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Abstract 

Purpose: To synthesize quinoxaline derivatives and investigate their inhibitory effects on glycogen 
synthase kinase (GSK)-3β in vitro. 
Methods: Quinoxaline derivatives were synthesized via reaction between synthon 1 and DL- 2-amino 
succinic acid, and subsequent lactamization reaction. The new compounds were tested against GSK-3β 
in vitro to select the most potent compound which was then used for molecular modelling.           
Results: Novel quinoxaline derivatives with quinolone nucleus were successfully synthesized via simple 
chemical reactions. The compounds markedly inhibited GSK-3β, with compound 45 [3-(carboxymethyl)-
5-fluoro-10-(4-fluorophenyl)-2,7-dioxo-1,2,3,4,7,10-hexahydropyrido [2,3-f] quinoxaline-8-carboxylic 
acid] achieving the best effect (IC50 = 0.18 μM). The half maximal inhibitory concentrations (IC50) of the 
compounds were in micromolar range. Molecular modelling revealed several interactions between 
compound 45 and the binding site of GSK-3β. 
Conclusion: These results indicate that 3-(carboxymethyl)-5-fluoro-10-(4-fluorophenyl)-2,7-dioxo-
1,2,3,4,7,10-hexahydropyrido [2,3-f] quinoxaline-8-carboxylic acid is a potent inhibitor of GSK-3β and is 
thus a promising scaffold for the development of novel drugs that can effectively inhibit GSK-3β 
signaling pathway.    
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INTRODUCTION 
 
Glycogen synthase kinase 3 (GSK-3), a highly 
ubiquitous serine/threonine kinase, has two 
isoforms: GSK-3α and GSK-3β [1]. Glycogen 
synthase is a key enzyme in biological processes 
such as apoptosis, intracellular communication, 

regulation of glucose metabolism and gene 
transcription [2]. The pathogeneses of type-2 
diabetes mellitus (T2DM), Alzheimer’s disease 
(AD) and some cancers are thought to involve 
GSK-3β signaling pathway [3-6]. Overexpression 
of GSK-3β has been implicated in pancreatic, 
breast, and skin cancers [7,8]. 

-----------------------------------------------------------------------------------------------------------------------------------------------------
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Molecular modelling is used to unravel binding 
interactions between newly synthesized 
compounds and potential target 
enzymes/proteins [9,10]. The technique has 
been successfully employed for the elucidation of 
the crystal lattice structure of GSK-3β.   
 
Heterocyclic compounds are a class of 
substances, which play critical roles in drug 
discovery through their incorporation into the 
structures of a large variety of drugs used for the 
treatment of diverse diseases. Quinoxaline is an 
important heterocyclic nucleus with a wide 
spectrum of biological activity. Quinoxaline 
scaffold possesses promising therapeutic 
properties such as anticancer, antimalarial, anti-
inflammatory, antimicrobial and anti-HIV effects 
[11]. It has been used as scaffold in drugs that 
function as protein kinase inhibitors [11]. 
Quinoline pharmacophore possesses 
antibacterial, anticancer and kinase inhibitory 
activities [12,13].  The aim of this study was to 
synthesize quinoxaline derivatives and 
investigate their inhibitory effects on GSK-3β in 
vitro. 
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Figure 1: Diagram of heterocyclic nucleus. (A): 
Quinoline nucleus; and (B): Quinoxaline nucleus 
 
EXPERIMENTAL 
 
Chemicals and reagents 
 
All reagents and chemicals used in this study 
were of analytical grade, and they were products 
of Sigma-Aldrich (USA). Glycogen synthase 
kinase (GSK)-3β assay kit was obtained from 
Thermo Fisher Scientific Co. Ltd (USA). 
 
Technique 
 
Melting point (mp) was measured with Stuart 
scientific electrothermal heating apparatus 
(EA3000 A). Infra-red (IR) spectrum was 
recorded using Shimadzu FT-IR 
spectrophotometer (8400F). Proton and carbon 
nuclear magnetic resonance (NMR) spectra were 
analyzed with Bruker Avance spectrometer 
(DPX-300), while molecular mass was measured 
with high resolution mass spectrophotometer 
(Bruker APEX-4). 

