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Abstract 

Purpose: To prepare a novel dexpanthenol (DEX)-loaded nanofiber mats for wound healing. 
Methods: A novel bioactive wound dressing formulation with dexpanthenol was developed by 
electrospinning method. Poly (lactic-co-glycolic acid), poly (ethylene oxide) and poly (caprolactone) 
were used as polymers. Morphological features, swelling properties, in-vitro release behavior, and cell 
viability properties of the formulations were evaluated. 
Results: Morphological examination of mats confirmed successful formation of the fibers. Swelling of 
nanofiber mats results was 34.44 ± 1.05, 18.59 ± 2.11, 86.06 ± 3.25 and 44.62 ± 1.75 % for 
polycaprolactone (PCL), PCL + DEX, poly lactic-co-glycolic acid (PLGA) and PLGA + DEX, respectively, 
and occurred in a controlled manner. PLGA + DEX formulation has advantage over PCL + DEX and 
poly (ethylene oxide) (PEO) + DEX due to controlled in-vitro release of DEX. The highest cell viability 
was afforded by PLGA+DEX formulation.  
Conclusion: DEX-loaded PLGA nanofiber formulation may be useful as an alternative wound dressing 
due its suitable mechanical and biological properties. 
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INTRODUCTION 
 
Electrospining has been taken into consideration 
for many years by scientist; however its 
application to pharmaceutical field has been 
delayed. There has been increasing interest in 
polymeric nanofiber mats for biomedical 
applications [1]. One of the areas that this kind of 
products can be used is wound care especially in 
the form of wound dressings. Wound healing is 

known as a natural body response when the skin 
is damaged [2].  It is achieved through four 
programmed phases which are hemostasis, 
inflammation, proliferation, and remodeling. To 
be success in healing all four phases must occur 
at the right time and in the right. Healing process 
could be improved by application of 
pharmaceutics. Nanofibers can accelerate the 
wound healing process due to their large specific 
surface area. The nanofiber mat covers the 
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wounded area, protects the damaged skin and 
stimulates wound healing process by active 
pharmaceutical agents [3].   
 
There are several techniques used for the 
production of polymeric nanofibers [4]. 
Electrospinning technology overcomes the 
restrictions of conventional spinning. The 
electrospinning technic has a high rate of 
nanofiber production, simple set up and low 
production cost [5]. Polyvinyl alcohol (PVA), PCL, 
PEO, PLGA, gelatin, collagen, chitosan, 
Polyglycolic acid (PGA), fibrinogen and silk can 
be used for producing nanofiber mats. PLGA is a 
random biodegradable polymer and have been 
used for several drug-delivery preparations, 
surgical implants and tissue engineering 
scaffolds [6]. PEO is water soluble and has a 
linear structure [7]. It has been widely used for 
medical applications as electrospun nanofibers 
[8]. PCL is a semi-crystalline polymer which has 
non-immunogenecity, shows slow 
biodegradability and high biocompatibility [9].    
 
DEX is the stable alcoholic analog of pantothenic 
acid (vitamin B5). It is readily oxidized to 
pantothenic acid, a building block of of coenzyme 
A (CoA) [10]. It has been reported by clinical 
observations that topically applied DEX is an aid 
in superficial wound healing with minimal risk of 
skin irritancy [11].   
 
The aim of this work to prepare and characterize 
DEX-loaded PLGA, PEO and PCL nanofiber 
mats by electrospinning method for wound 
healing. The formulations were characterized by 
microscopic observations, thickness 
measurement, FT-IR analyses, mechanical 
properties, swelling ability and loading capacity. 
In-vitro release behavior was and cell viabilities 
were also tested with sterilized formulations.   
 
EXPERIMENTAL 
 
Materials used include DEX produced by BASF 
which was a gift from ASSOS Pharmaceuticals 
(Turkey). PLGA, Hexafluoroisopropanol (HFIP) 

was purchased from Sigma (USA), 
Dimethylformamide (DMF) from Dasit, and 
Tetrahydrofuran (THF) from Merck. PEO and 
PCL were obtained from Sigma-Aldrich (USA). 
The other substances obtained commercially 
were analytical grades or higher. 
 
