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Abstract 

Purpose: To identify the structural requirements for designing a lead key for insulin-like growth factor 
(IGF-1R) inhibition using group-based quantitative structure activity relationship (GQSAR) and 
molecular docking.  
Methods: GQSAR method requires fragmentation of molecules. The molecules in the current dataset 
were fragmented into three (R1, R2 and R3) by applying common fragmentation pattern, and fragment-
based 2D descriptors were then calculated. GQSAR models were derived by applying various methods 
including multiple linear regressions and partial least square or k-nearest neighbour.  
Results: Four generated GQSAR models were selected based on the statistical significance of the 
model. It was found that the presence of flexible and non-aromatic groups on fragment R1 was 
conducive for inhibition. Additionally, the existence of amino groups as hydrogen bond donors at 
fragments R2 and R3 was fruitful for inhibition. Docking studies revealed the binding orientation adopted 
by the active compounds at several amino acid residues, including Met 1126, Arg, 1128, Met 1052, GLU 
1050, Met 1112, Leu 1051, Met 1049, Val 1033, and Val 983 at ATP binding sites of IGF-1R kinase 
domain.  
Conclusion: The generated models provide a site-specific insight into the structural requirements for 
IGF-1R inhibition which can be used to design and develop potent inhibitors. 
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INTRODUCTION 
 
Insulin-like growth factor-1 receptor (IGF-1R) is a 
tyrosine kinase of the insulin receptor family with 
hetero-tetrameric α2β2 subunits. Alpha subunit is 
located extracellularly and contains the binding 
domain, while the β subunit is mainly intracellular 
with a small portion spanning across the 
membranes. The latter subunits are responsible 

for intracellular signal transduction due to 
tyrosine kinase domain and associated motifs [1]. 
IGF-1 receptors are located in all brain tissues 
such as median eminence, hippocampus, and 
cortex [2].  
 
Physiological activation of IGF-1R, which 
activates PI3K/Akt/mTOR, and Ras/Raf/MEK/ 
ERK pathways only occurs upon binding of IGF-1 



Abdullahi et al 

Trop J Pharm Res, June 2015; 14(6): 942  
 

or IGF-2 ligands to the receptor. Conversely, 
ligand-dependent activation of IGF-1R is 
bypassed in many solid and hematological 
cancers leading to continuous activation of 
PI3K/Akt/mTOR and Ras/Raf/MEK/ERK 
pathways that promote proliferation and inhibition 
of apoptosis [3]. IGF-1R has been widely 
targeted to decrease cellular proliferation and 
promote apoptosis in cancers [4,5]. 
Crystallographic structures of IGF-1R co-
crystallized with various ligands have been 
identified [3,6-8]. The biological activity of these 
ligands depends on the interactions with certain 
residues in the ATP binding sites of IGF-1R 
kinase domain, which serve as hydrogen bond 
donors, acceptors, or hydrophobic pockets. 
Despite the success in the design of IGF-1R 
inhibitors, there is a need to optimize the lead 
compounds to efficient drug compounds.   
 
Fragment-based lead discovery (FBLD) has 
shown promise in current drug discovery and 
lead optimization. The main concept of this 
method is to drive new molecules by combining 
fragments that are determined based on ligand-
target interaction information [9]. Recently, 
successful application of group-based 
quantitative structure activity relationship 
(GQSAR) for lead optimization have been 
reported [10]. In GQSAR, molecules are 
fragmented, based on specific molecular sites, 
bonds, and rings or even interactions with the 
target, and then the 2D fragment-based 
descriptors are calculated. The models 
generated by GQSAR provide hints on the 
impact of fragment variation on activity [11].  
 
In this study, GQSAR was performed using 
various compounds from different literature 
sources with the aim of designing potent IGF-1R 
inhibitors. To further elucidate the binding modes 
of the generated compounds, high-throughput 
virtual screening (HTVS) and extra-precision 
docking (XP) of compounds from the developed 
GQSAR models were carried out using the Glide 
module of Schrodinger LLC.  
 
