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Abstract 

Purpose: To investigate the effects of myricetin on peripheral nerve regeneration in sciatic nerve crush 
injury model.  
Methods: Separate groups of rats were administered myricetin at 25, 50 or 100 mg/kg body weight/day 
for 2 weeks.  Functional recovery following sciatic nerve injury was assessed by foot position and 
walking track analyses, measurement of mechanical hyperalgesia, and withdrawal reflex latency (WRL).  
Results: Myricetin treatment resulted in significantly enhanced recovery of sensorimotor functions as 
evidenced by increased scores in functional analysis tests. Myricetin treatment remarkably elevated 
brain derived neurotrophic factor (BDNF) expression, and also enhanced activation of Akt and mTORc1, 
reflecting up-regulation of PI3K/Akt/mTORC1 signalling involved in nerve regeneration.  
Conclusion: Myricetin enhances functional recovery and nerve regeneration in rats. These findings 
suggest that myricetin is a potent neuroprotective agent with potential for the management of peripheral 
nerve injury. 
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INTRODUCTION 
 
In clinical practice, peripheral nerve injuries 
(PNIs) are encountered frequently due to 
tumours, accidental trauma, acute compression, 
surgeries or iatrogenic injuries. Traumatic injuries 
are on the increase, with estimated 500,000 new 
patients every year [1]. The peripheral nerve 
damage results in total or partial function 
impairment affecting the motor, sensory and 

autonomic functions. Peripheral nerve injury 
(PNI) is characterized by disruption of axons and 
myelin sheaths [2]. Nevertheless, Schwann cell 
tubes of the basal lamina remain intact and aid in 
regeneration of axons and re-innervation of 
tissues [3,4]. However, the time taken for re-
innervation of the target tissues is critical for 
improvement in sensory and motor functions, 
which makes accelerated regeneration vital for 
adequate functional recovery [5]. Sciatic nerve 

-----------------------------------------------------------------------------------------------------------------------------------------------------
© 2018  The authors. This work is licensed under the Creative Commons Attribution 4.0 International License 
 
 

http://www.tjpr.org
http://dx.doi.org/10.4314/tjpr.v17i12.6
mailto:JessenParkertj@yahoo.com;
http://creativecommons.org/licenses/by/4.0)
http://www.budapestopenaccessinitiative.org/read),


Zhang et al 

Trop J Pharm Res, December 2018; 17(12): 2356 
 

crush injury is an adequate experimental model 
for studying the molecular events involved in 
peripheral nerve regeneration. The model is 
extensively employed in assessing the 
effectiveness of novel drugs in enhancing the 
speed of regeneration and effectively improving 
re-innervation [1]. 
 
The pivotal part of neurotrophins in 
neuroprotection and neuro-regeneration is well 
documented. The neurotrophic factors (NTFs) 
regulate neuronal survival, viability and 
differentiation [6]. Following peripheral nerve 
injury, Schwann cells (SCs) aid in the removal of 
injured end of the axons. Several neurotrophic 
factors such as nerve growth factor (NGF), 
brain-derived neurotrophic factor (BDNF), glial 
cell derived neurotrophic factor (GDNF), and 
neurotrophic factors-3, -4/5 and -6 are secreted 
by SCs [7, 8]. Studies have demonstrated that 
when neurotrophic factors are transported to the 
site of PNI, in vivo nerve regeneration is 
improved [7,9]. 
 
The mechanistic target-of-rapamycin (mTOR), a 
serine-threonine protein kinase, is critically 
involved in vital signaling pathways. It is the core 
constituent of mTOR complex 1 (mTORC1) and 
2 (mTORC2). Studies have shown that mTORC1 
is crucial for regulating various anabolic reactions 
[10], and is tightly associated with the major cell 
signaling pathway, viz, PI3K-Akt pathway. PI3K-
Akt signaling, a major downstream target of 
growth factors, controls a wide range of functions 
including cell survival, proliferation, growth, and 
metabolism. Activation of mTORC1 regulates 
phosphatase and tensin homolog (PTEN), the 
chief inhibitor of PI3K/Akt [11]. In addition, AKT 
phosphorylates and inhibits glycogen synthase 
kinase 3β (GSK-3β, another key downstream 
protein) which is critical for axon growth and 
branching [12]. Studies have reported that the 
Akt-mTORC1 pathway plays a pivotal role in 
PNS and CNS myelination [13, 14]. Compounds 
that can regulate the PI3K-Akt-mTORC1 
cascade would be of immense clinical value. 
 