Preparation of nanofiber mats 
 
The polymer or polymer mixtures and DEX were 
dissolved in solvent or solvent mixtures to 
fabricate electrospun nonwoven nanofiber mats. 
Final volume of mixture was set to 100 ml. The 
solvents or solvents mixture were chosen in 
accordance to solubility of polymers. THF/DMF, 
HFIP and DMF were chosen for PLGA due to its 
solubility. Since PEO can be dissolved in water, 
distilled water is chosen as solvent. For the 
formulations F6, F7 and F8 chitosan was mixed 
with PEO and in this case different solvents were 
used. The best results were obtained with 
DCM/DMF mixture for PCL. The polymer solution 
with and without drug was loaded to a 5 mL 
plastic syringe which was fitted with a metallic 
needle. The flow rate was set on the syringe 
pump that was mounted horizontally, and the 
pump forced the piston of the syringe carrying 
the solution to move (12). The compositions of 
formulations were given in Table 1 and the 
conditions of electrospinning operation were 
summarized in Table 2. 
 
Table 2: The parameters of electrospinning procedure 
 

Formulation 
code 

Solution 
feed rate 
(mL/h) 

Spinneret-to-
collector 

distance (cm) 

Operating 
Voltage 

(kV) 
F1 2 15 13 
F2 2 15 10 
F3 4 15 16.4 
F4 2 15 10 
F5 1 20 15.5 
F6 0.5 15 17.5 
F7 2 26 24 
F8 0.3 26 13 
F9 1 20 15.5 
F10 2 15 17.5 
F11 2 15 18 
 

Table 1: Composition of prepared formulations 
 
Code PLGA (%) PEO (%) PCL (%) DEX (mg/mL) Chitosan (%) Solvent  
F1 15     THF/DMF (1:1) 
F2 15     HFIP 
F3 15     DMF 
F4 15   100  HFIP 
F5  6    Distilled water 
F6  1   1 Acetic acid solution (0.05%) 
F7  1   1 Acetone/ DCM (1:1) 
F8  1.4   0.6 Acetone/ DCM (1:1) 
F9  6  100  Distilled water 
F10   12   DCM/DMF (1:1) 
F11   12 100  DCM/DMF (1:1) 
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Characterization of nanofiber mats 
 
The prepared mats were examined with an 
optical microscope (Olympus BX51, Japan) 
to confirm the formation of nanofibers. For 
further observations, the morphology of 
nanofibers was investigated by scanning 
electron microscopy (SEM) (XL 30 ESEM 
with EDAX, Philips, Netherlands). 
 
The excipients and nanofibers were analyzed 
over 400 - 4000 cm-1 wavelength by the Fourier 
Transform Infrared Spectroscopy (FT-IR, Perkin 
Elmer Spectrum 100 Spectrometer, USA).  
 
Tensile strength and percentage of elongation at 
break of mats was determined using TA-XT Plus 
Texture Analyzer (Stable Micro Systems UK) 
equipped with 5 kg load cell. 1 x 2 cm mat 
specimens were mounted on a film holder (A/TG 
tensile grips) of texture analyzer [13].  
 
The thickness of the nanofiber mat samples was 
measured using a digital micrometer (Digimatic 
caliper, Mitutoyo, USA) with a measurement 
resolution of 1 µm. Thickness measurement was 
made from three different points of nanofibers 
and the mean of measurement and standard 
deviations were calculated.  
 
Swelling capacity of the nanofiber mat samples 
was investigated by direct immersion of 
formulations in PBS (pH 7.4) to simulate medium 
conditions [14]. The swelling degree (S) was 
calculated according to Eq 1 [15].  
 
S (%) = {(wt – wd)/wd}100 ………………. (1) 
 
where W t is the weight of the swollen sample at 
time t and Wd is the initial weight of the dry 
sample. 
 
