Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v24i3.14

Review Article

Phytoconstituents and pharmacological activities of *Mitrephora* species (Annonaceae): a review

Juriyati Jalil*, Muhammad Afiq, Syahira Wahab, Khairana Husain

Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

*For correspondence: Email: juriyatijalil@ukm.edu.my

Sent for review: 11 June 2024 Revised accepted: 12 March 2025

Abstract

This study reviewed the phytoconstituents and pharmacological properties of 13 Mitrephora species, namely, Mitrephora alba Ridl., Mitrephora celebica Scheff., Mitrephora diversifolia (Span.) Miq., Mitrephora glabra Scheff., Mitrephora heyneana (Hook. f. and Thomson) Thwaites, Mitrephora maingayi Hook. f. and Thomson, Mitrephora sirikitiae Weeras., Chalermglin and RMK Saunders, Mitrephora teysmannii Scheff., Mitrephora thorelii Pierre, Mitrephora tomentosa Hook.f. and Thomson, Mitrephora vulpina CEC. Fisch., Mitrephora wangii Hu, and Mitrephora winitii Craib. The data retrieved from key databases revealed the presence of 85 phytoconstituents derived from the genus Mitrephora, and were categorized based on their chemical composition (alkaloids, terpenoids, polyacetylene acids, lignans, and lignanamides). This review highlights the promising uses of these phytoconstituents in cancer therapeutics, microbial infections, malaria, and inflammation, and in modulating platelet activity.

Keywords: Mitrephora, Annonaceae, Phytoconstituents, Phytochemicals, Cancer therapeutics, Malaria, Platelet activity

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Tropical Journal of Pharmaceutical Research is indexed by Scopus, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African Index Medicus, JournalSeek, Directory of Open Access Journals (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts

INTRODUCTION

The word phyto is a Greek term that refers to plants. Phytoconstituents or phytochemicals are a unique class of organic compounds found abundantly in plants. These phytoconstituents consist of primary and secondary metabolites. Primary metabolites are crucial for essential plant functions, while secondary metabolites are vital for plant defense, adaptation, and growth [1]. Secondary metabolites are synthesized through diverse biochemical pathways, producing various organic compounds such as alkaloids. terpenoids, and phenolics. These compounds vary in chemical structure and functional groups, contributing to their diverse pharmacological

properties and application in traditional and folkloric medicine [1]. Plants were the primary means of maintaining health and treating various diseases before the establishment and advancement of pharmaceutical technology.

World Health Organization (WHO) reported that 80 % of the global population relies on herbal medicine and traditional practitioners for healthcare. Today, numerous plant extracts and isolated compounds have been utilized to develop modern medication, demonstrating the essential role of plant-derived products in drug discovery and development. Nevertheless, there is a lack of scientific evidence and clinical studies using these plant extracts in traditional practices [2]. As a result, there is an urgent need to

address the knowledge gap on the phytoconstituents and pharmacological properties of *Mitrephora* species.

Mitrephora is a genus within the Annonaceae family and consists of approximately 50 species. Native to tropical and temperate regions, the plant leaves, bark, and roots of specific Mitrephora species have been widely utilized in traditional medicine [3]. These plants contain phytoconstituents such as alkaloids, terpenoids, polyacetylene acids, and lignans, demonstrating anti-microbial [4], anti-cancer [5], anti-malarial platelet-activating factor [6]. and antagonism [7]. Therefore, this narrative review discussed the phytoconstituents and pharmacological effects of Mitrephora species highlighted their potential and ethnopharmacological relevance.

METHODS

Search strategy

A detailed literature search on phytoconstituents and pharmacological effects of Mitrephora was performed in key research species databases, including Google Scholar, PubMed, Ovid, and Taylor & Francis. The keywords used in this process were Mitrephora, pharmacological effects, phytoconstituents, anti-microbial, anticancer, platelet-activating factors, and antiinflammatory. Based on the findings, Mitrephora species were identified for this Mitrephora alba Ridl., Mitrephora review: celebica Scheff., Mitrephora diversifolia (Span.) Miq., Mitrephora glabra Scheff., Mitrephora heyneana (Hook. f. and Thomson) Thwaites, Mitrephora maingayi Hook. f. and Thomson, Mitrephora sirikitiae Weeras., Chalermglin and R.M.K. Saunders, Mitrephora teysmannii Scheff., Mitrephora thorelii Pierre, Mitrephora tomentosa Hook.f. and Thomson, Mitrephora vulpina C.E.C. Fisch., Mitrephora wangii Hu, and Mitrephora winitii Craib.