 
Synthesis of 7-chloro-1-alkyl-6-fluoro-8-nitro-
4-oxo-1,4-dihydroquinoline-3-carboxylic acid 
analogues 
 
The synthons (a, b and c) were synthesized via 
simple chemical reactions as previously 
described [14,15]. 
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3-R1:p-fluorophenyl  Synthon c  

 
Figure 2: General formulae of synthons a, b and c 
 
Synthesis of synthon I derivatives 
 
Synthon I was produced as a product of the 
reaction between the synthons (a, b and c) and 
DL- 2-amino succinic acid (Scheme 1) [ 13]. 
Exactly 3.2 g of DL- 2-amino succinic acid (24.0 
mmol) was mixed with 2.0 g of synthon a, b or c 
in 65 % ethanol (250 mL) under conditions 
illustrated in scheme 1. The mixing was done 
under reflux at 75 - 85 °C, and 3.5 M HCl was 
used to adjust pH of the reaction mixture to 7.  
The reaction lasted 10 days. 
 

 
 
(1) NaHCO3, 50 – 60 % ethanol, 70 – 80 oC 
 
Scheme 1: Synthesis of synthon I 
 
Synthesis of synthon II     
 
Exactly 6.0 g of sodium dithionite powder (43.5 
mmol) was dissolved in 0.33 L of distilled water 
and then gradually added to 1.0 g of synthon I for 
45 min at room temperature (Scheme 2).  
Reduction of nitro group on position 8 in synthon 
I to amino group was done via addition of 
aqueous sodium dithionite in potassium 
carbonate. Spontaneous lactamization led to the 
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formation of synthon II. The reductive cyclization 
process was fast and direct, lasting 60 - 120 min. 
[17,18]. 
 
Spectrum analysis was carried out to confirm that 
the synthesized compound was synthon II.      
 

 
 
Scheme 2: Synthesis of synthon II 
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Figure 3: Chemical structures of synthesized 
compounds used as GSK-3β inhibitors (compounds 
23, 6 and 45) 
 
Preparation of synthon II derivatives for in 
vitro assay 
 
Exactly 10 mg of each synthon II derivative 
(compounds 6, 23 and 45) was dissolved in 
dimethyl sulfoxide (DMSO) to obtain stock 
solutions of required concentrations, which were 
sent to Thermo Fisher Scientific Co. Ltd. (USA) 
where activity of GSK-3β was assayed. 
 
Hits profiling against GSK-3β 
 
To determine IC50 values of synthon II 
derivatives, inhibition of GSK-3β using Z’-LYTE 
GSK-3β assay was performed with varied 
concentrations of each compound (Z’-LYTETM 
Screening Protocol and Assay Conditions, 2016). 
The inhibition and concentration data were used 
to determine IC50 for each compound, and the 
most active compound was then selected. 
Solution of 10 mM concentration of each 
synthetic compound (6, 23 and 45) was prepared 

in DMSO and sent for analysis at Thermo Fisher 
Scientific Co. Ltd. (USA) [16]. 
 
Molecular modelling studies 
 
Docking settings 
 
LibDock is a site-feature docking algorithm 
that docks ligands into active sites under 
guidance by binding hotspots. The most potent of 
synthesized quinoxaline derivatives (based on 
IC50 values) were docked into the binding pocket 
of GSK-3β (PDB code: 3Q3B; resolution of 2.7 
Ǻ) using LibDock (Discovery Studio version 4.5). 
Apart from ensuring the fitting of hypothesized 
molecule into the binding pocket, the procedure 
also aided the visualization of bonds formed 
between the compound and amino acids in the 
binding pocket of GSK-3β. Molecular modelling 
provided clues to binding forces and inhibitory 
activity of the compound. The LibDock tool 
consisted of two major parts: allocation of binding 
site in the receptor, and running of docking 
procedure. Docking was performed via allocation 
of conformations of the ligand to polar receptor 
interaction sites and apolar ones (hotspots). A 
catalyst was added to ensure that conformations 
formed on the fly. CHARMM-based algorithm 
was used to analyze the interaction between the 
complexes formed. 
 