Myricetin (3, 3’, 4’, 4, 5, 5’, 7 - 
hexahydroxyflavone), a plant-derived flavonoid is 
present in various vegetable, fruits, nuts and red 
wine [15]. Myricetin has been reported to 
possess anti-oxidant and antibacterial [16]; 
cardio-protective [17], and anti-proliferative 
properties [18]. The lipid-lowering activities of 
myricetin [19], and its anti-diabetic properties [20] 
have been reported. However, not much work 
has been done on the effects of myricetin on 
nerve regeneration. In this study, the effect of 
myricetin on enhancement of nerve regeneration 

following PNI in sciatic nerve crush injury model 
was investigated.  
 
EXPERIMENTAL 
 
Antibodies and chemicals 
 
Myricetin was procured from Sigma-Aldrich (St. 
Louis, MO, USA). Antibodies against BDNF, 
TrkB, Akt, mTORc1, PTEN, GSK-3β, phospho-
Akt, phospho- GSK-3β, and phospho-mTORC1 
were also procured from Sigma-Aldrich. β-Actin 
and proliferating cell nuclear antigen (PCNA) 
used for expression analysis was purchased 
from Santa Cruz Biotechnology (CA, USA). All 
other chemicals used were of analytical grade 
and were obtained from Sigma-Aldrich unless 
otherwise stated. 
 
Experimental animals 
 
Adult Sprague-Dawley rats weighing 200 - 220 g 
were procured from research laboratory animal 
facility of our University. The animals were 
housed in sterile polypropylene cages (2 per 
cage) under standard animal house settings (23 
± 2 ℃; 12-h dark/12-h light cycle, and 50 - 55 % 
relative humidity), with unrestricted access to 
feed and clean drinking water. The animal 
experimental protocols were approved by the 
ethical committee of Southwest Medical 
University (approval number: TK345511), and 
were carried out in compliance with international 
animal welfare guidelines [21]. 
 
Surgical procedure for sciatic nerve injury  
 
The rats were anesthetized by intraperitoneal 
(i.p.) injection of 0.7 mg/kg acepromazine, 10 
mg/kg xylazine, and 95 mg/kg ketamine. The 
surgery sites were shaved neatly and wiped with 
alcohol (70 %). Using the gluteal muscle splitting 
method, the sciatic nerve was uncovered by 
incision made along the mid-thigh level with the 
help of a surgical microscope. At 10 mm from the 
sciatic notch, the sciatic nerve was crumpled for 
a total of 30 sec (10 sec at a time) with a pause 
of 10 s [22]. The sciatic nerve was observed to 
make sure that the epineurial sheath was 
undamaged but translucent due to injury 
(axotomy). It was reimbursed back below the 
muscle [23], and the incision was sutured.  
 
The rats exposed to sciatic nerve crush injury 
were randomly divided into 5 groups (groups II to 
V) with 12 rats/group. Treatment groups (groups 
III - V) received myricetin (25, 50 or 100 mg/kg 
body weight) via oral gavage every day for 14 
days, starting 6 h after sciatic nerve crush 
damage. Group I rats (control) were not 
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subjected to nerve injury. Groups I and II rats 
were treated with equivalent volumes of saline in 
place of myricetin. 
 
Evaluation of functional recovery 
 
Foot positioning 
 
Following sciatic nerve injury, foot positioning 
was monitored. The animals were positioned on 
a plate at room temperature, and foot positioning 
was observed every 3rd day following 24 h post-
injury for 21 days. The foot positioning of the rats 
was scored based on altered locomotor scale 
ranging from 1 to 3 [24]. 
 
Measurement of withdrawal reflex latency 
 
Withdrawal reflex latency (WRL) refers to the 
time taken for the withdrawal of the affected hind 
paw from a hotplate. For the measurement of 
WRL, animals with the injured hind paws were 
placed on a hotplate (at 56 ℃) after wrapping the 
rats with surgical cloth above the midriff. This test 
was conducted thrice with a break of 120 sec 
between repeated tests to avoid sensitization 
[25]. The latency time was determined with a 
stopwatch, and was measured from the time the 
rats were placed on the plate to the time of 
withdrawal of the hind paw [26]. 
 