RESULTS

Phytoconstituents of mitrephora species

Extensive studies have revealed the phytoconstituents present in *Mitrephora* species, namely alkaloids, terpenoids, polyacetylene acids, lignans, and lignanamides derived from plant leaves, bark, root, and twigs. Other miscellaneous compounds found in these plants include cyclitols and megastigmenes which enhance the pharmacological profile.

Alkaloids

Alkaloids found in Mitrephora species vary in structure (1-13) and are classified as aporphine. azafluorenone, and miscellaneous alkaloids. These alkaloids are distributed in the leaves, stems, twigs, and bark. Liriodenine (1; a wellknown aporphine alkaloid) is present in M. glabra [4], M. vulpine [7], M. maingayi [8], and M. sirikitae [9]. Oxostephanine (4) has been reported in M. maingayi [8], dicentrinone (9) in M. sirikitae [9] and M. Maingayi [10]; oxoputerine (5) in M. vulpine [7] and M. Sirikitae [9]. Studies also isolated two 5-oxonoraporphine have alkaloids. 1,2,3-trimethoxy-5-oxonoraporphine 1.2-dimethoxy-3-hydroxy-5-**(11)** and oxonoraporphine (12) from M. maingayi [11]. Azafluorenone alkaloids such as 5,8-dihydroxy-6methoxyonychine **(2)** and 5-hydroxy-6methoxyonychine (3) have been reported in M. diversifolia [6]. Maingayinine (10) was identified from the twigs of M. maingayi [10], while stephranine (6), 6-methoxymarcanine A (7), and N-trans-feruloyl tyramine (8) have been isolated from M. sirikitae [9] (Table 1 and Table 2).

Terpenoids

Terpenoids were primarily isolated from the leaves, stems, bark, and twigs of Mitrephora species and classified into monoterpenoids, sesquiterpenoids, diterpenoids, and triterpenoids. Currently, 30 terpenoids have been reported from Mitrephora species, with diterpenoids as the most common. Diterpenoid variants include kauranes. pimaranes. trachvlobanes. clerodanes. Kaurenes are mainly found in M. celebica (14) [12], M. maingayi (15 and 16) [8], and *M. tomentosa* (15) [13]. Compound 15 in *M.* maingayi has been identified as a chemomarker [8]. Furthermore, investigation on *M. glabra* stem bark revealed three kaurane-type diterpenoids (17 – 19) [4], while kaurenoic acid (20) has been isolated from M. sirikitae [9].

Pimaranes have been identified in *M. alba*, *M. celebica*, *M. maingayi*, *M. tomentosa*, and *M. sirikitae*. A pimarane-type diterpenoid (21) has been isolated from *M. maingayi* [8]. Meanwhile, two pimarane-type diterpenoids were present in *M. celebica* (21 and 22) [12], and *M. alba* (23 and 24) [14], and one pimarane compound (25) was identified in *M. tomentosa* [13]. Trachylobane-type diterpenoids were isolated from *M. alba*, *M. celebica*, *M. glabra*, and *M. sirikitae*. One trachylobane-type diterpenoid (26) was found in *M. celebica* [12], three (27 – 29) in *M. glabra* [5], seven (30 – 36) in *M. alba* [14], and two (26 and 37) in *M. sirikitae* [9].

