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Abstract 

Purpose: To characterize and identify metabolites of (-)-epicatechin in microsomal fraction of rat 
hepatocytes (MFRHs). 
Methods: A single incubation of (-)-epicatechin (1 mL, 50 µg/mL) in MFRH (0.5 mg/mL) was used for 
the generation of metabolites. Thereafter, the sample was subjected to protein precipitation prior to 
analysis with ultra-high performance liquid chromatography coupled to linear ion-trap orbitrap mass 
spectrometry (UHPLC-LTQ-Orbitap MS). 
Results: Nine metabolites of (-)-epicatechin were characterized on the basis of high resolution mass 
measurement, MS spectra and literature data. Based on their structures, the major metabolic routes of 
(-)-epicatechin in MFRHs were identified as hydroxylation, dihydroxylation and glycosylation. 
Conclusion: This is the first report on metabolites of (-)-epicatechin in MFRHs, and it is helpful in 
gaining deeper insight into the metabolism of (-)-epicatechin in vivo. The results will also provide 
guidance in research on the pharmacokinetics of new drugs. 
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INTRODUCTION 
 
(-)-Epicatechin and its isomer (+)-catechin, which 
belong to the flavan-3-ol family, are ubiquitously 
distributed in plants [1]. They have been used in 
many fields, such as food and medical industries 
due to their anti-oxidative [2], anti-microbial [3,4], 
and cardio-protective properties [5]. Research on 
the metabolism of drugs is a very important step 
in discovery of new drugs. It is also vital for drug 
development, pharmacokinetics, and clinical 

pharmaceutics [6]. However, not much is known 
about the metabolites of (-)-epicatechin [7]. On 
the other hand, more than 40 metabolites of the 
isomer of (-)-epicatechin, (+)-catechin have been 
isolated and characterized through in vitro and in 
vivo studies [8-11].   
 
The technique of liquid chromatography coupled 
with mass spectrometry (LC-MS) is a useful tool 
for studying the metabolites of drugs in vitro or in 
vivo [12]. However, ultra–high performance liquid 
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chromatography (UHPLC) can provide a higher 
and faster separation, and less solvent 
consumption than LC-MS [13], while high-
resolution mass spectrometry (HRMS) can 
provide elemental composition by accurate mass 
measurement. Therefore, UHPLC-HRMS has 
been widely used for the characterization of drug 
metabolites among several different LC/MS 
platforms [14-15]. 
 
The aim of this investigation was to isolate and 
characterize (-)-epicatechin metabolites from 
MFRHs. 
 
EXPERIMENTAL 
 
Reagents 
 
Authentic (-)-epicatechin standard (purity ＞98.0 
%) was product of Chengdu Biopurify 
Phytochemicals Co, Ltd (Sichuan, China). 
Acetonitrile (HPLC grade) was purchased from 
Fisher Scientific (Fisher, Fair Lawn, USA). 
Reduced nicotinamide adenine dinucleotide 
phosphate (NADPH) was supplied by Zhong 
Sheng Rui Tai Biotech (Beijing, China), while a 
Milli-Q system (Millipore, MA, USA) was used for 
preparing distilled water. Rat liver microsomes 
were product of BD Biosciences (Bedford, MA, 
USA). Magnesium chloride and Tris-HCL buffer 
used in this experiment (pH 7.4) were of 
analytical grade. 
 
Incubation of microsomes 
 
Metabolic transformation was carried out in vitro 
in a final volume of 1 mL by incubating (-)-
epicatechin with RLMs in a shaking water bath at 
37 oC. (-)-Epicatechin (50 µg/mL) was pre-
incubated for 5 min in 0.1 mol/L Tris-HCl buffer 
(pH 7.4) containing 5mM MgCl2 and 0.5 g/mL 
MFRHs. Next, NADPH (1 mM) was added to 
initiate the reaction. The reaction was allowed to 
proceed for I h, and then stopped by introduction 
of ice-cold acetonitrile (1 mL) to the reaction 
mixture. The mixture was vortexed and clarified 
by centrifugation at 4 °C for 10 min at 15,000 
rpm. The metabolites were identified by injection 
of 5 μL of the supernatant into UHPLC-LTQ-
Orbitrap MS. A solution prepared in a similar 
manner but lacking (-)-epicatechin served as 
blank. All analyses were done in triplicate. 
 
