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Abstract 

Purpose: To evaluate 5-Benzyl-1,3,4-oxadiazole-2-thiol (OXPA) for antidiabetic and antioxidant 
properties.  
Methods: Antidiabetic activity was evaluated using three in vitro models, glucose uptake by yeast cells, 
alpha amylase inhibition assay and hemoglobin glycosylation inhibition assays. Antioxidant potential 
was determined by DPPH radical scavenging, reducing power and lipid peroxidation assays. 
Results: OXPA showed antidiabetic activity in all the three models. The activity of the compound was 
comparable with that of metronidazole in glucose uptake by yeast cells, but the alpha amylase inhibition 
activity of the compound was slightly lower than that of acarbose, whereas the hemoglobin glycosylation 
inhibition activity of the compound was higher than that of vitamin E.  DPPH free radical and hydrogen 
peroxide scavenging activity of the compound was comparable with that of vitamin C. In reducing power 
assay, the activity of the compound was lower than that of vitamin C (p > 0.05). 
Conclusion: The results of antidiabetic and antioxidant activity indicate that OXPA may be a drug-
candidate for treating both diabetes and its associated oxidative stress.  
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INTRODUCTION 
 
The compound under investigation, 5-Benzyl-
1,3,4-oxadiazole-2-thiol (OXPA), is a derivative 
of 1,3,4-oxadiazole having benzyl and thiol at 
positions 5 and 2, respectively (Figure 1). It was 
synthesized to prepare a number of s-substituted 
derivatives possessing antibacterial and 

hemolytic activities [1]. The compound was also 
investigated for its behavior toward different 
stressors using UV spectrophotometry [2].  The 
compound was selected for antioxidant activity 
due to proton donating property of free thiol 
group. 
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Thiol group and oxadiazole ring are the two 
major functional entities which can make it an 
antidiabetic and antioxidant drug-candidate. It is 
reported that thiol containing compounds act as 
antioxidants due to proton donating potential [3-
5], while oxadiazole ring is a pharmacophore 
possessing a number of pharmacological 
activities including antidiabetic activity [3-5]. 
Therefore, OXPA is expected to have 
antidiabetic and antioxidant potential. An 
association of diabetes with oxidative stress has 
warranted the need to find compounds which can 
manage diabetes and control diabetes-
associated oxidative stress, simultaneously. 
 

 
 
Figure 1: Chemical structure of 5-Benzyl-1,3,4-
oxadiazole-2-thiol (OXPA) 
 
Diabetes is a metabolic disorder which has 
several etiologies including insulin deficiency, 
insulin resistance and genetic defects of ß-cells 
of the pancreas. Obesity, age and lack of 
physical activity are also the contributors of the 
disorder. This disorder may be congenital – 
Type-I diabetes – or acquired called Type-II 
diabetes. The prevalence of both types of the 
disease in all age groups is alarmingly 
escalating. Type-I diabetes in young-adults is 
reported to be 5-10 %, while 90–95 % population 
of the diabetics is suffering from Type-II diabetes 
[6,7]. The complications of the disease are more 
fatal than the disease itself, and the same is 
witnessed by 1.5 million deaths due to diabetes 
and 2.2 million due to its co-morbidities [6,7]. 
These studies also indicated higher death toll in 
the low and middle income countries [6,7].  
 
Uncontrolled diabetes leads to hyperglycemia 
which results in glycosylation of blood-proteins, 
which causes co-morbidities such as neuropathy, 
retinopathy, cardiomyopathy and stroke. This 
situation disturbs the equilibrium between the 
generation of reactive oxygen species and 
antioxidant defense capacity [8]. The advanced 
glycation end products being the source of free 
radicals further aggravate oxidative stress [9]. 
Such complications can be reduced using 
antioxidants or compounds having both 
antidiabetic and antioxidant activities [10].  
Therefore, the present study aimed to investigate 
OXPA for antidiabetic and antioxidant activities 
using various models. 
 