Table 1: Alkaloids extracted from various Mitrephora species

Number 1 Liriodenine Mitrephora glabra Mitrephora vulpina Mitrephora maingayi Mitrephora sirikitae	Bark Twigs Stem Leaves and stem	[4] [7] [8] [9]
Mitrephora maingayi	Stem Leaves and stem	[8]
	Leaves and stem	
Mitrephora sirikitae	and stem	[9]
	Poot	
2 5,8-Dihydroxy-6-methoxyonychine <i>Mitrephora diversifolia</i>	Root	[6]
O OH HO O		
3 5-Hydroxy-6-methoxyonychine Mitrephora diversifolia	Root	[6]
O H HO O		
4 Oxostephanine Mitrephora maingayi	Stem	[8]
O N N O O Me		
5 Oxoputerine Mitrephora vulpina	Twigs	[7]
Mitrephora sirikitae	Leaves and stem	[9]
H ₃ CO O		
6 Stephranine Mitrephora sirikitae	Stem	[9]
H_3CO HO N^+ OCH_3 OH		

Table 2: Alkaloids extracted from various Mitrephora species (continued)

Structure Number	Compound	Species	Plant part	Reference
7	6-Methoxymarcanine A	Mitrephora sirikitae	Stem	[9]
8	N-trans-feruloyl tyramine H ₃ CO HO OH HO OH	Mitrephora sirikitae	Leaves	[9]
9	Dicentrinone	Mitrephora sirikitae	Leaves	[9]
	N O O	Mitrephora maingayi	Twigs	[10]
10	Maingayinine O N O N	Mitrephora maingayi	Twigs	[10]
11	1,2,3-Trimethoxy-5-oxonoraporphine OMe MeO H H H	Mitrephora maingayi	Bark	[11]
12	1,2-Dimethoxy-3-hydroxy-5-oxonoraporphine OH MeO NH H H H H	Mitrephora maingayi	Bark	[11]
13	Ouregidione O O O O O O O O O O O O O O O O O O O	Mitrephora maingayi	Bark	[11]

Clerodane-type diterpenoids (38 and 39) have been reported in *M. thorelii*. Compound 39 had been isolated from *Polyalthia longifolia* but later published as a new compound within the *Mitrephora* genus in 2007 [15]. Other terpenoids, such as monoterpenoids and triterpenoids, were

reported in *M. zippeliana* [16] and *M. heyneana* [17], respectively. Furthermore, sesquiterpenoids are present in several *Mitrephora* species, including thorelinin (40) from *M. thorelii* [18] (Tables 3 - 6).

Table 3: Terpenoids isolated from Mitrephora species

Structure Number	Compound	Species	Plant part	Reference
14	Ent-kaur-16-en-19-oic acid	Mitrephora celebica	Stem bark	[12]
15	(-)-16-Kauren-19-oic acid	Mitrephora maingayi	Leaves	[8]
	Соон	Mitrephora tomentosa	Bark	[13]
16	Didymooblongin	Mitrephora maingayi	Leaves	[8]
17	4-Epi-kaurenic acid	Mitrephora glabra	Stem bark	[4]
18	Mitrekaurenone	Mitrephora glabra	Stem bark	[4]
19	Methylmitrekaurenate HCO ₂ H MeO CO ₂ H MeO	Mitrephora glabra	Stem bark	[4]
20	Kaurenoic acid	Mitrephora sirikitae	Stem	[9]
21	8(14),15-Pimaradien-18-oic acid	Mitrephora maingayi	Stem	[8]
	COOH	Mitrephora celebica	Stem bark	[12]

Table 4: Terpenoids isolated from Mitrephora species (continued A)