EXPERIMENTAL  
 
Group-based quantitative structure activity 
relationship (GQSAR)  
 
The Hansch method of QSAR assumes that 
groups at different substitution sites of 
congeneric series do not interact with each other; 
on the contrary, conventional molecular 
descriptors currently in use capture this 
interaction by calculating them for the whole 

molecule. However, for this method, 
interpretation of generated QSAR equation 
poses significant challenges. In view of this, the 
new G-QSAR approach, which uses established 
2-D/3-D descriptors for the fragments and also 
includes interaction of fragments using cross 
terms, can provide promising results. Cross 
terms added are descriptors evaluated as a 
product of vectors of fragment descriptors. G-
QSAR method was very recently proposed, [11] 
and differs from conventional fragment based 
QSAR methods in two ways: 
  
1. Fragmentation of each molecule in the 

dataset is done with a set of predefined rules.  
2. G-QSAR method considers cross/interaction 

terms as descriptors to account for the 
fragment interactions.   

  
Software  
 
GQSAR modeling was executed using the 
Molecular Design Suite (VLifeMDS software 
package, version 4.1, from Vlife Sciences 
Technologies Pvt Ltd, India) on a Microsoft 
Windows 7 operating system. 
 
Dataset collection and fragmentation 
 
A dataset of 164 IGF-1R inhibitors with their IC50 
values were collected from a Binding-DB 
database [8,12,13]. The biological activity values 
(IC50) were converted into the negative 
logarithmic pIC (-logIC50 +6). The structures were 
energy minimized using Merck Molecular Force 
Field (MMFF) using convergence criterion (RMS 
gradient) of 0.01 kcal/mol and maximum number 
of cycles of 100 [14]. 
 
The success of GQSAR methodology depends 
mainly on the fragmentation of molecules in 
dataset, thus the compounds were grouped into 
different chemical scaffolds including: 
isoquinoline-1, 3-dione, pyrimidine, 3-cyano-6-
hydroxy quinolone, benzoxazole, pyrrole, 
benzimmidazole, 7-amino pyrozolopyrimidine, 
and pyrrolopyrimidine. 
 
All molecules were then fragmented into three 
different fragments as shown in Figure 1. 
 
1. Fragment R1: Aromatic substitution on the 

scaffold, i.e., Fragment R2. 
 
2. Fragment R2: It is formed by aromatic 

heterocyclic ring (chemical scaffold) structure 
after Fragment R1. 

 
3. Fragment R3: Substitution of the scaffold, 

i.e., Fragment R2. 
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Figure 1: Fragmentation pattern. The dataset was grouped into different chemical structures based on common 
chemical parts that were mainly aromatic heterocyclic ring named as the scaffold or fragment R2 (red circle). The 
3D structures were fragmented into three fragments R1 (blue circle), R2 (red circle), R3 (yellow circle) 
 
Fragment-based molecular descriptors 
calculation 
 
Individual physicochemical descriptors like 
molecular weight, hydrogen bond donors and 
acceptors, retention index (chi), path count, 
estate numbers, atomic valence connectivity 
index (chiv), polar surface area, etc were 
calculated for all fragment-based descriptors. 
The important descriptors found fruitful according 
to the developed model can be defined as 
follows:  
 
1. chi1: The retention index (first order) derived 

directly from gradient retention times. 
2. chi3Cluster: Third order cluster chi index. 
3. chiV6chain: Atomic valence connectivity index 

for six membered ring. 
4. chiV4pathCluster: Valence molecular 

connectivity index of 3rd order path cluster. 
 

5. H-AcceptorCount: Number of hydrogen bond 
acceptor atoms. 

6. H-DonorCount: Number of hydrogen bond 
donor atoms. 

7. IdwAverage: Information-based descriptors. 
8. k3alpha: Third alpha modified shape index. 
9. kappa2: Second kappa shape index. 
10. OxygensCount: Number of oxygen atoms in a 

compound. 
11. RotatableBondCount: Number of rotatable 

bonds. 
12. SaaCHcount: The total number of carbon 

atoms connected with a hydrogen along with 
two aromatic bonds. 