Mechanical hyperalgesia 
 
To measure hyperalgesia following sciatic nerve 
crush damage, each rat was placed gently on a 
non-greasy surface, and onto the dorsal surface 
of the affected hind limbs, a piston was applied 
using computerized gauge. The display of pain 
by either making a noise or paw withdrawal was 
recorded. When animals exhibited pain, the 
pressure due to the device was released 
proximately and pain threshold was recorded by 
means of an Analgesic Meter (Model 21025, 
UGO Basile, Italy) [27]. The mean of three 
successive values punctuated by an interval of 
10 - 20 min was determined. The pressure 
needed to induce withdrawal of paw in the 
animals is called the paw pressure threshold. 
Pain threshold levels were measured every 5 
days and expressed in grams according to the 
method of Renno et al [24]. 
 
Determination of motor function recovery 
 
For determination of recovery of locomotor 
activity, sciatic functional index (SFI) [28] and toe 
spread index (TSI) [29] assessments were 
conducted. The indices were constructed on 
measurements of walking footpaths which reflect 
functional sciatic nerve recovery. 

 
For assessing locomotor activity, rats were 
trained to move on a white sheet of paper that 
covered the bottom of an 8.5-cm wide and 100-
cm long track in a dark box [30]. Later, the hind 
feet of the animals were dipped in red dye to 
track the walk. To determine the following 
measurements, footprints of rats were used: Print 
length (PL) - the distance from the heel to the 
third toe; toe spread (TS) - the distance between 
the first and fifth toes, and intermediary toe 
spread (ITS) - the distance between the second 
and the fourth toes. The measurements were 
recorded for the affected limb (E) and normal (N) 
limb. For TSI assessment, TS was measured. 
Multiple prints from each foot were acquired, but 
only three prints were used to determine the 
mean extents in the E and N sides. The index of 
nerve dysfunction, SFI, ranges from 0 to 100, 
with 0 equivalent to regular function, and 100 
equivalent to wide-range dysfunction. It was 
calculated using Eq 1. 
 
SFI = - 38:3(EPL - NPL)/NPL + 109.5 (ETS- 
NTS)/NTS + 13.3(EIT- NIT)/NIT- 8:8 …. (1) 
 
TSI was computed as in Eq 2 [31]. 
 
TSI = (ETS - NTS)/NTS …………….. (2) 
 
Western blot analysis 
 
The sciatic nerve tissues (6 per group) were 
normalized in cell lysis buffer and centrifuged for 
30 min at 4 ℃ [32]. Total protein content of the 
supernatant was measured using Bradford assay 
(Bio-Rad). Equivalent quantities of the protein 
samples (50 μg) were subjected to SDS-
polyacrylamide gel electrophoresis SDS-PAGE). 
The protein bands were blotted and transferred 
onto polyvinylidene difluoride (PVDF) 
membranes (Millipore). The membranes were 
then blocked with non-fat milk (5 %) in TBST (20 
mM Tris, 0.05 % Tween-20, and 150 mM NaCl) 
for 2 h at normal temperature. Thereafter, the 
PVDF membranes were washed with PBS and 
incubated at 4 ℃ with primary antibodies 
overnight followed by incubation with horseradish 
peroxidase-conjugated secondary antibody at 
room temperature for 60 min. The blots were 
washed further and the immune-reactive bands 
were quantified using enhanced 
chemiluminescence method (GE Healthcare, 
Piscataway, NJ). 
 
RT-PCR analysis 
 
In order to determine the gene expressions of 
TrkB and BDNF, RT-PCR analysis was 
performed. Total RNA was extracted from nerve 
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tissues by means of TRIzol (Invitrogen, Carlsbad, 
CA, USA) as per manufacturer’s guidelines. The 
RNA samples were then exposed to DNaseI 
digestion (Qiagen, Inc. Valencia, CA) to exclude 
any DNA residues, and the RNA density was 
assessed (Nanodrop spectrophotometer -
ND-1000, Bio-Rad, USA). The initial strand of 
cDNA was created by reverse transcription using 
Fermentas Company (USA) Revert Aid First 
Strand cDNA Synthesis Kit. The PCR procedures 
were carried out as directed in the kit protocol 
(Fermentas Company, USA) using the following 
primer sequences for BDNF and TrkB: 
  
BDNF forward: 
5’-CGAAGAGCTGCTGGATGAG-3, reverse: 
5’-ATGGGATTACACTTGGTCTCG-3; TrkB 
forward: 5’-CCTCCACGGATGTTGCTGA-3’, 
reverse: 5’-GGCTGTTGGTGATACCGAAGTA-3’ 
GADPH forward: 5’-CCGTATCGGACGCCTGGT 
TA-3’, reverse: 5’-GGCTGTTGGTGATACCGA 
AGTA-3.  
 