22 7,15-Pimaradien-18-oic acid	Structure Number	Compound	Species	Plant part	Reference
23 Enl-8β-hydroxypimar-15-en-18-oic acid Mitrephora alba Twigs [14] 24 Enl-15, 16-dihydroxypimar-8(14)-en-18-oic acid Mitrephora alba 25 (-)-8β-hydroxypimar-15-en-18-oic acid Mitrephora tomentosa 26 Enl-trachyloban-19-oic acid Mitrephora stem celebica bark Mitrephora sirikitae Stem 27 Mitrephorone A Mitrephora glabra 28 Mitrephorone B Mitrephora Twigs [5]				Stem	[12]
24 Ent-15,16-dihydroxypimar-8(14)-en-18-oic acid Mitrephora alba 25 (-)-8β-hydroxypimar-15-en-18-oic acid Mitrephora bark tomentosa 26 Ent-trachyloban-19-oic acid Mitrephora celebica bark Mitrephora sirikitae Stem 27 Mitrephorone A Mitrephora glabra 28 Mitrephorone B Mitrephora Twigs [5]	23	Ent-8β-hydroxypimar-15-en-18-oic acid		Twigs	[14]
26 Ent-trachyloban-19-oic acid Mitrephora tomentosa 26 Ent-trachyloban-19-oic acid Mitrephora celebica bark Mitrephora sirikitae Stem 27 Mitrephorone A Mitrephora glabra 28 Mitrephorone B Mitrephora Twigs [5] Mitrephora Twigs [5] Mitrephora Twigs [5]	24	Ent-15,16-dihydroxypimar-8(14)-en-18-oic acid		Twigs	[14]
celebica bark Mitrephora [9] 27 Mitrephorone A Mitrephora Twigs [5] 28 Mitrephorone B Mitrephora glabra Twigs [5] 29 Mitrephorone C Mitrephora Twigs [5]	25	(-)-8β-hydroxypimar-15-en-18-oic acid		Bark	[13]
sirikitae Stem 27 Mitrephorone A Mitrephora Twigs [5] 28 Mitrephorone B Mitrephora glabra Twigs [5] 29 Mitrephorone C Mitrephora Twigs [5]	26	Ent-trachyloban-19-oic acid	celebica		[12]
glabra 28 Mitrephorone B Mitrephora Twigs [5] glabra Mitrephora Twigs [5] Mitrephora Twigs [5]			sirikitae		
glabra glabra 29 Mitrephorone C Mitrephora Twigs [5]	27	Moo o		Twigs	[5]
	28	MeO OH		Twigs	[5]
MeO OH OH	29	MeO OH	Mitrephora glabra	Twigs	[5]

Table 5: Terpenoids isolated from Mitrephora species (continued B)

Structure Number	Compound	Species	Plant part	Reference
30	Ent-3β-hydroxytrachyloban-18-oic acid	Mitrephora alba	Twigs	[14]
	HO' H HO ₂ C H CH ₃			
31	Ent-3β-hydroxytrachyloban-18-al	Mitrephora alba	Twigs	[14]
•	HO' HO' CH ₃		.	74.43
32	Methyl- <i>ent</i> -3β-hydroxytrachyloban-18-oate	Mitrephora alba	Twigs	[14]
	HO' H H ₃ CO ₂ C CH ₃			
33	Ent-trachyloban-18-oic acid	Mitrephora alba	Twigs	[14]
	H HO ₂ C CH ₃			
34	Ent-trachyloban-3β,19-diol	Mitrephora alba	Twigs	[14]
	HO' H ₃ C CH ₂ OH			
35	Ent-trachyloban-3β,18-diol	Mitrephora alba	Twigs	[14]
	HO" H HOH ₂ C CH ₃			
36	Ent-trachyloban-3β-ol	Mitrephora alba	Twigs	[14]
	HO'' H H ₃ C CH ₃			
37	Ciliaric acid	Mitrephora sirikitae	Stem	[9]
	COOH			

 Table 6: Terpenoids isolated from Mitrephora species (continued C)

Structure Number	Compound	Species	Plant part	Reference
38	6α,16,18-Trihydroxycleroda-3(4),13(14)-dien- 15,16-olide	Mitrephora thorelii	Āerial	[15]
	O O O O O O O O O O O O O O O O O O O			
39	HO´ 16-Hydro-xycleroda-3(4),13(14)-dien-15,16-olide	Mitrephora thorelii	Aerial	[15]
	O OH	uioreiii		
40	Thorelinin HO HO OCH ₃ HO OCH ₃ HO OCH ₃	Mitrephora thorelii	Stem	[18]
41	ÖH β-Sitosterol	Mitrephora tomentosa	Bark	[13]
	HO H	Mitrephora heyneana	Bark	[17]
42	HO HO H	Mitrephora vulpina	Twigs	[7]
	но			
43	stigma-5-en-3-O-b-glucopyranoside	Mitrephora sirikitae	Leaves	[9]
	HO IH OH			