EXPERIMENTAL 
 
Chemicals 
 
Glucose anhydrous (Riedel-deHaen), comercial 
grade baker’s yeast, 2,2-diphenyl-picrylhydrazyl 
and disodium hydrogen phosphate (Sigma 
Aldrich), alpha amylase (UniChem), hydrogen 
peroxide (H2O2), hemoglobin and potato starch 
(China), potassium ferricyanide, trichloroacetic 
acid, potassium dihydrogen phosphate, sodium 
dihydrogen phosphate and NaOH (Merck), 
dimethyl sulfoxide (Panreac Quimica, SAU), 
ascorbic acid, ferric chloride, potassium sodium 
tartrate and 3,5-dinitrosalicylic acid (BDH, 
England), acarbose (Bayer), and vitamin E 
(Fluka) were procured from the local market. 
Metronidazole (MTZ) was gifted by M/S Siza 
International Pvt. Ltd. Lahore, Pakistan. 5-
Benzyl-1,3,4-oxadiazole-2-thiol was obtained 
from the Department of Chemistry, Government 
College University, Lahore, Pakistan. 
 
Determination of anti-diabetic activity 
 
Glucose uptake by yeast cells 
 
Yeast powder was washed by 0.9 % ice-cold 
sodium chloride solution and centrifuged (3500 × 
g; 5 min). The supernatant was removed and 
yeast cells were again washed using the same 
procedure until the supernatant became clear 
[11]. Then, yeast cell pellet was suspended in 
distilled water to prepare 10 % (V/V) suspension. 
One milliliter of sample prepared in DMSO was 
added in test tubes containing 1 mL of 5, 10 and 
25 mM aqueous glucose solution, and test tubes 
were incubated at 37 °C for 10 min. Then,  100 
μL of the yeast suspension was added in test 
tubes and contents were further incubated at 37 
°C for 60 min. Afterwards, each tube was 
centrifuged for 10 min at 3000 × g, and the 
supernatant was analyzed at 620 nm against a 
blank containing the vehicle. A control was 
prepared like the sample using all the 
components, except the test solution. 
Metronidazole solution, treated like the sample, 
served as a standard.  The activity was 
determined using Eq. 1. 
 

…… (1) 
 
where Ac is absorbance of control and As is 
absorbance of sample. 
 
Hemoglobin glycosylation inhibition activity 
 
The sample and reagents were prepared in 0.2 
M phosphate buffer. One milliliter of 5, 10 and 25 
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mM glucose solution was added in test tubes, 
separately. Then, 1 mL of 0.06 % hemoglobin 
solution, phosphate buffer and sample/vitamin E 
were added in all the tubes. Finally, 5 µL of 0.02 
% gentamicin solution was added and the 
mixture was kept in the dark at room 
temperature. The absorbance was measured at 
443 nm at different time intervals for 72 h [12]. 
 
Alpha amylase inhibition activity 
 
The activity was determined using the method 
described earlier [13]. The sample, standard and 
the enzyme dissolved in sodium phosphate 
buffer of pH 6.9. Potato-starch was suspended in 
phosphate buffer (1 %, w/v) and boiled for 30 
min. One milliliter solution of sample, potato 
starch, alpha amylase (0.025 %, W/V) were 
mixed with 1 mL of sodium phosphate buffer (pH 
6.9) and incubated at 37 °C for 30 min. Then, 0.3 
mL of 3,5-dinitrosalicylic acid solution was added 
and the reaction was ceased by adding 0.2 mL of 
2 N NaOH and heating for 20 min in a water bath 
at 85 °C. Finally, the absorbance of the mixture 
was measured at 540 nm to calculate the alpha 
amylase inhibition activity. 
 
Evaluation of antioxidant activity 
 
DPPH radical scavenging activity 
 
Three milliliters of 0.1 mM methanolic solution of 
DPPH was mixed with 1 mL of sample/standard 
(ascorbic acid) and incubated in the dark at 37 
°C for 30 min. A blank control was prepared by 
replacing the sample solution with 1 mL of 
methanol. Vitamin C (10 µg/mL) was used as a 
standard. The absorbance of the 
sample/standard and control was measured at 
517 nm against methanol as a blank [14]. 
 