UHPLC-LTQ-Orbitrap analysis conditions 
 
All UHPLC-LTQ-Orbitrap analyses were 
performed with LTQ/Orbitrap XL hybrid mass 
spectrometer (Thermo Electron, Germany) 
equipped with An Accela UHPLC system 
(Thermo Fisher Scientific) comprising an auto 

sampler, a de-gasser component  and a 
quaternary pump, via an electrospray ionization 
source (ESI) (Thermo Electron, Bremen, 
Germany). Column chromatography was carried 
out at room temperature using an Acquity™ 
UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm) 
with a mobile phase of water (solvent A) and 
acetonitrile (solvent B) through gradient elution 
(0.2mL per/min) as follows: 0.2 mL/min: 0 – 2 
min, maintained at 5 % B; 2 – 3 min, increased 
from 5 to 10 % B; 3 – 15 min, increased from 10 
to 15 % B; 15 – 17 min, increased from 15 to 80 
% B; 17 – 23 min, maintained at 80 % B; 23 – 24 
min, decreased from 80 to 5 % B; 24 – 28 min, 
maintained at 5 % B.  
 
Negative ion mode was used in the MS/MS 
operations, and mass analysis was carried out at 
a resolution of 30,000 in the range of 100 to 800 
m/z. The capillary voltage, source voltage, 
capillary temperature, tube lens sheath gas flow 
and auxiliary gas flow rate were 35 V, 3.0 kV, 
350 °C, 110 V, 30 and 10 arbitrary units, 
respectively. 
 
Data processing 
 
Data acquisition and processing were performed 
with Thermo X caliber 2.1 workstation (Thermo 
Fisher Scientific), and the results were compared 
with that from blank MFRH samples obtained 
under identical conditions. 
 
RESULTS 
 
Metabolic routes of (-)-epicatechin 
 
In order to identify the metabolites of (-)-
epicatechin, the first step of this work was to 
study the MS2 fragmentation pattern of (-)-
epicatechin. The parent ion [M-H]- was at m/z 
289.0704 (-0.9 ppm，C15H13O6) and the MS2 

spectrum yielded fragment ions at m/z 245.0811 
(1.1 ppm，C14H13O4), m/z 205.0499 (1.8 ppm，

C11H9O4) and m/z 179.0346 (4.0 ppm，C9H7O4) 
by loss of CO2 moiety (44 Da), C4H4O2 (84 Da), 
and C6H6O2 (110 Da) (Figure 1). These product 
ions aided the identification of the metabolites of 
(-)-epicatechin. 
 
Identified metabolites 
 
The results from high resolution extracted ion 
chromatography (HREIC) are shown in Figure 2. 
Nine metabolites of (-)-epicatechin were 
tentatively characterized on the bases of high 
resolution mass measurements, MS spectra, and 
literature data in negative ion mode. The UPLC-
MS data are summarized in Table 1. 
 



Cai et al 

2987 
 

Metabolite M0 was confirmed as (-)-epicatechin 
through comparison of the retention time, high 
resolution mass measurements, and MS2 spectra 
with authentic references. 
 
Metabolites M3, M6, M8 and M9 eluted at 7.59, 
12.53, 14.53, and 16.87 min, respectively, and 
possessed un-protonated molecular ion [M-H]- at 
m/z 305.0652 (-1.3 ppm, C15H13O7), m/z 
305.0655 (0 ppm, C15H13O7), m/z 305.0654 (-0.7 
ppm, C15H13O7), and m/z 305.0651 (-1.7 ppm, 
C15H13O7). These ions were by 16 Da higher than 
that of (-)-epicatechin, implying that they were 
derived from (-)-epicatechin by hydroxylation. 
The diagnostic product ions at m/z 179.0342 (1.8 
ppm，C9H7O4), m/z 179.0337 (-1.0 ppm，

C9H7O4), m/z 179.0342 (1.8 ppm，C9H7O4), and 
m/z 179.0342 (1.8 ppm，C9H7O4) were observed 

in their MS2 spectra, which confirmed that they 
were metabolites of (-)-epicatechin. Therefore, 
they were tentatively characterized as 
hydroxylated products of (-)-epicatechin. 
 
The compounds M1 and M2 were eluted at 6.54 
and 7.38 min with the same deprotonated 
molecules at m/z 331.0806 (-1.9 ppm, C17H15O7), 
which was a +36 Da (2O)-shift from that of (-)-
epicatechin. The MS2 spectra of M1 and M2 
showed the major fragment ions at m/z 313, m/z 
287, and m/z 269, due to loss of H2O, CO2, and 
H2O+ CO2, respectively from the parent drug 
which had similar fragmentation pattern with (-)-
epicatechin. Based on previous analyses, they 
were identified as dihydroxylated products of (-)-
epicatechin. 
 