Polyacetylenic acids and esters

Mitrephora species contain polyacetylenic acids and esters as phytoconstituents. Studies had identified nine polyacetylene acid structures (44–52) from selected Mitrephora species. Two polyacetylene acids (44 and 45) are present in M. celebica [19], five (45–49) in M. glabra [4], and four (44, 47, 50 and 51) in M. teysmannii [20]. Meanwhile, the polyacetylenic ester mitregenin (52) was isolated from M. maingayi along with compound 45 [21] (Table 7).

Lignans and lignanamides

A total of 25 different lignans have been identified in *M. maingayi*, *M. vulpina*, *M. teysmannii*, *M. sirikitiae*, *M. winitii*, and *M. wangii*. *M. wangii* contains the most lignans with 10 distinct structures (53–62) [22]. In 2016, two new lignans (63 and 64) and five known lignans were isolated from *M. teysmannii* (65–69) [20]. The lignan phylligenin (70) was identified in *M. vulpina* [7].

Two lignans (71 and 72) were reported in *M. maingayi* [8], while six lignans (66-68, 73-75) were found in *M. sirikitiae* [9,23]. Furthermore, *M. thorelii* contains three lignanamides (thoreliamide A (78), thoreliamide B (79), and thoreliamide C (80)) [18] (Tables 8 - 12).

Miscellaneous compounds

Apart from alkaloids, terpenoids, polyacetylene acids. lignans, and lignanamides, other phytoconstituents such as cyclitol, megastigmenes, and benzaldehyde have also reported Mitrephora been in species. Quebrachitol (81) was found in M. maingayi, M. vulpina, and M. winitii [7,10,24]. Furthermore, two megastigmanes (82 and 83) had been identified in M. teysmannii [20]. Terepthalic acid (84) and 4-hydroxy-benzaldehyde (85) were isolated from M. maingayi [10] and Mitrephora wangii [22], respectively (Table 13).

Pharmacological properties of *Mitrephora* species

Numerous studies have assessed the pharmacological activities of *Mitrephora* species, particularly *M. alba, M. celebica, M. diversifolia, M. glabra, M. sirikitiae, M. teysmannii, M. vulpina, and <i>M. winitii.* The following sections discuss the anti-microbial, anti-cancer, α-glucosidase inhibition, anti-malarial, PAF inhibition, and anti-inflammatory exhibited by several *Mitrephora* species.

Pharmacological activity

Anti-microbial effects

Alkaloids, diterpenoids, and polyacetylene acids contribute to the anti-microbial activity of M. glabra and M. celebica. Two polyacetylene acids (44 and 45) from M. celebica were tested against methicillin-resistant Staphylococcus aureus Mycobacterium (MRSA) and smeamatis. Compound 45 demonstrated higher potency against MRSA than compound 44 at a minimum inhibitory concentration (MIC) of 12.5 µg/mL and 25 µg/mL, respectively, however, higher than vancomycin (MIC of 0.8 µg/mL). In the same study, both compounds were equipotent when tested against M. smegmatis (MIC of 12.5 µg/mL), however, higher than isoniazid (0.8-1.6 µg/mL) [19]. Furthermore, a diterpenoid (26) isolated from M. celebica exhibited moderate resistance against MRSA and M. smegmatis (MIC of 6.5 µg/mL) [12]. Three diterpenoids identified in M. glabra (27-29) demonstrated antimicrobial activity against Micrococcus luteus, M. smegmatis, Saccharomyces cerevisiae, and Aspergillus niger. Compound 29 exhibited the highest potency against yeast (MIC = 31 μ g/mL) compared to amphotericin B (MIC = $25 \mu g/mL$) [5]. In another study, compounds 46 and 49 were demonstrated to exhibit anti-microbial effect.