Reducing power activity 
 
The reducing power activity of the compound 
was determined using the method described 
earlier [15]. Briefly, a reaction mixture was 
prepared by mixing 1 mL of sample/standard 
solution (vitamin C), 2.5 ml of 0.2 M phosphate 
buffer (pH 6.6) and 2.5 mL of 1 %, W/V 
potassium ferric cyanide.  
 
The reaction mixture was kept at 50 °C in water 
bath for 20 min. Then, 2.5 mL of trichloroacetic 
acid (10 %, W/V) was added and the mixture was 
centrifuged at 3000 rpm for 10 min. The 
supernatant (2.5 mL), distilled water (2.5 mL) and 
0.1 %, W/V ferric chloride solution (0.5 mL) were 
mixed and the absorbance was measured at 700 
nm. 
 

Hydrogen peroxide scavenging activity 
 
The sample/standard solution (3.4 mL) and 43 
mM H2O2 (0.6 mL), prepared in phosphate buffer 
(pH 7.4), were mixed and kept at room 
temperature at dark for 50 min. The absorbance 
of the reaction mixture was measured at 230 nm 
against phosphate buffer as a blank [16]. 
 
Statistical analysis 
 
The samples and the standards were analyzed in 
triplicate and the results are presented as mean 
± standard deviation. Half maximal effective 
concentration (EC50) or half maximal inhibitory 
concentration (IC50) was determined applying 
linear regression on dose-response curves. The 
activity of OXPA, compared to that of standard 
drug, was analyzed by independent samples t-
test using IBM, SPSS (version 20). P < 0.05 was 
considered statistically significant. 
 
RESULTS 
 
Antidiabetic activity 
 
The results of antidiabetic activity of OXPA using 
glucose uptake in yeast cells model are given in 
Table 1. These results showed that the 
compound facilitated the transport of glucose in 
the yeast cells in all the three glucose solutions 
(5, 10 and 25 mM). At equivalent concentration 
(250 µg/mL) activity of the compound was found 
to be higher than metronidazole (p < 0.05). The 
half-maximal effective concentration (EC50) of the 
compound determined in a concentration range 
50-250 µg/mL in 5 mM glucose solution was 
found to be 52.77 µg/mL (y = 0.1121 x + 44.856, 
R2 = 0.9959). This indicated that activity of the 
compound at a concentration of 150 µg/mL was 
comparable to metronidazole (250 µg/mL) in 5 
mM glucose solution. However, in 10 and 25 mM 
glucose solutions, the compound at a 
concentration of 100 µg/mL showed comparable 
activity to that of the metronidazole (250 µg/mL). 
 
The findings of hemoglobin glycosylation 
inhibition activity of the compound are given in 
Table 2. Free hemoglobin concentration 
decreased with the passage of time in all the 
three glucose, which indicated that glycosylation 
took place. In this assay, the activity of the 
compound was found to be higher as compared 
to vitamin E (p < 0.05). IC50 of the compound  
determined in a concentration range (40-250 
µg/mL) in 5, 10 and 25 mM glucose solutions 
was found to be 210.75 µg/mL (y = 0.1055 x + 
27.788, R2 = 0.9724), 125.93 µg/mL (y = 0.0932 
x + 38.263, R2 = 0.9122) and 19.23 µg/mL (y = 
0.0726 x + 48.604, R2 = 0.9828), respectively. 
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These results showed that the compound 
inhibited the reaction of glucose and hemoglobin. 
Furthermore, the inhibition of glycosylation was 
higher in concentrated glucose solutions. 
 