13. SaaCHE-index: Electrotopological state 
indices for number of –CH group connected 
with two aromatic bonds. 

14. SaaNHE-index: Electrotopological state 
indices for number of –NH group connected 
with two aromatic bonds. 
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15. SaasCE-index: Electrotopological state 
indices for number of carbon atom connected 
with one single bond along with two aromatic 
bonds. 

16. SaasN(Noxide)count: The total number of 
nitro oxide group connected with one single 
along with two aromatic bonds. 

17. SdOE-index: Electrotopological state indices 
for number of oxygen atom connected with 
one double bond. 

18. SdsCHE-index: Electrotopological state 
indices for number of –CH group connected 
with one double and one single bond.  

19. SdssCcount: Total number of carbon 
connected with one double and two single 
bond. 

20. Smr: This descriptor evaluates molecular 
refractivity (including implicit hydrogen) which 
also measure molecular size (number). This 
property is an atomic contribution model that 
assumes the correct protonation state 
(washed structures). 

21. SsNH2count: The total number of –NH2 group 
connected with one single bond. 

22. SsNH2E-index: Electrotopological state 
indices for number of –NH2 group connected 
with one single bond. 

23. SssNHcount: The total number of –NH group 
connected with two single bonds. 

24. SssNHE-index: Electrotopological state 
indices for number of –NH group connected 
with two single bonds. 

25. SsssNcount: Total number of nitrogen 
connected with three single bonds. 

26. SssSE-index: Electrotopological state indices 
for number of sulphur atom connected with 
two single bonds. 

27. Volume: volume of a compound. 
28. XlogP: This descriptor signifies ratio of solute 

concentration in octanol and water and 
generally termed as octanol water partition 
coefficient.  

 
Dividing the dataset into training and test 
sets 
 
Data was divided into training and test sets using 
sphere exclusion algorithms with a dissimilarity 
level of (+1) [15]. To ensure the goodness of 
data distribution across the two sets, uni-column 
statistics parameters of each set (maximum 
value, minimum value, average and standard 
deviation) were evaluated. 
 
Model building 
 
A simulated annealing algorithm (SA) was 
applied for variable subset selection [16]. 
Thereafter, multiple model equations were 
generated using multiple linear regression 

(MLR), [17] partial least squares regression 
(PLSR) [18], and k-nearest neighbor (kNN) [19]. 
The model was considered to have a significant 
predictivity when the squared correlation 
coefficient (r2) between descriptors and activity 
(pIC) was more than 0.6. Similarly, the models 
were considered to possess significant internal 
and external predictivity when the cross-validated 
correlation coefficient of the leave-one-out 
method (q2) > 0.6 and the correlation coefficient 
of the training set (pred_r2) > 0.5 [10].  
 
Molecular docking of the GQSAR-generated 
compounds 
 
In addition to GQSAR analysis of the generated 
compounds, we explored the use of High 
throughput virtual screening (HTVS) and extra-
precision (XP) docking to compare the binding 
mode as well as docking scores of the highly 
active BMS1112 and poorly active compounds 
BMS1605 in comparison to the native ligand 
BMS_754805 in the 3I81 crystal structure. 
 
Protein preparation and minimization 
 
The coordinate of 3I81 crystal structure was 
obtained from the RCSB Data Bank (PDB) [8] 
and prepared using Protein Preparation Wizard, 
which is a part of the Maestro software package 
(Maestro, v9.3, Schrodinger, LLC, New York, NY, 
2012). Briefly, all formal charges and bond 
orders were added for heteroatoms. Hydrogen 
atoms were also added to all atoms of the protein 
crystal structure. All water molecules were 
removed and the protein was then minimized 
using the refinement module in Prime (Prime, 
v3.1, Schrodinger, LLC, New York, NY, 2012).   
 