Anti-cancer properties

Previous study reported that M. glabra contains two diterpenoids (27 and 28) with anti-cancer activities against human cancer cells [5]. However, compound 27 (IC₅₀ = 8–31 μ g/mL) exhibited significantly stronger cytotoxic potential compared to compound 28 against human oral epidermoid carcinoma (KB), human breast carcinoma (MCF-7), human large cell lung carcinoma (NCI-H460), and human astrocytoma (SF-268) cell lines. Cytotoxic potential of polyacetylene acids (45, 47-49) (IC50 ranging from 10 to 40 µM) had been demonstrated [4] with liriodenine alkaloid emerging as the most potent ($IC_{50} = 5 \mu M$) in *M. glabra* [4]. Also, trachylobane diterpenoids in alba М. demonstrated anti-cytotoxic activity compared to doxorubicin [14]. Lignan (3,4dimethoxyphenyl)(5-(3,4-dimethoxyphenyl)-4-(hydroxymethyl) tetrahydrofuran-3-yl) methanol (77) isolated from M. winitii demonstrated antiproliferative activity against KB and MCF-7 cell $(ED_{50} \text{ of } 13.07 \text{ and } 11.77 \text{ } \mu\text{g/mL})$ respectively [24].

Table 7: Polyacetylenic acids and esters isolated from Mitrephora species

Structure Number	Compound	Species	Plant part	Reference
44	13(E),17-Octadecadiene-9,11-diynoic acid	Mitrephora tomentosa	Stem bark	[13]
		Mitrephora celebica	Stem bark Leaves	[19]
		Mitrephora teysmannii		[20]
45	17-Octadecene-9,11,13-triynoic acid (oropheic acid)	Mitrephora glabra	Stem bark	[4]
	<u> </u>	Mitrephora celebica	Stem bark Twigs and leaves	[19]
		Mitrephora maingayi	leaves	[21]
46	Methyloropheate	Mitrephora glabra	Stem bark	[4]
	$===$ \bigcirc OCH ₃			
47	Octadeca-9,11,13-triynoic acid	Mitrephora glabra	Stem bark	[4]
	<u> </u>	Mitrephora	Leaves	[20]
48	Oropheolide $H \ \ {}^{\hspace{-1pt}C} H_2 O H$	teysmannii Mitrephora glabra	Stem bark	[4]
	= =	gidazia		
49	9,10-Dihydrooropheolide	Mitrephora glabra	Stem bark	[4]
	$= - + CH_2OH$	giabia		
50	13(E)-Octadecene-9,11-diynoic acid	Mitrephora teysmannii	Leaves	[20]
	√√ = = √√ соон	toyomanını		
51	Octadeca-17-en-9,11,13- triynoic acid	Mitrephora teysmannii	Leaves	[20]
	<u> </u>	to y ciriai ii ii		
52	Mitregenin	Mitrephora maingayi	Twigs and leaves	[21]
	CH ₂ OH		.53,00	

Table 8: Lignans isolated from Mitrephora species

Structure Number	Compound	Species	Plant part	Reference
53	(7S,8R,7'R,8'R)-4'-Hydroxy-4-methoxy-7,7'- epoxylignan	Mitrephora wangii	Leaves	[22]
	HOOME			
54	(2S,3S)-2,3-Dihydro-2-(3',4'-dihydroxyphenyl)-3- methyl-5-benzofurancarboxaldehyde O	Mitrephora wangii	Leaves	[22]
	но			
55	Decurrenal O	Mitrephora wangii	Twigs	[22]
	но			
56	Parakmerin A	Mitrephora wangii	Twigs	[22]
	HO————————————————————————————————————			
57	(−)-Licarin A	Mitrephora wangii	Twigs	[22]
	HO OMe			
58	(+)-Conocarpan	Mitrephora wangii	Twigs	[22]
	но			
59	Eupomatenoid-5	Mitrephora wangii	Twigs	[22]
	HO—MeO			
60	Eupomatenoid-6	Mitrephora wangii	Twigs	[22]
	но			

Table 9: Lignans isolated from Mitrephora species (continued)

