors named in this article, and all liabilities pertaining to claims relating to the content of this article will be borne by the authors. Zong Chen and Yong Ding conceived and designed the study. Ying Zeng, Zhifeng Chen, Xueping Zhang and Jianyan Chen collected and analyzed the data, while Zong Chen wrote the manuscript which was approved by all authors. Zong Chen and Yong Ding contributed equally to this study.

Open Access

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

REFERENCES