Ligands preparation, refinement, and docking 
 
Using LigPrep (LigPrep, v2.5, Schrödinger, LLC, 
New York, NY, 2012), all ligands were converted 
into low energy 3D structures by adding 
hydrogen atoms, neutralizing charged groups, 
and generating ionization and tautomeric states. 
A rectangular box was used to define the binding 
site of the ligands in 3I81 receptor and glide 
energy grid was generated using Glide Receptor 
Grid Generation workflow (Glide, v5.8 
Schrödinger, LLC, New York, NY, 2012). High 
throughput virtual screening (HTVS) and extra-
precision (XP) docking were carried out using the 
default Glide settings. The virtual screening 
workflow allows screening of a large number of 
ligands in three stages. The grid-based ligand 
docking utilized here allows the approximation of 
positions, orientations, and conformations of the 
ligand in the 3I81-binding pocket through many 
hierarchical filters. The scored docking 
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parameters include total GlideScore (GScore): 
sum of XP terms excluding Epik state penalties, 
total docking score (Dockscore): sum of XP 
terms, lipophilicEvdW and Hydrogen bonding 
(HBond): ChemScore H-bond pair term. The 
docking mode of the most active compounds 
BMS1112 and an inactive compound BMS1605 
in the active site of 3I81 were studied in terms of 
functional groups interactions with amino acid 
residues in the ATP binding site. The docking 
result of these compounds was compared to the 
docking results of the original co-crystalized 
ligand BMS_754807 in 3I81. 
 
RESULTS 
 
Group-based quantitative structure 
relationship (GQSAR)  
 
Selection of training and test sets 
 
Fragment-based molecular descriptor 
calculations resulted in a pool of 325 different 
two-dimensional descriptors divided into 110, 
100, and 115 descriptors for fragment R1, R2, 
and R3, respectively. The sphere exclusion 
method with a dissimilarity value of +1 resulted in 
a training set of 117 compounds and a test set of 
47 compounds. The statistical parameters of 
both sets show that activity was evenly 
distributed within both sets; i.e. the average pIC50 
values for the training and test sets are 4.25 and 
4.73, respectively. The test set (maximum and 
minimum pIC50 values are 6.39 and 2.23) 
represents the whole training set (maximum and 
minimum pIC50 values are 6.52 and 1.86). 
Multiple models were built using various model-
building and variable-selection methods. Table 1 
shows the statistical parameters for each model. 
 
 

GQSAR models  
 
Model 1 (SA/MLR) 
 
pIC50 = - 0.5019 (± 0.1931) R1SssNHcount - 0.1485 
(± 0.0484) R1XlogP - 0.9183 (± 0.0614) 
R2OxygensCount - 1.1604 (± 0.5860) R2SssSE-index - 
2.2208 (± 0.4239) R2SaasN(Noxide)count - 0.1028 (± 
0.0093) R3SaaCHcount  + 0.2638 (± 0.0801) 
R3IdwAverage + 0.0476 (± 0.0040) R3SsNH2E-index + 
3.4422. 
 
The simulated annealing variable selection 
method coupled with multiple linear regression 
using 117/47 compounds as the training/test set 
resulted in a statistically significant model having 
a predictive activity of r2 = 72.80 %. Internal and 
external validation revealed a significant 
predictive power of 61.70 % and 81.24 %, 
respectively. The regression plot of predicted 
versus actual activity and the percentage 
contribution plot of descriptors are displayed in 
Figure 2A. Table 2 shows the percentage 
contribution of each 2D descriptor found in model 
1. 
 