GAPDH expression was used as the internal 
control. The PCR mixture obtained was run on 
agarose gel (1 %) and the products were 
visualised with ethidium bromide (0.05 %). Band 
intensities were scanned and analysed with 
Bio-Gel imagery apparatus (Bio-Rad, USA). 
 
Statistical analysis  
 
The results of the study are presented as mean ± 
standard deviation (SD) obtained from six 
independent trials. Statistical differences 
between different groups were analysed using 
SPSS package (version 22.0). The results were 
subjected to one-way analysis of variance 
(ANOVA) with subsequent post-hoc analysis 
using Duncan’s multiple range test. Values of p < 
0.05 were assumed to be statistically significant. 
 
RESULTS 
 
Myricetin treatment enhanced functional 
recovery after nerve crush injury 
 
The effects of myricetin action on functional 
recovery following sciatic nerve crush injury were 
assessed. The foot location analysis revealed a 
progressive retrieval in the animals treated with 
myricetin (25, 50 or 100 mg/kg). Myricetin-treated 
group exhibited marked recovery on day 21 post-
crush injury, relative to the saline-treated injured 
rats. Interestingly, rats treated with higher dose 
of myricetin (100 mg/kg) presented negligible 
foot location movement or any irregular foot 
placing from day 14 post-surgery through day 21 
(Figure 1). 
 

 
 
Figure 1: Myricetin enhanced motor function recovery 
following sciatic nerve crush injury. ♦ = control; ■ = 
sciatic nerve crush (SNC) injury; ▲ = SNC + 25 mg 
myricetin; ▲ = SNC + 50 mg myricetin; ♦ = SNC + 100 
mg myricetin. Values are represented as mean ± SD 
(n = 6) 
 
Myricetin improved withdrawal reflex latency 
 
Withdrawal reflex latency values reflect the 
nociceptive and motor functions of peripheral 
nerves. The latency values were higher in the 
saline-treated injured group than in the normal 
control group. Myricetin administration 
significantly (p < 0.05) reduced the latency 
values, when compared to group II animals. 
Furthermore, the latency values of rats treated 
with 100 mg myricetin on days 8, 12 post-injury 
were similar to latency values of normal control 
rats (Figure 2). These observations suggest that 
myricetin treatment enhances recovery of motor 
and nociceptive functions of injured sciatic nerve. 
 

 
 
Figure 2: Myricetin enhanced withdrawal reflex 
latency following sciatic nerve crush injury. ♦ = control; 
■ = sciatic nerve crush (SNC) injury; ▲ = SNC + 25 
mg myricetin; ▲ = SNC + 50 mg myricetin; ♦ = SNC + 
100 mg myricetin. Values are represented as mean ± 
SD (n = 6) 
 
Effect of myricetin on withdrawal reflex 
thresholds 
 
The withdrawal reflex thresholds (WRT) of 
affected hind limb in response to external 
pressure stimulus was measured and is termed 
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powered hyperalgesia. It was measured every 
week following injury, for 3 weeks. On the 7th day 
following SNC injury, the rats displayed higher 
WRT values, when compared to normal control 
rats. On the 2nd and 3rd weeks, there was a slight 
decrease in mechanical hyperalgesia in the 
saline-treated injured rats, when compared to the 
1st week. Nevertheless, the myricetin-treated rats 
presented a marked decrease in paw WRT to 
powered stimulus, relative to saline-treated crush 
group from 14th to 21st day post-injury (Figure 3). 
There was no considerable difference in WRT 
values between rats treated with 100 mg 
myricetin and rats in the normal control group. 
 

 
 
Figure 3: Effects of myricetin on nociceptive 
mechanical thresholds. ♦ = control; ■ = sciatic nerve 
crush (SNC) injury; ▲ = SNC + 25 mg myricetin; ▲ = 
SNC + 50 mg myricetin; ♦ = SNC + 100 mg myricetin. 
Values are represented as mean ± SD (n = 6) 
 
Myricetin enhanced motor function recovery 
 
In the normal control-saline treated animals, SFI 
and TSI values were normal, with the SFI value 
around -2, and TSI value zero. However, the TSI 
and SFI values in injured-saline treated rats were 
significantly reduced (Table 1 and Table 2), 

indicating functional impairment following nerve 
crush injury. Interestingly, treatment with 
myricetin produced recovery of sensorimotor 
function as evidenced by significant (p < 0.05) 
increases in SFI and TSI values. On day 21, the 
SFI scores increased from -40.21 ± 1.91 to -
13.16 ± 0.81; while TSI increased to -0.09 ± 
0.001 from -0.29 ± 0.011 on treatment with 
myricetin at 100 mg. These observations 
demonstrate that myricetin enhanced recovery of 
sensorimotor functions following SNC injury. 
 
