PROMOTING ACCESS TO AFRICAN RESEARCH

Tropical Journal of Pharmaceutical Research

The AJOL site is currently undergoing a major upgrade, and there will temporarily be some restrictions to the available functionality.
-- Users will not be able to register or log in during this period.
-- Full text (PDF) downloads of Open Access journal articles will be available as always.
-- Full text (PDF) downloads of subscription based journal articles will NOT be available
We apologise for any inconvenience caused. Please check back soon, as we will revert to usual policy as soon as possible.





Formulation and Release Characteristics of Zidovudine-Loaded Solidified Lipid Microparticles

EM Uronnachi, JDN Ogbonna, FC Kenechukwu, SA Chime, AA Attama, VC Okore

Abstract


Purpose: To formulate and determine the release profile of zidovudine (AZT)-loaded solidified lipid microparticles (SLMs).
Methods: Different concentrations (0, 1, 2, 3 and 5 %w/w) of zidovudine (AZT) were formulated into microparticles in melt dispersion of Phospholipon® 90H and goat fat in the ratio 1:1, 2:1, 2:3 and 1:3 followed by lyophilization. They were characterized for particle size, yield, entrapment efficiency (EE) and loading capacity (LC). In vitro release kinetics and mechanism of release were assessed sequentially in simulated gastric fluid (SGF, pH 1.2)and simulated intestinal fluid (SIF, pH 7.2).
Results: The ratio 1: 1 formulation was the most stable in terms of physical observation.. Particle size analysis indicated that the particles were irregular in shape with size ranging from 5.10 ± 0.10 to 13.40 ± 2.20 μm. Yield decreased with increase in drug concentrations in the SLMs formulations. EE data showed that the microparticles containing 1 % w/w of AZT had the highest entrapment efficiency of 74.0 ± 0.03 %. LC also decreased with increase in concentration of AZT. AZT tablet released most of its content within 5 min with a sharp decrease in the concentration but the SLMs maintained its release for 8 to 12 h in different batches
Conclusion: The results show that drug content has influence on drug release from the SLMs, but not on the mechanism of release. Furthermore, dose dumping was avoided and drug release mechanism was mostly non-Fickian while for the reference (commercial) tablet, it was Fickian.

Keywords: Phospholipon® 90H, Solidified lipid microparticles, Solidified reverse micellar microparticle, Zidovudine.




http://dx.doi.org/10.4314/tjpr.v13i2.5
AJOL African Journals Online