Model 2 (SA/MLR) 
 
pIC = 0.1 080 (± 0.0371) R1chi1 - 0.0819 (± 
0.0022) R1SaaCHE-index  - 1.6774 (± 0.3544) 
R1SdsCHcount  + 0.4275 (± 0.0158) R2SaaNHE-index - 
0.1671 (± 0.0060) R3SaaCHcount  + 0.0067 (± 
0.0001) R3smr  + 0.7122 (± 0.1197) R3SsNH2count  - 
0.0943 (± 0.0328) R3H-AcceptorCount + 3.2704 
 
Model 2 shows an improved correlation 
coefficient (r2 = 0.7306) compared to model 1. 
Both q2 (0.6817) and pred_r2 (0.8445) values 
indicate that the model is statistically significant 
in terms of internal and external predictivity.

Table 1: Statistical parameters for the developed GQSAR models 
 

Parameter Model 1 
(SA/MLR) 

Model 2 
(SA/MLR) 

Model 3 
(SA/PLSR) 

Model 4 
(SA/kNN) 

n (Test/training) 47/117 47/117 47/117 47/117 
Degree of freedom 108 108 113 108 
F-test (Fischer statistics) 36.1235 36.6188 105.6782 NA 
r2 0.7280 0.7306 0.7372 NA 
q2 0.6170 0.6817 0.6688 0.7828 
pred_r2 0.8124 0.8445 0.8220 0.6152 
r2_se 0.5975 0.5945 0.5741 NA 
q2_se 0.7090 0.6463 0.6645 0.5151 
pred_r2_se 0.5620 0.5117 0.5574 0.8050 
Number of contributing 
descriptors (k) 8 8 8 8 

F-test: Fisher test; r2: squared correlation coefficient; q2: cross-validated correlation coefficient of leave-one-out 
method (internal validation); pred_r2: correlation coefficient of the training set (external validation); se: standard 
error; SA: simulated annealing; MLR: multiple linear regression; PLSR: partial least square regression; kNN: k 
nearest neighbor 
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Figure 2: Fitness plot between the actual vs predicted activity values (pIC = log of the inhibitory concentration) of 
the training and test sets. (A) Model 1 where r2 = 0.7280, (B) Model 2 where r2 = 0.7306, (C) Model 3 where r2 = 
0.7372, (D) Model 4 where q2 = 0.7828 
 
Table 2: The percentage contribution of important 2D descriptors found in the developed G-QSAR models 
 
Model Fragment 2D descriptor % Contribution 
Model 1 R1 SssNHcount -7.5 
  XlogP -7 
 R2 OxygensCount -35 
  SaasN(Noxide)count -18 
  SssSE-index -7 
 R3 IdwAverage +8.5 
  SaaCHcount -10 
  SsNH2E-index +7 
Model 2 R1 Chi1 +7.5 
  SaaCHE-index -11.5 
  SdsCHcount -12.5 
 R2 SaaNHE-index +29 
 R3 H-AcceptorCount -4.5 
  SaaCHcount -14.5 
  Smr +3.5 
  SsNH2count +17 
Model 3 R1 ChiV4pathCluster +5 
  SdOE-index -5.5 
  SssNHE-index -6 
  XlogP -12 
 R2 OxygenCount -31.5 
  SaasN(Noxide)count -13.5 
 R3 IdwAverage +9 
  SaaCHcount -13.5 
 
Figure 2B represents the regression plot of the 
actual activity against the predicted values by 
model 2. The percentages contributions of the 
important descriptors were shown in Table 2.  
 
Model 3 (SA/PLSR) 
 
pIC = - 0.1561 R1SssNHE-index - 0.2765 R1XlogP + 
0.3384 R1chiV4pathCluster - 0.0188 R1SdOE-index - 

0.8690 R2OxygensCount - 1.7626 R2SaasN(Noxide)count - 
0.1522 R3SaaCHcount  + 0.3072 R3IdwAverage 
+ 3.2957 
 
Statistics suggests that the model generated 
using PLSR is comparable to the earlier models. 
Regression plot and the percentage contribution 
were described in Figure 2C and Table 2.  
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Model 4 (SA/kNN) 
 
The classification method of k-nearest neighbour 
was applied in combination with simulated 
annealing algorithms for generating a new model 
for IGF-1R inhibitors. Distance-based weighted 
average method was used for the prediction of 
biological activities of the molecules. This study 
led to a statistically significant GQSAR model 
with eight descriptors using the five nearest 
neighbours. The k-NN-generated model provided 
ranges (maximum and minimum) for eight 
different descriptors, as presented in Table 3. 
 