Myricetin raised BDNF-TrkB expression 
 
The mRNA levels of BDNF and TrkB in the 
crushed nerves were determined using RT-PCR. 
Following SNC injury, the BDNF and TrkB mRNA 
levels were significantly reduced, when 
compared to normal control rats (p < 0.05). 
However, the BDNF expression and TrkB mRNA 
increased significantly in myricetin-treated SNC 
injury rats (Figures 4 A and B), relative to the 
saline-treated SNC injure rats. The raised levels 
of BDNF expression and TrkB mRNA reflect 
increased nerve regeneration following myricetin 
treatment, since BDNF is pivotal in regulating 
and controlling neuronal cell growth, survival and 
proliferation. 
 
Myricetin up-regulated Akt/mTORC1 
signalling 
 
The effects of myricetin on Akt/mTORC1 
signalling following SNC injury was assessed. 
Following SNC injury, noticeably raised levels of 
phosphorylated forms of Akt, mTORc1 and GSK-
3β was observed (Figure 5 A - C). 

 
Table 1: Sciatic functional index 
 
Group Days post-injury 

1 7 14 21 
Control -10.20 ± 1.2 b -15.11 ± 1.27 b -12.01 ± 0.82b  -12.07 ± 1.39 b 

Sciatic nerve crush (SNC) injury -48.71 ± 1.7 ad -45.36± 1.90 ae -50.05 ± 3.85 ad -40.21 ± 1.91 ad 
SNC + 25 mg myricetin -32.38 ± 2.03 ac -39.22 ± 2.73 ad -35.19 ± 3.21 ac -19.77 ± 0.37 ac 
SNC + 50 mg myricetin -38.00 ± 1.32 ac -32.10 ± 1.97 ac -30.87 ± 2.00 ac -15.82 ± 1.26 ac 
SNC + 100 mg myricetin -33.26 ± 2.76 ac -29.15 ± 1.02 ac -31.37 ± 0.97 ac -13.16 ± 0.81 ac 
Values are expressed as mean ± SD; n = 6; ap < 0.05, compared to control; b-ep < 0 between mean values for 
experimental groups on a particular day 
 
Table 2: Toe spread index 
 
Group Post-injury period (days) 

1 7 14 21 
Control 0.01 ± 0.001b 0.02 ± 0.001b 0.00 ± 0.00b  0.07 ± 0.002 b 

Sciatic Nerve Crush (SNC) injury -0.37 ± 0.010 ad -0.45 ± 0.009 ad -0.70 ± 0.042 ad -0.29 ± 0.011 ae 
SNC + 25 mg myricetin -0.22 ± 0.030 ac -0.29 ± 0.010 ac -0.39 ± 0.021 ac -0.20 ± 0.010 ad 
SNC + 50 mg myricetin -0.29 ± 0.002 ac -0.31 ± 0.007 ac -0.30 ± 0.011 ac -0.11 ± 0.021 ac 
SNC + 100 mg myricetin -0.26 ± 0.006 ac -0.29 ± 0.021 ac -0.37 ± 0.009 ac -0.09 ± 0.001 ac 
Values are expressed as mean ± SD (n = 6); ap < 0.05, compared to control; b-ep < 0.05, between mean values 
for experimental groups on a particular day 
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Figure 4: Myricetin regulated the expressions of 
BDNF and TrkB. A: Representative RT-PCR Gel; B: 
Relative expression of proteins. Data are represented 
as mean ± SD (n = 6). *p < 0.05, compared with 
control; #p < 0.05, SNC compared with SNC + 100 mg 
myricetin (a, b, c & d represent mean values from 
different experimental groups that differ significantly) 
 
However, myricetin treatment significantly (p < 
0.05) enhanced phosphorylated forms of Akt, 
mTORc1 and GSK-3β. Markedly reduced PTEN 
expressions were seen in myricetin treated rats 
(p < 0.05), indicating activation of the pathway. 
The levels of total Akt, mTORc1 and GSK-3β 
were not altered, although slightly raised 
expressions were noticed on myricetin treatment. 
These results suggest possible activation of the 
PI3K/Akt/mTORC1 signalling by myricetin. 
 