Structure Number	Compound	Species	Plant part	Reference
61	Threo-1-(4-hydroxyphenyl)-2-(4-(E)-propenyl phenoxy)-propan-1-ol	Mitrephora wangii	Leaves	[22]
	HOOH			
62	Erythro-1-(4-hydroxyphenyl)-2-(4-(E)-propenyl phenoxy)-propan-1-ol	Mitrephora wangii	Twigs	[22]
	HOOHO			
63	(2R,3S)-2-(3',4'-Dimethoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydrobenzofuran-3-methyl acetate	Mitrephora teysmannii	Leaves	[20]
	OCH ₃ OCH ₃ OCH ₃ OOCH ₃			
64	(−)-3',4-Di- <i>O</i> -methylcedrusin	Mitrephora teysmannii	Leaves	[20]
	OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃			
65	(-)-Eudesmin	Mitrephora teysmannii	Leaves	[20]
	H ₃ CO H OCH ₃			
66	(-)-Epieudesmin	Mitrephora teysmannii	Leaves	[20]
	H ₃ CO H OCH ₃	Mitrephora sirikitiae	Leaves and stem	[9]
	H ₃ CO 0		Leaves	[23]
67	(-)-Phillygenin	Mitrephora teysmannii	Leaves	[20]
	H ₃ CO H OCH ₃	Mitrephora sirikitiae	Leaves	[9, 23]

 Table 10: Lignans isolated from Mitrephora species (continued B)

Structure Number	Compound	Species	Plant part	Reference
68	Magnone A	Mitrephora teysmannii	Leaves	[8]
	H_3 CO HO O O O O O O O O O	Mitrephora maingayi	Leaves	[20]
	H ₃ CO H	Mitrephora sirikitiae	Leaves	[9, 23]
69	Forsythialan B OCH ₃ HOOOCH ₃ H ₃ CO	Mitrephora teysmannii	Leaves	[20]
70	Phylligenin H ₃ CO OCH ₃ H ₃ CO	Mitrephora vulpina	Twigs	[7]
71	(+)-Epieudesmin MeO HI OME OME	Mitrephora maingayi	Leaves and stem	[8]
72	Eudesmin MeO H OMe OMe OMe	Mitrephora maingayi	Leaves and stem	[8]
73	2-(3,4-Methylene-dioxyphenyl)-6-(3,5-dimethoxyphenyl)-3,7-dioxabicyclo(3.3.0)octane OCH ₃ OCH ₃ H ₃ CO	Mitrephora sirikitiae	Leaves	[9, 23]
74	H ₃ CO Mitrephoran OCH ₃ OCH ₃ HO H ₃ CO	Mitrephora sirikitiae	Leaves	[9, 23]

Table 11: Lignans isolated from Mitrephora species (continued)

Structure Number	Compound	Species	Plant part	Reference
75	3',4-O-Dimethylcedrusin H ₃ CO OH OCH ₃	Mitrephora sirikitiae	Leaves	[9, 23]
76	Diayangambin OMe OMe OMe OMe MeO MeO MeO	Mitrephora winitii	Leaves and twigs	[24]
77	(3,4-Dimethoxyphenyl)(5-(3,4-dimethoxyphenyl)-4-(hydroxymethyl)tetrahydrofuran-3-yl)methanol	Mitrephora winitii	Leaves and twigs	[24]

 Table 12: Lignanamides isolated from Mitrephora species

Structure Number	Compound	Species	Plant part	Reference
78	Thoreliamide A OH HO OH HO OCH ₃	Mitrephora thorelii	Stem	[18]
79	Thoreliamide B OH OH H3CO HO OCH3	Mitrephora thorelii	Stem	[18]
80	Thoreliamide C	Mitrephora thorelii	Stem	[18]

Table 13: Miscellaneous compounds isolated from Mitrephora species

Structure Number	Compound	Species	Plant part	Reference
81	Quebrachitol	Mitrephora maingayi	Twigs	[7]
	OCH ₃	Mitrephora vulpina	Twigs	[10]
	но он	Mitrephora winitii	Leaves and twigs	[24]
82	(3S,5R,6S,7E,9R)-7-Megastigmene-3,6,9-triol	Mitrephora teysmannii	Leaves	[20]
	HO" OH			
83	Annoionol A	Mitrephora teysmannii	Leaves	[20]
	HO, OH			
84	Terepthalic acid	Mitrephora maingayi	Twigs	[10]
	ОТОН	agay		
	ноо			
85	4-Hydroxy-benzaldehyde	Mitrephora wangii	Twigs	[22]
	НО			