Alpha amylase inhibition activity of the compound 
on at a concentration of 1.4 mg/mL was 51.80 %, 
whereas acarbose at the same concentration 
showed 65.64 % activity (Table 3). In this model, 
IC50 of the compound was found to be 1.33 
mg/mL (y = 36.645 x - 1.6795, R2 = 0.979). 
These results indicated that OXPA has a 
promising antidiabetic activity. 
 
Table 3: Alpha amylase inhibition activity of 5-benzyl-
1,3,4-oxadiazole-2-thiol (OXPA) 
 
Drug Inhibition(%) SD 
0.8 mg/mL 30.01 1.85 
1.0 mg/mL 33.15 1.07 
1.2 mg/mL 39.16 0.95 
1.4 mg/mL 51.80 0.21 
1.6 mg/mL 57.33 0.25 
Acarbose 
(1.2 mg/mL) 

65.63 0.36 

SD = standard deviation 
 

Antioxidant activity  
 
The results of dose-dependent antioxidant 
activity of OXPA, determined using three in vitro 
models, are shown in Table 4. The activity of the 
compound was found to be comparable to the 
vitamin C in the DPPH assay (p > 0.05), whereas 
reducing power activity of the compound was 
less than that of vitamin C. In hydrogen peroxide 
assay, activity of the compound was significantly 
higher than vitamin C (p < 0.05). The plots of 
concentration versus antioxidant-activity using 
different antioxidant-activity models were used to 
determine half-maximal effective concentration 
(EC50). The EC50 of the compound was found to 
be 14.50, 206.00 and 97.00 µg/mL in the DPPH 
assay, reducing power assay and hydrogen 
peroxide assay, respectively. These findings 
showed that OXPA is a promising antioxidant 
drug-candidate. 
 
DISCUSSION 
 
The transport of glucose in yeast cells is a 
complex phenomenon involving some stereo-
specific transporters, glycolytic enzymes and 
concentration gradient [17-20]. 

Table 1: The effect of 5-Benzyl-1,3,4-oxadiazole-2-thiol (OXPA) on glucose uptake by yeast cells in glucose 
solutions of different concentrations 
 

Drug Activity at 5 mM 
(%) 

Activity at 10 mM (%) Activity at 25 mM (%) 

50 µg/mL 49.83±2.06 61.17±3.04 48.76±1.93 
100 µg/mL 56.47±2.23 63.77±1.55 54.81±2.51 
150 µg/mL 62.18±4.05 71.09±0.48 60.27±0.58 
200 µg/mL 67.61±3.20 72.70±0.59 62.65±0.54 
250 µg/mL 72.29±0.83 76.80±2.64 70.09±1.99 
MTZ 250 µg/mL 64.03±1.23 61.97±2.74 60.71±2.31 

MTZ = metronidazole 
 

Table 2: Hemoglobin glycosylation inhibition activity of 5-Benzyl-1,3,4-oxadiazole-2-thiol (OXPA) 
 

Drug Activity at 5 mM (%) Activity at 10 mM (%) Activity at 25 mM (%) 
50 µg/mL 33.83±1.78 44.83±2.53 51.63±1.44 
100 µg/mL 38.73±2.06 47.29±2.30 56.84±0.99 
150 µg/mL 42.06±2.76 49.84±2.53 59.67±0.88 
200 µg/mL 47.48±3.12 54.93±2.15 62.20±0.14 
250 µg/mL 55.83±1.19 64.31±1.10 67.09±0.71 
Vitamin-E 40.31±1.39 49.03±2.00 58.30±0.38 

 
Table 4: Antioxidant activity of 5-benzyl-1,3,4-oxadiazole-2-thiol (OXPA) based on three models (n = 3) 

 
Drug 
(µg/ml) 

DPPH assay 
(mean±SD) 

Drug 
µg/ml 

RPA (mean±SD) Drug 
µg/ml 

HPO (mean±SD 

5 27.7±1.20 50 29.0±0.40 20 22.0±0.50 
10 37.5±1.60 100 33.8±1.40 40 32.1±0.50 
25 76.2±0.10 150 38.8±0.90 80 43.3±0.20 
50 92.3±0.90 200 49.3±0.20 100 50.9±0.90 
100 92.9±0.70 250 63.6±0.30 150 59.3±0.60 
S 10 33.2±0.40 S 250 84.9±0.10 S 80 28.4±0.60 