RESULTS 
 
Properties of synthesized compounds  
 
Novel quinoxaline derivatives with quinolone 
nucleus were successfully synthesized via simple 
chemical reactions. The properties of the 
synthesized synthons are shown below: 
 
Synthon I 
 
2-[(3-Carboxy-1-cyclopropyl-6-fluoro-8-nitro-
4-oxo-1,4-dihydroquinolin-7-yl) amino] 
succinic acid 
 
Bright yellow crystals: yield =75 %; mp = 211 – 
214 °C; 1H-NMR (300 MHz, DMSO- d6): δ 
0.85,1.15 (2 m, 4 H, H2-2'/H2-3'), 1.80 (2 H, CH2-
COOH), 3.42 (m, 1 H, H-1′), 4.34 (d, J = 7.8 Hz, 
1 H, CH-NH), 7.48 (d, J = 11.7 Hz, 1 H, H-5), 
8.39 (d, 3JH-F = 5 Hz, 1 H, NH-CH),8.59 (s, 1 H, 
H-2), 13.31 - 15.5 (br m, 3 H, 3CO2H);13C-NMR 
(300 MHz, DMSO- d6): δ 10.34 (C-2′/ C-3′) , 
37.19 (CH2-CO2H), 40.76 (C-1′), 70.23 (CH-NH), 
106.53 (C-3), 108.48 (C-5 ), 117.75 (C-4a), 
129.65 (d,3JC-F = 5.1 Hz, C-8), 137.07 ( d, 2JC-F = 
14.25 Hz, C-7), 148.43 (C-2), 155.95 (C-6), 
166.78 (C(3)-CO2H), 174.60 (C-4); IR (NaCl): ν 
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3410, 2924, 2854, 2646, 2430, 2360, 2268, 
2106, 1982, 1628, 1296, 1195, 1072 cm-1. 
 
2-[(3-carboxy-1-ethyl-6-fluoro-8-nitro-4-oxo-
1,4-dihydroquinolin-7-yl) amino] succinic acid 
 
Yellow solid; yield = 75 %; mp = 209 – 210 °C 
[13]. 
 
2-[(3-carboxy-1-(4-fluorophenyl)--6-fluoro-8-
nitro-4-oxo-1,4-dihydroquinolin-7-yl) amino] 
succinic acid  
 
Yellow solid; yield = 1.5 g (82.5 %); mp = 224 - 
225 °C; 1H- NMR (300 MHz, DMSO- d6): δ 2.88 
(d, J = 17.1 Hz, 2 H, CH2-COOH), 4.80 (d, J = 
4.2 Hz, 1 H, CH-NH), 7.15 (d, J = 8.4 Hz, 1 H, 
NH-CH), 7.35 (2 H, H-3'/ H-5'),7.67 (d, J = 19.5 
Hz, 2 H, H-2'/ H-6'), 8.14 (d, 3JH-F = 13.5 Hz, 1 H, 
H-5), 8.53 (s, 1 H, H-2), 13.31-15.5 (br m, 3 H, 
3CO2H); IR (NaCl): υ 3788, 3417, 2924, 2854, 
2731, 2584, 2337, 2083, 1813, 1751, 1643, 
1481, 1381, 1273, 1195, 1072 cm-1.  
 
Synthon II derivatives 
 
3-(carboxymethyl)-10-cyclopropyl-5-fluoro-
2,7-dioxo-1,2,3,4,7,10-hexahydropyrido [2,3-
f]quinoxaline-8-carboxylic acid (compound 
23)     
 
Faint yellow crystals;  yield =54 %; mp = 285 oC; 
1H- NMR (300 MHz, DMSO- d6 ): δ 0.97 - 1.22 
(m, 4 H, H2-2′/H2-3′), 2.72 (t, J = 6.0 Hz, 2 H, 
CH2-CO2H),4.26 (m, 1 H, H-1′), 4.50 (s, 1 H, NH-
C(3)-H), 7.34 (d, 3JH-F = 10.5 Hz, 1 H, H-6), 8.56 
(s, 1 H, H-9), 10.39 (br s, 1 H, N(1)-H), 12.28 (br 
s, 1 H, CH2-CO2H),15.15 (br s, 1 H, CH2-
CO2H); 13C-NMR (300 MHz, DMSO- d6 ): δ 9.95 
(C-2′), 10.60 (C-3′), 35.34 (CH2-CO2H), 38.93 (C-
1′), 51.71 (CH-NH), 105.33 (d, C-6), 107.23 (C-
8), 116.06 (d, 3JC-F = 6.3 Hz, C-6a), 117.23 (C-
10b), 129.29 (C-10a), 131.59 (C-4a), 150.2 (C-
6), 151.04 (C-9), 164.78 (C(8)-CO2H), 166.14 
(CH2CO2H), 171.75 (C-2),176.77 (C-7); IR 
(NaCl): ν 3575, 3550, 3514, 3000, 2850, 2375, 
2325, 1730, 1677, 1334, 1250, 1030 cm-1.  
 