Determination of dexpanthenol 
 
The high performance liquid chromatography 
(HPLC) system (Hewlett Packard-1100) 
consisted of C18 reverse phase column (ACE 5-
C18 250 mm x 4.6 mm) with 20 μL sample loop 
was used to determine DEX. The mobile phase 
was a mixture of 10:90 (v:v) acetonitrile and 0.01 
M ortho-Phosphoric acid.  The flow rate, injection 
volume and UV wavelength were set at 1 mL/min 
at 25 ºC, 10 µL and 206 nm, respectively. The 
HPLC method was validated via linearity, 
accuracy and recovery, precision, specificity, limit 
of detection (LOD) and limit of quantification 
(LOQ) and stability. 
 

Drug-loading capacity 
 
The weighed formulation samples were dissolved 
with PBS (pH 7.4). Then, the mixture was shaken 
at 200 rpm for 24 h. Finally, the drug 
concentrations were determined by analytical 
method that mentioned above. Drug loading 
capacity was calculated by dividing practical DEX 
concentration with theoretical DEX concentration. 
 
Evaluation of in-vitro release of dexpanthenol 
 
In-vitro release of DEX through nanofiber mats 
were performed by dialysis bag diffusion 
technique. The weighed samples of nanofiber 
mats were placed in cellulose dialysis bag 
membranes with molecular weight cut off 12-
14,000 D, the membranes were put into 7 mL of 
PBS (pH 7.4). The study was performed in water 
bath at 37 ºC and the system mixed magnetically 
at 600 rpm. The amount of DEX released was 
determined by validated HPLC method. 
 
Sterilization and evaluation of sterility 
 
DEX loaded and unloaded nanofiber mats were 
sterilized by UV (UVP-CL 1000, Ultraviolet 
Crosslinker, UK) cabinet at 254 nm to give a total 
energy of 100 joule/cm2 for 4 h [16]. The sterility 
was controlled by microbiological observation. 
 
Cell culture 
 
Primary human dermal fibroblast–adult (HDFa, 
Invitrogen C-013-5C) cells were cultured in 
Medium-106 (Cascade Biologics) supplemented 
with low serum growth supplement (LSGS, 
Cascade Biology). Cells were maintained at 37 
°C in a humidified atmosphere of 5 % CO2 and 
95 % air at 37 ºC. Cells obtained from early 
passages (passages 4 – 5) to eliminate the 
alterations in morphology, response to stimuli, 
growth rates of cells were used for the following 
experiments.    
 
Coverslips (35 mm in diameter) were pre-coated 
with freshly prepared nanofibers, dried by air and 
were sterilized by UV light for 24 h, placed in a 
12-well culture plate. The cells were seeded on 
the membrane-coated coverslips at a density of 
5000 cells/cm2. After 1, 3 and 5 days of culture, 
samples were rinsed twice with phosphate-
buffered saline (PBS) to remove the non-
adherent cells. Subsequently, membrane-coated 
coverslips were incubated with 3-(4,5-
dimethylthiazolyl-2)-2,5-diphenyltetrazolium 
bromide (Invitrogen; MTT) (5 mg/mL) to 
determine the cell viability. After 4 h of incubation 
at 37 ºC, dimethyl sulfoxide was added to 
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dissolve the red-colored formazan crystals. The 
absorbance of the formazan solution was 
measured in a microplate reader (Varioscan 
Multimode Flash Reader) at 540 nm. Results 
were the Mean ± Standard Error of the Mean 
(Mean ± SEM) from at least three different 
experiments. 
 
Statistical analysis 
 
Data were analyzed using unpaired t-test and 
analysis of variance (one-way ANOVA) followed 
by a Tukey’s multiple comparison test (GraphPad 
Prism, version 6.02 GraphPad Software Inc). 
Differences were considered significant at p < 
0.05). 
 