Docking studies of best active compound and 
moderately active compound  
 
The docking results showed two GQSAR 
generated compounds 608 and 1112 with 
docking scores of -10.10 and -9.72 respectively 
while the native ligand BMS_754807 scored -
9.29 which is slightly lower score. Other 
compounds such as BMS_1126 and BMS_1148 
scored -9.22 and 8.72 respectively. These scores 
are comparable to the native ligand’s score. In 
order to understand the binding mode of the 
most active compound (BMS_1112) in 
comparison to the native ligand (BMS_754807) 
and to obtain the binding information for further 
structural optimization, we conducted molecular 
docking using Glide. We utilized Glide XP extra 
precision mode which allows flexible docking of 
ligands. As shown in Figure 3, the docking poses 
of compound 1112 at the 3I81 receptor active 
site (IGF-1R) shows interaction between 
fragment R1 and MET 1126 and ARG 1128 and 
between fragment R3 and MET 1052 and GLU 
1050 on the hinge. The amide group of fragment 
R1 donates hydrogen to Met 1126 and Arg 1128. 
No hydrophobic interactions were observed 
between R1 and the active site of IGF-1R. 
Binding mode of moderately active compound 
BMS-1605 shows hydrophobic interactions 

between the phenyl ring of fragment R1 with VAL 
983, ME1049, and VAL 1033 on the IGF-1R. 
Lastly the docking pose of the co-crystallize 
BMS-754807 ligand forms hydrogen bonds to 
GLU 1050 and MET 1052 at the hinge.  No 
hydrogen bonds are formed with the other 
residues in the active site. 
 
DISCUSSION 
 
Group-based quantitative structure activity 
relationship (GQSAR) 
 
Model 1 (SA/MLR) 
 
As shown in Figure 2A and Table 2, model 1 
indicates that structural modifications on 
fragment R2 are critical for generating potent 
IGF-1R inhibitors. Negatively contributing 
features like oxygen count (-35 %), N-oxides (-18 
%) and single bonded sulfur atoms are 
detrimental for activity.  
 
Remarkably, all of the above structures (O, S 
and N oxides) can be considered as hydrogen 
bond acceptors since they have lone pair 
electrons. Thus, we can deduce that the actual 
role of the scaffolds in ligand-target interaction is 
most likely different from being hydrogen bond 
acceptors.  
 
On the other hand, the current model attributes 
about a quarter of the variation in biological 
activity to structural variation on fragment R3. 
Number of carbon atoms connected to one 
hydrogen atom and two aromatic bonds 
(SaaCHcount) are detrimental to the activity 
leading to the conclusion that aromatic 
hydrocarbons in fragment R3 are harmful to the 
inhibitory activity. Therefore, multi-nitrogen-
containing heteroaromatic rings like triazine are 
expected to provide better inhibition than 
aromatic rings such as benzene, pyridine and 
pyrimidine.  

 
Table 3: Contribution range for fragment descriptors found in model 4 
  

Descriptor Range 
Minimum Maximum 

R1-k3alpha 1.413 1.654 
R3-chi3Cluster 1.015 1.441 
R2-SsssNcount 0 0 
R1-SaaCHcount 2 4 
R3-SdssCcount 0 1 