3-(carboxymethyl)-10-ethyl-5-fluoro-2,7-dioxo-
1,2,3,4,7,10-hexahydropyrido[2,3-
f]quinoxaline-8-carboxylic acid (compound 6) 
 
Yellow crystals: yield = 0.37 g (97 %); mp = 299 - 
301; 1HNMR (300 MHz, DMSO- d6 ): δ 1.14 (br t, 
J = 6.6 Hz, 3 H, CH2CH3), 2.92 (brs, 2 H,CH2-
CO2H), 4.30 (m, 1 H, NH-CH-3), 4.80 (m, 2 H, 
CH2CH3), 7.52 ( NH-4-), 7.73 (d,3JC-F = 10.5 Hz, 1 
H, H-6), 8.86 (s, 1 H, H-9), 10.68 (br s, 1 H, N(1)-

H), 12.51 (br s, 1 H,CH2-COOH ), 15.25 (s, 1 H, 
C(8)-COOH), 14.7 (brs, 1 H, C-2''COOH); 13C-
NMR (300 MHz, DMSO- d6 ): δ 15.09 (CH3), 
34.95 (CH2-CO2H), 51.44 (CH2CH3), 52.18 (CH-
NH), 105.61 (d, 2JC-F = 18.7 Hz, C-6),107.58 (C-
8), 116.36 (d, 3JC-F = 6 Hz, C-10b),118.16 (d, 3JC-

F = 7.5 Hz, C-6a), 127.7 (C-10a), 132.2 (C-4a), 
149.45 (C-6), 150.94 (C-9), 165.36 (C(8)-CO2H), 
166.46 (CH2CO2H), 171.92 (C-2), 176.76 (C-7); 
IR (NaCl): ν 3417, 3373, 3333, 2917, 2724, 
2662, 1730,1643, 1435, 1265, 1448, 1074 cm-1; 
Anal. Calcd. for C16H14FN3O6 (363.08): C, 52.90; 
H, 3.88; N, 11.57. Found: C, 52.45; H, 3.64; N, 
11.18. 
 
3-(Carboxymethyl)-5-fluoro-10-(4-
fluorophenyl)-2,7-dioxo-1,2,3,4,7,10-
hexahydropyrido [2,3-f] quinoxaline-8-
carboxylic acid (compound 45) 
 
Yellow solid: yield = 0.37 g (38 %); mp =257 – 
262 °C; 1H- NMR (300 MHz, DMSO- d6 ): δ 2.72 
(br s ,2 H, CH2-CO2H), 4.12 (m, 1 H, NH-CH-3), 
7.40 - 7.46 (m, 2 H, H-3'/H-5'), 7.53 ( NH(4)),7.75 
(m, 2 H, H-2'/H-6'), 7.80 (d, 3JH-F = 10.8 Hz, 1 H, 
H-6), 8.54 (s, 1 H, H-9), 10.68 (brs, 1 H, 
N(1)_H),12.51 (brs, 1 H, CH2-COOH ), 15.25 (s, 1 
H, C(8)-COOH); 13C-NMR (300 MHz, DMSO- d6 
): δ 37.23 (CH2-CO2H), 54.83 (CH-NH), 109.65 
(C-8), 114.60 (C-6), 116.36 (C-4a), 117.16 (d, 
2JC-F = 22.2 Hz,C-3'/ C-5'), 118.16 (d, 3JC-F = 7.5 
Hz, C-6a), 127.7 (C-10a), 128.62 (C-2'), 128.62 
(C-6'), 138.28 (C-1'), 150.98 (d, 1JC-F = 248.32 
Hz, C-5), 152.72 (C-9), 162.38 (d, 1JC-F = 245.4 
Hz, C-4'), 156.25 (C-2), 172.46 (C(8)-CO2H), 
172.51 (CH2CO2H), 175.80 (C-7); IR (NaCl): 
ν3417, 3373, 3333, 2917, 2750, 2350, 2300, 
1730, 1650, 1448, 1074 cm-1. 
 