RESULTS 
 
Microscopic features of nanofibers 
 
Small beads were observed in formulations 
prepared with PLGA in THF/DMF (F1) and 
PEO/Chitosan in Acetone/DCM (F7 and F8) 
Figure 1). The electrospun materials, PLGA in 
DMF (F3) and PEO/Chitosan in acetic acid 
solution (F6), could not collect on the collector 
covered with aluminum foil. Finally; the solutions, 
PLGA in HFIP, PEO in distilled water and PCL in 
DCM/DMF were successfully prepared with and 
without DEX (F2, F4, F5, F9, F10 and F11) and 
the following studies were performed with these 
formulations (Figure 2, Figure 3 and Figure 4). 
 

 
 
Figure 1: SEM images of F1, F7 and F8 formulation 
(PLGA in THF-DMF % 15, PEO/chitosan (1:1) in 
acetone/DCM and PEO/chitosan (1.4:0.6) in 
acetone/DCM) 
 

 
 
Figure 2: SEM images of F2 and F4 formulations 
(PLGA in HFIP % 15 and PLGA+DEX in HFIP % 15) 

 

 
 
Figure 3:  SEM images of F5 and F9 formulations 
(PEO in distilled water and PEO + DEX in distilled 
water) 
 

 
 
Figure 4:  SEM images of F10 and F11 formulation 
(PCL in DCM/DMF and PCL + DEX in DCM/DMF) 
 
FT-IR spectra of excipients and nanofibers  
 
The FT-IR analysis of pure excipients and drug 
loaded and unloaded nanofiber mats were 
shown in Figure 5. The specific bounds for each 
component could be seen from the figure. 
 

 
 
Figure 5: FTIR spectra for DEX loaded and unloaded 
nanofiber mats and pure substances for the spectral 
range between 4000 and 400 cm-1 (NF; nanofiber) 
 
Tensile strength and elongation of nanofibers 
 
The tensile strength and elongation percentage 
of formulations are shown in Table 3. The tensile 
strength and elongation percentage of nanofiber 
mats decreased with incorporating DEX to 
formulations. 
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Table 3: Tensile strength and elongation of the mats 
 
Formulation 
code 

Tensile 
strength 
(N/cm2) 

Elongation 
(%) 

F2 0.657±0.001 24.545±0.362 
F4 0.0005±0.0000 12.845±0.274 
F5 0.0028±0.0001 16.276±0.184 
F9 0.0001±0.0000 2.639±0.393 
F10 0.817±0.0001 35.81±0.952 
F11 0.0038±0.0001 28.285±0.538 
 
Thickness of the nanofiber mats 
 
The highest thickness was observed with PEO 
and PCL had lowest value (Table 4). DEX loaded 
formulations had higher thickness than unloaded 
ones for all formulations. 
 
Table 4: The thickness of nanofiber mats 
 
Formulation 
code 

Polymer/drug Mean (mm) 

F2 PLGA 0.100±0.03 
F4 PLGA+Dex 0.163±0.01 
F5 PEO 0.127±0.05 
F9 PEO+DEX 0.184±0.03 
F10 PCL 0.053±0.01 
F11 PCL+Dex 0.120±0.03 
 
Swelling of nanofiber mats 
 
The swelling percentages were 34.44 ± 1.05, 
18.59 ± 2.11, 86.06 ± 3.25 and 44.62 ± 1.75 for 
PCL, PCL+DEX, PLGA and PLGA+DEX, 
respectively. The swelling test could not be 
performed with PEO and PEO + DEX nanofiber 
mats (F5 and F9) because, after the formulations 
were submerged in water, they dissolved, 
immediately 
 
Analytical method for determination of 
dexpanthenol 
 
A new HPLC method was developed to 
determine DEX concentration in samples. The 
method was validated via several parameters 
according ICH guidance [17]. Coefficient of 
determination was 0.9986. The relative standard 
deviations were less than 2.0 % for accuracy, 
precision/repeatability which confirmed validation 
of method. LOD and LOQ were 0.122143 and 
0.370131 µg/mL, respectively. The stability of 
DEX solution was examined for 48 h and the 
concentration did not change. 
 