R3-SaasCE-index 2.167 4.25 

R2-Volume 99.962 100.953 
R2-chiV6chain 0.017 0.017 
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Figure 3: Binding mode of the best active compound BMS-1112 compared to the native ligand BMS_754807 in 
the ATP binding site of IGF-1R (PDB: 3I81) crystal structure. All the ligands were docked into IGF-1R receptor 
using Glide XP function. (A) The docking poses of compound 1112. (B) Docking pose of co-crystallize BMS-
754807 ligand. The ligand interaction diagrams (LID) of the ligands are shown highlighting the hydrophobic 
interactions, residues charge states and polarity 
 
Electro-topological state indices of NH2 
connected to one single bond is conducive to 
bioactivity leading to speculate that primary 
amines are fruitful for inhibition, most likely via 
hydrogen bonding, either by donating or 
accepting hydrogen atoms, provided that the 
nitrogen atom is connected to electropositive 

groups. Third, information-based descriptors 
(IdwAverage) have a positive contribution of 8.5 
% reflecting the effect of entropic interaction 
fields of fragment R3 to the free energy of drug-
target binding, which depends on the 
hydrophobic and hydrogen bonding properties of 
both.  
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Accordingly, we can surmise that fragment R3 of 
the ligand is crucial for binding to IGF-1R. The 
XlogP (-7 %) and NH group connected to two 
single bonds (7.5 %) of fragment R1 suggest that 
hydrophobic interactions, along with hydrogen 
donor of R1, are not favorable for inhibition. 
Consequently, aromatic rings containing nitrogen 
atoms in fragment R1 are more preferable for 
activity than their saturated counterparts. 
   
Model 2 (SA/MLR) 
 
As shown in Figure 2B and Table 2, model 2 
indicates that the three fragments are almost 
equally contributing; Fragment R1 contributes to 
~31 %, fragment, R2 contributes to ~29 % and 
fragment R3 contributes to ~39 % of variation 
within the biological activity. According to the 
current model, fragment R3 contributes to ~39 % 
of the variation of the biological activity, 
molecular refractivity index (smr) (~3.5 %) and 
SsNH2count (~17 %) are conducive for activity 
while H-acceptor Count (~-4.5 %) and 
SaaCHcount (~-14.5 %) are deleterious towards 
activity. The descriptor (SaaCHcount) has a 
negative contribution towards activity indicates 
that the presence of substitutions on the aromatic 
ring can increase activity. The descriptor 
SaaNHEindex (29 %) at fragment R2 signifies 
electro topological states indices of –NH group 
connected to two aromatic bonds and is the 
largest contributor towards biological activity.  
 
The positive contribution of this descriptor states 
that nitrogen-containing five-membered 
heteroaromatic rings (pyrrole, imidazole and 
triazole) are preferable as scaffolds. The terms 
found to be contributing to fragment R1, 
SaaCHE-index (~-11.5 %) and SdsCHcount (~-
12.5 %), are unfavorable contributors while Chi1 
(7.5 %) is a positive contributor towards activity. 
Collectively, the descriptors indicate double 
bonded CH group is not recommended in this 
fragment.  
 
Model 3 (SA/PLSR) 
 
As shown in Figure 2C and Table 2, model 3 
indicates that fragment R2 (~45 %) has the 
highest contribution towards biological activity 
while Fragment R1 (~29 %) and Fragment R3 
(~23 %) have lower contribution. As shown in the 
previous models, OxygensCount (~-32 %) and 
SaasN (Noxide) count (~-14 %) suggest the 
importance of reducing both oxygen atoms and 
aromatic N-oxide at fragment R2. Moreover, 
SdOE-index (~-6 %), SssNHE-index (~-6) XlogP 
(~-12) and ChiV4PathCluster (~5 %) are terms of 
fragment R1 found correlating with biological 
activity. The electro-topological index of double 

bonded oxygen and single bonded NH group 
seem to have negative impacts on the biological 
activity. Taken together, N-mono substituted 
sulfonamides (R-NH-SO2), nitrosamides (R-NH-
NO), and nitroamines (R-NH-NO2) would result in 
low inhibitory activity. The molecular connectivity 
indices of path cluster 3rd order 
(chiV4pathCluster) are parallel with ligand activity 
having a positive contribution, which suggests 
that R1 should contain a higher number of 
molecular subgraphs of 3-edge cluster, such as 
2-methylpentane and 3-methylpentane.  
 