Inhibition of GSK-3β activity in vitro 
 
In vitro inhibitory activities of synthon II 
derivatives (compounds 6, 23 and 45) were 
tested against human recombinant GSK-3β. 
Each compound was screened at an initial 
concentration of 10 nM. The results showed that 
inhibitory effect of compound 45 was better than 
those of compounds 6 and 23 (Table 1; Figure 
4). 
 
Molecular modelling results 
 
The binding interactions of compound 45 with 
GSK-3β were determined using LibDock tool. 
The procedure revealed many interactions 
between compound 45 and the binding site of the 
enzyme (Figures 5 and 6). 
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Table 1: Inhibition of GSK-3β by synthon II derivatives 
 

Compound  
1X Test compound 
concentration (μM)

[ATP] 
(μM)

Inhibition (%) IC50 (μM) 

23 10 Km app 31 NC 
6 10 Km app 94 2.01 
45 10 Km app 97 0.18 

NC: not calculated 
 

 
 
Figure 4: Inhibition of GSK-3β by compound 45 
 

   
 
Figure 5: Two-dimensional representation of the 
interaction between compound 45 and GSK-3β, 
showing two different poses (A and B)   
 

 
 
Figure 6: Interaction of compound 45 with binding site 
of GSK-3β. (A): Hydrogen bonding between 
compound 45 and GSK-3β; and (B): Hydrophobic 
interaction between compound 45 and GSK-3β.  
 

DISCUSSION 
 
The need to find novel GSK-3β inhibitors is of 
great importance, since the enzyme is involved in 
many biological processes. In this study, many 
compounds were synthesized and tested against 
GSK-3β. The results of in vitro activity assay 
showed that compound 45 exhibited potent 
inhibitory activity against GSK-3β. Molecular 
modelling revealed that compound 45 assumed 
different conformations inside the binding pocket 
of GSK-3β. The quinoline nucleus exhibited 
remarkable interactions. It interacted with Leu 
188 through sigma bond formation, and with Leu 
132, Val 70 and Ala 83 via pi-alkyl interaction. 
 
In other poses, the quinoline nucleus of 
compound 45 formed sigma bond with Val 70, 
and pi-alkyl interaction with Ala 83 and Leu 188. 
In addition, the 8-carboxylic acid group formed 
hydrogen bond with Lys 85 and Val 135 in pose 
B. Fluorine atom at position 5 of compound 45 
formed fluorine-hydrogen bond with Asp 133 and 
Ile 62, and with Val 135 in the other pose. The 
10-(4-fluorophenyl) group in compound 45 
formed sulfur-hydrogen bond with Val 70 and pi-
alkyl (pi-pi) interaction with Phe 67, but it formed 
sigma bond with Leu 132.  The fluorine atom 
formed pi-alkyl bond with Cys 199 and Val 110, 
but interacted with Glu 97 via hydrogen bonding. 
The quinoxoline nucleus of compound 45 had 2-
oxo substitutions that formed hydrogen bond with 
Lys 85. The 3-(carboxymethyl) group of the 
compound was also involved in hydrogen bond 
formation with Arg 141, Pro 136, Val 135 and 
Asp200. Hydrogen bonds and hydrophobic 
interactions were also observed on surfaces of 
docked compound 45 and GSK-3β. These 
results indicate that compound 45 may have 
interacted with the binding site of GSK-3β via 
hydrogen and hydrophobic bonds. 
 
CONCLUSION 
 
The results obtained in this study show that 3-
(carboxymethyl)-5-fluoro-10-(4-fluorophenyl)-2,7-
dioxo-1,2,3,4,7,10-hexahydropyrido [2,3-f] 
quinoxaline-8-carboxylic acid is a potent inhibitor 
of GSK-3β and is thus, a promising scaffold for 
the development of novel drugs that can 
effectively inhibit GSK-3β signaling pathway. 
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