A Mathematical Analysis of Intravitreal Drug Transport
Abstract
Purpose: The aim of our present work is the development of a quasi steady-state model for the distribution of intravitreally injected drugs and investigation of the effects of various model parameters on the drug distribution in normal and diseased eyes. Method: A simple mathematical model for the intravitreal transport of drugs was developed using Fick's law of diffusion, Darcy's law of convective flow, and Michaelis –Menten kinetics of metabolism. A Crank- Nicolson finite difference scheme of the equation describing the drug transport in the vitreous body was written, in which the radial and axial diffusive terms and convective terms of the equation were approximated by central differences, while the temporal terms were approximated by average of forward and backward time differences. A system of linear algebraic equations obtained from the Crank Nicolson finite difference scheme was solved by line Jacobi iterative scheme in which successive improved approximate results are obtained. Result: The model predicts that an increase in the metabolic (consumption) rate and drug release rate constant reduces the concentration of intravitreally injected drug at the centre of retina and along centreline of vitreous body. A significant increase in the drug concentration at the centre of retina and along the centreline of the vitreous body in the eye afflicted with glaucoma and retinal detachment is observed and the decay rate of drug concentration in these pathological states is higher than that in the normal eyes. Conclusion: The vitreous outflow as observed in the glaucomatous and/- or rhegmatogenous eyes may contribute to the transport of intravitreally injected drug in the vitreous body. The drug concentration in the vitreous body and at the centre of retina in such diseased eyes is higher than that in the normal eyes and the decay rate of drug concentration is significantly enhanced.
Keywords: Convective-diffusive transport, intravitreal injection, line-Jacobi iterative technique, release rate.
Tropical Journal of Pharmaceutical Research Vol. 7 (1) 2008: pp. 867-877
Submission of a manuscript to this journal is a representation that the manuscript has not been published previously and is not under consideration for publication elsewhere.
All authors named in each manuscript would be required to sign a form (to be supplied by the Editor) so that they may retain their copyright in the article but to assign to us (the Publishers) and its licensees in perpetuity, in all forms, formats and media (whether known or created in the future) to (i) publish, reproduce, distribute, display and store the contribution, (ii) translate the contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or abstracts of the contribution, (iii) create any other derivative works(s) based on the contribution, (iv) to exploit all subsidiary rights in the contribution, (v) the inclusion of electronic links from the contribution to third party material where-ever it may be located, and (vi) license any thrid party to do any or all of the above.