Model 4 (SA/kNN) 
 
As shown in Table 2, the molecular descriptors 
suggest a key role of aromatic carbon 
(SaaCHcount and SaasCE-index) at fragment R1 
and R3 along with terms like K3alpha at fragment 
R1. In addition, nitrogen count, volume, and 
chiV6 chain at R2, and chi3cluster and double 
bonded carbon count at R3 were classified as 
contributors. The ranges could be of a critical 
value when searching in the fragment library for 
designing new inhibitors. A fitness plot of the 
actual and predicted activities by this model is 
displayed in Figure 2D.  
 
Molecular docking of the GQSAR-generated 
compounds 
 
The docking results show some GQSAR 
generated compounds including BMS_608 and 
BMS_1112 scoring better than the native ligand 
BMS-754807. BMS_1112 formed three hydrogen 
bonds with the hinge in addition to forming three 
hydrogen bonds with ARG 1054, MET 1126 and 
ARG 1128, while the co-crystallize BMS-754807 
ligand formed three hydrogen bonds to GLU 
1050 and MET 1052 at the hinge without 
hydrogen bonding with other residues. This result 
revealed the importance of the BMS_1112's two 
hydroxyl groups, which donated two hydrogens 
to GLU1050 and accepted hydrogen from 
MET1052. The BMS_1112 also donated 
hydrogen atoms in the formation of non-hinge 
hydrogen bonds with ARG1128, MET1126 and 
ARG 1054 highlighting the availability of two 
amides in donating hydrogens to form many 
hydrogen bonds.  
 
The co-crystallized BMS-754807 ligand lacks the 
non-hinge hydrogen bonds. Furthermore as 
shown in figure 3A, the docking analysis of 
fragment R1 of the BMS_1112 at the IGF-1R 
active site shows the amide group of fragment 
R1 donates hydrogen to Met 1126 and Arg 1128. 
No hydrophobic interactions were observed 
between R1 and the active site of IGF-1R. This is 
in agreement with the results of GQSAR models. 
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Furthermore, the analysis of fragment R3 of 
BMS_1112 shows interactions between hydroxyl 
groups on R3 with Met 1052 and GLU 1050, 
which are strategically located on the hinge 
region. There were also hydrophobic interactions 
between R3 and Met 1112, Leu 1051, Ala 1001, 
Met 1052, Met 1049, Val 1033, and Val 983.  The 
large hydrophobic surfaces and three hydrogen 
bonding can increase the entropic interaction 
field of R3 that is related to information based 
descriptors (IdwAverage) mentioned in the 
GQSAR models. 
 
CONCLUSION 
 
All generated GQSAR models were statistically 
significant, and the consensus of all models 
provide site-specific clues for design of new IGF-
1R inhibitors. Non-hydrophobic substituents with 
branching and low NH count at fragment R1 are 
found to be essential for better activity. Scaffolds 
of the molecules that form the fragment R2 can 
be modified by decreasing oxygen atoms and 
increasing hydrogen bond donors. GQSAR 
studies suggest that the major contribution 
towards activity is from substituents at R3 that 
have less aromatic carbon count and more NH2 
groups.  
 
In searching for novel and potent compounds, 
fragments that fit within the requirements of the 
GQSAR models can be selected and grown to 
generate a library of compounds which can be 
synthetically evaluated for IGF-1R inhibition. 
Molecular docking results of the GQSAR-
generated compounds showed that the 
molecules of a high predicted activity possess 
interaction terms in good agreements with the 
developed models (hydrogen bonding at R1 and 
hydrophobic interaction and hydrogen bonding at 
R3). Some of the generated molecules rewarded 
high docking scores and efficient interaction 
features with the hinge, which can be strong 
candidates for future investigation. 
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