Drug-loading capacity 
 
The drug loaded in the nanofiber mats was 
determined as mentioned above. The load 
capacity was 95.42 ± 3.74, 85.4 ± 0.23 and 98.42 
± 1.93 % for F4, F9 and F11, respectively. The 

one-way ANOVA test applied to the results 
gave f-ratio value of 0.19647, the p-value of 
0.831418. The result was not significant at p < 
0.05. 
 
In-vitro release of dexpanthenol  
 
In-vitro release studies, such as in the swelling 
test, could not be performed with the PEO + DEX 
formulation due to high water solubility of PEO. 
The PEO + DEX mats dissolved immediately and 
the drug was released after immersing in PBS. 
The release percentage for F4 and F11 was 
54.24 ± 1.15 and 98.66 ± 1.27, respectively 
(Figure 6).  
 

 
Figure 6: In-vitro release of DEX from the formulations 
(●PCL+DEX, ■ PLGA+DEX) 
 
Sterility of the mats  
 
Nanofiber mats were sterilized by UV method 
before cell culture studies. The microbiologic 
investigation showed that all formulations were 
sterile after UV irradiation. 
 
Cell proliferation  
 
Figure 7 shows the proliferation rate of HDFa 
cells on different nanofibers after 1, 3 and 5 days 
of in-vitro cell culture.  After 1-day culture, it was 
determined that cell viability on DEX + PCL, DEX 
+ PEO and DEX + PLGA nanofibers coated 
slides were significantly higher than and 
unloaded PCL, PEO, PLGA nanofibers coated 
slides, respectively (p < 0.05). However, only 
DEX + PEO formulation showed lower cell 
viability than uncoated control slide for the first 
day. Moreover, at the 3-day of culture, numbers 
of cells increased to approximately two times 
higher than 1-day of culture in all slides. Only 
DEX loaded PLGA fibers significantly improved 
the cell viability compared to unloaded PLGA 
fiber coated slides (p < 0.05); while there was no 
significant increase in DEX loaded PCL and PEO 
fibers compared to unloaded PCL and PEO 
formulations (p > 0.05). At the 5-day of culture, 
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DEX  loaded PLGA coated fibers significantly 
enhanced cell proliferation compared to 
unloaded PLGA coating and control (p < 0.05). 
The graphs show the comparison of HDFa cell 
viability between Dex-modified and unmodified 
nanofiber coated cover slides. 
 

 
 
Figure 7: The result of cell viability tests 
 
DISCUSSION 
 
The macroscopic observation results shown that 
nanofiber mats could prepare successfully with 
each polymer. But, the best result was obtained 
with PLGA. There was no fracture and beads on 
PLGA figures with and without DEX. The scaffold 
like structure of PLGA mats could provide a 
suitable space for cell growth.   
 
Infrared spectroscopy has been frequently used 
to investigate the conformational changes of 
nanofiber mats. The main characteristic vibration 
bands of DEX functional groups were observed 
in the FT-IR spectra [18].  As it was seen in FT-
IR spectra, in bulk PLGA polymer, PLGA 
electrospun nanofibers and PLGA + DEX 
nanofibers, the C=O stretch and the C–O stretch 
hovered around 1750 and 1050 cm−1 
respectively and bands around 3,000 cm−1 were 
observed due to the alkyl groups. There was no 
change in FT-IR spectra of bulk PLGA and 
PLGA nanofibers.  
 
Regarding the PCL spectrum, strong bands such 
as the carbonyl stretching mode around 1723 
cm−1 could be easily identified for pure PCL, PCL 
nanofiber and PCL + DEX nanofibers mats. The 
band around 1290 cm−1 which was seen in all 
spectra was assigned to the backbone C–C and 
C–O stretching modes in the crystalline PCL.  
 
The FT-IR were used to determine molecular 
interactions within PEO and DEX loaded PEO 
nanofibers The figure showed that there is no 
significant interactions between  drug loaded and 
unloaded nanofibers. A band around 2900 cm−1 

was seen in the FT-IR spectra of PEO 

nanofibers and pure PEO that is attributed to the 
symmetric and asymmetric C–H stretching 
modes.  And also the bands at about 1456-1350 
cm−1 and 1102-962 cm−1 were specific for   –
CH2– group and C–O group, respectively. 
 