 
           Figure 1: MS2 spectrum of (-)-epicatechin 
 

 
Figure 2: Results of HREIC analysis of (-)-epicatechin metabolites in MFRHs: m/z 305.0655, 331.0812, 
451.1235 
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Table 1: Fragment ions from (-)-epicatechin metabolism in MFRHs identified by UHPLC-LTQ-Orbitrap MS 
 

Peak tR Theoretical mass 
m/z 

Experimental mass 
m/z 

Error 
(ppm) 

Formula [M-
H]- MS/MS fragment Transformation 

1 6.54 331.0812 331.0806 -1.9 C17H15O7 MS2 [331]: 313.0700 (100), 287.0910 (49), 269.0794 (32), 205.0495 (22) Dihydroxylation 

2 7.38 331.0812 331.0806 -1.9 C17H15O7 MS2 [331]: 313.0699 (100), 287.0909 (49), 269.0798 (38), 205.0498 (16) Dihydroxylation 

3 7.59 305.0655 305.0652 -1.3 C15H13O7 MS2 [305]: 179.0342 (100), 221.0444 (76), 219.0651 (74) Hydroxylation 
4 8.97 451.1235 451.1230 -1.2 C21H23O11 MS2 [451]: 313.0700 (100), 355.0803 (63), 289.0701 (8) Glycosylation 
5 9.82 451.1235 451.1229 -1.4 C21H23O11 MS2 [451]: 313.0911 (100), 289.0701 (66), 245.0805 (37) Glycosylation 
0 12.2

9 289.0707 289.0704 -0.9 C15H13O6 MS2 [209]: 245.0500 (100), 205.0810 (40), 203.0709 (19),179.0345 (15), 
231.0291 (9), 271.0603 (6) 

(-)-epicatechin 

6 12.5
3 305.0655 305.0655 0.0 C15H13O7 MS2 [305]: 179.0337 (100), 219.0653 (75), 221.0446 (70) Hydroxylation 

7 13.2
0 451.1235 451.1228 -1.6 C21H23O11 MS2 [451]: 289.0703 (100), 245.0806 (58) Glycosylation 

8 14.5
3 305.0655 305.0654 -0.7 C15H13O7 MS2 [305]: 179.0342 (100), 219.0652 (76), 221.0445 (72) Hydroxylation 

9 16.8
7 305.0655 305.0651 -1.7 C15H13O7 MS2 [305]: 179.0342 (100), 219.0650 (79), 221.0443 (74) Hydroxylation 



Cai et al 

2989 
 

Compounds M4, M5, and M7 appeared after 
8.97, 9.82 and 13.20 min with un-protonated [M-
H]- at m/z 451.1230 (-1.2 ppm, C21H23O11), m/z 
451.1229 (-1.4 ppm, C21H23O11), and m/z 
451.1228 (-1.6 ppm, C21H23O11), 162 Da 
(C6H10O5) higher when compared with (-)-
epicatechin. Fragments at m/z 289.0701 (-2.0 
ppm, C15H13O6), m/z 289.0701 (-2.0 ppm, 
C15H13O6), and m/z 289.0703 (-1.3 ppm, 
C15H13O6) by loss glucosyl (C6H10O5, 121 Da) 
moiety relative to the precursor ion at m/z 451 in 
their MS2 spectra indicated that a glucosyl moiety 
was present. Thus, they were presumed to be 
glucosyl products of (-)-epicatechin. 
 
DISCUSSION 
 
The results obtained from preliminary trials with 
various mobile phase systems in this study 
showed that good chromatographic peak shapes 
could be achieved by using mobile system 
without formic acid, while much lower column 
pressure was afforded by the inclusion of 
acetonitrile in the mobile phase. Therefore, the 
mixture of acetonitrile and water was chosen as 
the mobile phase solvent system in this study. A 
gradient elution pattern was adopted.  
 
(-)-Epicatechin is characterized by the presence 
of many hydroxyl groups on the flavanol 
skeleton, which make it suitable for detection by 
ESI in negative mode [15]. To the best of our 
knowledge, many studies have so far focused 
mainly on the metabolites of (+)-catechin, while 
not much has been done on the elucidation of 
the metabolites of (-)-epicatechin. For example, 
40 and 58 metabolites of (+)-catechin were found 
in in vitro and in vivo investigations, respectively 
[8-11]. Among these, 7 metabolites were 
identified in MFRHs [16]. It is worth mentioning 
that (-)-epicatechin has a metabolic pathway 
similar to that of (+)-catechin in MFRHs. 
Therefore, it is scientifically reasonable to 
assume that the in vivo metabolisms of (-)-
epicatechin and (+)-catechin will follow a similar 
route. This will be helpful in the identification of 
metabolic products of (-)-epicatechin in vivo. 
 
CONCLUSION 
 
The in vitro metabolites of (-)-epicatechin have 
been successfully identified based on UHPLC-
LTQ-Orbitrap analysis. Based on the 9 
metabolites identified and their MS data, the 
major metabolic pathways of (-)-epicatechin in 
RLMs are hydroxylation, dihydroxylation and 
glycosylation. This is the first report on the 
metabolites of (-)-epicatechin in RLMs and is 
considered a useful guide for understanding its 
metabolism in vivo. In addition, the methodology 

used in this study offers a new perspective for 
studying the metabolism and pharmacokinetics 
of new drugs. 
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