DPPH = DPPH assay; RPA = reducing power assay; HPO = hydrogen peroxide assay 
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Glucose transport was found to be higher in 
concentrated glucose solutions, which indicated 
that higher glucose concentration and glucose 
utilization in fermentation had facilitated glucose 
influx in yeast cells. Moreover, the influx was 
faster in 5 and 10 mM glucose solutions as 
compared to 25 mM glucose solution. The 
reason of slow glucose uptake in 25 mM glucose 
solution could be due to decreased activity of the 
transporters as a result of establishing 
equilibrium between intracellular and 
extracellular glucose concentration. These 
results are consistent with that reported earlier 
indicating that intracellular glucose concentration 
during its uptake inhibits the glucose-influx and in 
some cases, promotes efflux [17,18].  
 
Glycosylated hemoglobin (HbA1c) is produced 
by an increased blood-glucose concentration. 
Glycosylation of hemoglobin results in the 
formation of reactive oxygen species which 
cause diabetes-associated complication [8]. The 
literature review indicated that terminal nitrogen 
of valine of hemoglobin is glycosylated with 
glucose [21]. In the present study, OXPA 
inhibited the glycosylation of hemoglobin that 
might be due to the interaction of nitrogen atoms 
of the oxadiazole ring with glucose. Digestive 
enzymes such as alpha-amylase and alpha-
glucosidase convert starch into glucose and 
maltose in the intestine [22]. Therefore, the 
inhibitors of such enzymes (acarbose, voglibose 
and miglitol) are used to manage Type-II 
diabetes [23]. In the present study, the 
compound inhibited the alpha-amylase activity 
significantly, which indicated that OXPA may be 
used to decrease glucose availability from the 
intestine from digestible carbohydrates, hence 
may be used as an oral anti-hyperglycemic 
agent.  
 
Antioxidants act through various mechanisms, 
therefore, in the present study, antioxidant 
potential of the compound was evaluated using 
three antioxidant models. The DPPH free radical 
is reduced by proton donors. Thiol group of the 
compound can donate proton, therefore, DPPH 
free radical scavenging may be due to proton of 
the thiol group. DPPH scavenging activity of the 
compound was comparable with vitamin C 
(standard drug). Likewise, the compound showed 
promising antioxidant activity in reducing power 
assay. In this assay, the compound reduced the 
ferric to ferrous that was indicated by change of 
color. Thiol group may chelate ferric ions as 
reported earlier that such group containing 
compound chelate metals [24].  Therefore, 
hydrogen donating capacity and metal chelation 
are expected to be the mechanism of antioxidant 
activity of the compound. Hydrogen peroxide 

(H2O2) scavenging activity of the compound 
indicated its usefulness in the living system. In 
the living system, hydrogen peroxide formed by 
biological processes produces highly toxic 
hydroxyl radical that can attack many cellular 
energy-producing glycolytic enzyme. Therefore, 
the tendency of thiol containing compounds in 
scavenging of H2O2 is very important for 
protecting living organisms from the oxidative 
stress. The unsaturation of the compound may 
also be involved in scavenging H2O2 as reported 
earlier [24,25]. Antioxidants help in preventing 
diabetes-associated complications. As stated 
earlier that thiol group makes OXPA a strong 
reducing agent. Hence, the compound may be 
an effective antioxidant and antidiabetic agent. 
 
CONCLUSION 
 
The results of the present study indicate that 5-
benzyl-1,3,4-oxadiazole-2-thiol (OXPA) has 
antidiabetic activity by acting via the various 
mechanisms. Moreover, the compound has 
antioxidant potentials which is comparable to that 
of vitamin C. Therefore, OXPA may be beneficial 
in managing diabetes and reducing oxidative-
induced co-morbidities. 
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