The spectra of all DEX-loaded nanofibers had 
bounds around 3,800 cm−1 that specific for DEX 
substance. In addition, there was no peak 
revealed to solvents used for fiber spinning that 
means there were no residual solvents left after 
spinning. The absence of residual solvents is an 
important factor in application of nanofiber mats 
for wound healing since it may be harmful in 
biomedical applications. 
 
The presence of DEX weakened the cohesive 
force between chain molecules of polymer and 
therefore, the tensile strength of mats reduced. 
As it was shown with SEM images PEO 
nanofiber mats with DEX (F9) have some broken 
areas that indicate lower tensile strength of this 
formulation. The lowest values were obtained 
with F9 formulations for tensile strength. 
Formulations with PEO are more breakable than 
others. PLGA is a very brittle material, which can 
easily break if the stress increases while PCL is 
a flexible polymer [19]. The SEM images also 
confirmed this data.  
 
The thickness of fiber could vary depending on 
polymer type, active agents, collection time, etc. 
The collection time was not changed in this 
study. But, thickness changed depending on 
polymer type and the presence of active 
substance. As mentioned above, presence of 
DEX increased the thickness due to filling effect 
of active substance.  
 
The change in weight of the specimens gives an 
idea of how much water they can hold and swell. 
The presence of DEX was decrease swelling 
capacity due to gaps filling effect of active 
substances. Other formulations showed high 
swelling capacity due to porous structure of 
nanofiber mats. High swelling capacity is an 
important feature in terms of fluid absorption, 
especially in exudative tissues. 
 
High drug loading was expected due to the 
passive drug loading technique. The drug 
incorporated into the polymeric solution and after 
spinning the solidified drug was entrapped in the 
fiber mats. Therefore, the risk of drug loss is very 
low during process. The drug loading was high 
for all formulations and the differences were not 
significant. 
 
A rapid release was observed with the F11 
formulation while a controlled release was 
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obtained with the F4 formulation after six hours. 
Since healing process takes a long time, the goal 
was to achieve a controlled release of the active 
and also for the nanofibers not to dissolve easily 
at the area of application. They should provide a 
scaffold for growing cells and then the nanofiber 
mats have to degrade by the time to allow drug 
release. From this point of view, PLGA + DEX 
formulation has more advantage than PCL + 
DEX and PEO + DEX formulations. 
 
The UV radiation is used for disinfection 
purposes and this sterilization method has 
advantages such as no need for heating and 
chemicals [20]. In our study the nanofiber mats 
sterilized by UV method before cell culture 
studies. 
 
Recent studies have shown that the properties of 
a scaffold are very important in regulating the 
biological properties of cells and in the formation 
of tissue substitutes (buraya kendi iyi 
literatürlerinden birini eklyecebilirsin). HDFa cells 
are frequently used in the in vitro studies on 
tissue scaffold studies [21,22]. These cells 
capable to synthesize and secrete extracellular 
matrix proteins and collagen under cell culture 
conditions. In this study, it was demonstrated that 
the HDFa cells could adhere and proliferate on 
all the tested nanofibers which are an essentials 
property for scaffold applications. Furthermore, it 
was determined that only DEX loaded PLGA 
coated fibers significantly induced HDFa cell 
proliferation compared to unloaded PLGA 
coating and control at the end of the fifth day. 
Our results suggest that DEX loaded PLGA may 
use as an effective alternative biocompatible 
formulation for the scaffold fiber engineering. 
 
CONCLUSION 
 
DEX-loaded PLGA, PCL and PEO nanofibers 
have been suitably prepared by electrospinning 
method. Rapid drug release was obtained from 
PEO mats while PLGA and PEO mats had 
controlled release. Slower release is an 
advantage for long wound healing process. 
PLGA+DEX formulations significantly induced 
cell proliferation. Furthermore, PLGA + DEX 
nanofiber formulation is a promising alternative 
for treatment of skin lesions. 
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