DISCUSSION 
 
Peripheral nerve injuries following accidental 
trauma and sport injuries are frequently seen in 
clinical practice worldwide. Post-traumatic 
peripheral nerve regeneration and functional 
recovery pose a huge challenge since 
inadequate restoration of function and 
innervation leads to subsequent loss of function 
of the target organ [33]. 
 
Thus, accelerated repair of the damaged nerves, 
enhanced regeneration of nerves and 
sensorimotor functional recovery are crucial in 
restorative medicine. Sciatic nerve crush injury 
prototype is a widely employed animal model in 
studies of regeneration of nerves [34]. In this 
study, the effects of myricetin on nerve 
regeneration and functional recovery following 
sciatic nerve crush injury were investigated.  
 
It   was    observed    that    myricetin    treatment  

effectively improved the foot positioning of the 
rats. 
 

 
 

 
 

 
 
Figure 5: Myricetin up-regulated Akt activation 
following SNC injury. A: Representative immunoblot; 
B: Relative expression of proteins following SNC 
injury. Data are presented as mean ± SD (n = 6). *p < 
0.05, compared with control; #p < 0.05 (SNC 
compared with SNC + 100 mg myricetin; a-c represent 
mean values from different experimental groups that 
differ significantly) 
 
The WRL and WRT values reflect the beneficial 
effects of myricetin on enhancement of functional 
recovery of the sciatic nerve, while SFI and TSI 
values obtained following rat walking track 
analysis reflect the motor function of the injured 
hind limb. The SFI values are regarded as a 
standard index for evaluating motor function of 
nerves following nerve crush injury and repair 
[35]. In this study, all the experimental groups 
exhibited gradual recovery of sciatic nerve 
function. Interestingly, the myricetin-treated rats 
showed significantly higher SFI and TSI values 
than the saline treated-injured group. The 
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recovery of sensorimotor functions was 
enhanced and myricetin-treated injured rats 
presented SFI very close to that of normal control 
rats on the 3rd week post-injury. The SFI and TSI 
values reflect gain in function following SNC 
injury.  
 
It is well documented that the neurotrophic 
factors are crucial in neuronal cell proliferation 
and growth following nerve injuries [36]. The 
BDNF is a major neurotrophic factor that is 
involved in axonal regeneration and 
myelinogenesis of injured nerve cells. Studies 
have demonstrated that BDNF increased axonal 
regeneration and myelination in nerve fibres 
following sciatic nerve crush [37]. In this study, 
myricetin treatment clearly enhanced BDNF and 
TrkB mRNA expressions. The raised levels of 
BDNF were in line with increased axonal 
regeneration and myelination as observed. The 
increase in BDNF levels could have, in part 
enhanced nerve regeneration observed following 
myricetin treatment. 
 
In injured nerve cells, multiple factors are 
associated with the process of repair and 
regeneration. The PI3K/AKT/mTORC1 pathway 
is the major pathway involved in nerve cell 
growth, proliferation and survival [38]. Studies 
have shown that activation of the mTORC1 
pathway and deletion of inhibitor PTEN leads to 
enhanced axonal regeneration, and AKT 
activation triggers regeneration of axon fibres at 
the site of crush injury [38]. A marked up-
regulation in the levels of phosphorylated AKT 
and mTORC1 along with reduced PTEN 
expressions was observed in this study. 
Furthermore, elevated expression of 
phosphorylated forms of GSK3β were observed 
on myricetin treatment. The GSK3 family 
comprises GSK3α and GSK3β. It is known that 
AKT phosphorylates and inactivates the kinase 
activity of GSK3α at Ser21 or GSK3β at Ser9 
[39]. Interestingly, GSK3β inactivation has been 
shown to mediate AKT signalling-induced axon 
regeneration [40]. Thus, the results obtained in 
this study suggest activation of Akt leading to 
raised levels of p-mTORC1 and p- GSK3β, and 
supressed PTEN levels. The up-regulation of the 
pathway could have subsequently led to raised 
nerve regeneration.  
 
CONCLUSION 
 
The results obtained in this study reveal the 
effectiveness of myricetin in enhancing functional 
recovery and nerve regeneration following 
peripheral nerve injury. Myricetin activates the 
BDNF and PI3K/AKT/mTORC1/GSK3β signalling 
pathways which are crucial in nerve cell growth. 

The findings reveal the effectiveness of myricetin 
in enhancing functional recovery and nerve 
regeneration following peripheral nerve injury via 
activation of the BDNF and 
PI3K/AKT/mTORC1/GSK3β signalling pathways 
involved in nerve cell growth. 
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