In another study, the alkaloids liriodenine (1) and oxoputerine (5) from M. sirikitiae exhibited potent cytotoxicity ($IC_{50} = 6.59 - 11.02 \mu M$) against murine lymphocytic leukemia (P-388), KB, human colon carcinoma (Col-2 and HT-29), MCF-7, human lung carcinoma (Lu-1 and A549), and rat glioma (ASK) [9]. Another alkaloid, 6methoxymarcanine A (7), selectively inhibited the growth of P-388, HT-29, MCF-7, and A549 cells (IC₅₀: $8.33 - 12.30 \mu M$), while displaying lower cytotoxicity against KB, ASK, and non-cancerous human embryonic kidney cells (HEK-293). Among the lignans, magnone A (68) exhibited selective cytotoxicity against P-388 (IC50: 8.96 μM) and MCF-7 cells (IC₅₀: 4.40 μM). Given the selective inhibitory effects and lower toxicity

toward normal cells, magnone A (68) and 6-methoxymarcanine A (7) are promising candidates for further anti-cancer studies [9].

Alpha-glucosidase inhibition

Four polyacetylenic acids (44, 47, 50 and 51) from *M. teysmannii* were potential α -glucosidase inhibitors [14]. The study demonstrated that compounds 44 (IC₅₀ = 59 μ M) and 50 (IC₅₀ = 53 μ M) exhibited α -glucosidase inhibitory activity superior to acarbose (IC₅₀ = 1457 μ M). Also, previous study has demonstrated α -glucosidase inhibitory activity of compound 47 (IC₅₀ = 128 μ M) and 51 (IC₅₀ = 274 μ M) [20].

Anti-malarial effects

Azafluorenone alkaloids (compounds **2** and **3**) from *M. diversifolia* demonstrated anti-malarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of *Plasmodium falciparum* without any signs of kidney toxicity. Conversely, compound 3 was highly effective against strains 3D7 (IC $_{50} = 9.9$ $_{\mu}$ M) and Dd2 (IC $_{50} = 11.4$ $_{\mu}$ M), however, signs of kidney toxicity were detected at 120 $_{\mu}$ M [6].

Platelet-activating factor (PAF) inhibitor

Phylligenin (70) and quebrachitol (81) isolated from M. vulpina significantly inhibited PAF receptor binding at 18.2 μ g/mL (IC₅₀ = 13.1 and 42.2 μ M, respectively) compared to cedrol (positive control used in the assay). Also, compound 70 exhibited anti-platelet activity in arachidonic acid (AA)- and adenosine diphosphate (ADP)-induced aggregation in a dose-dependent manner (IC₅₀ = 230.6 and 121.8 μ M, respectively) [7].

Anti-inflammatory activity

isolated from M. Lignans sirikitiae have demonstrated significant anti-inflammatory activity in LPS-induced RAW 264.7 macrophages by modulating key inflammatory mediators. Phylligenin (70) and 3',4-O-dimethylcedrusin (75) significantly suppressed prostaglandin E₂ (PGE₂) and nitric oxide (NO) production through the downregulation of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) expression. Meanwhile, 2-(3,4-dimethoxyphenyl)-6-(3,5-dimethoxyphenyl)-3,7-dioxabicyclo (3.3.0) octane (73) and mitrephoran (74) inhibited tumor necrosis factor-alpha (TNF-α) secretion and mRNA expression, indicating their role in inflammatory cytokines. modulating findings suggest that lignans from M. sirikitiae are potential anti-inflammatory agents, targeting multiple inflammation pathways [23].

Limitations of the study

Despite the promising findings, there are knowledge gaps that need to be addressed. Advanced molecular studies should conducted to elucidate the mechanisms of action of the bioactive compounds of Mitrephora species, particularly for anti-cancer and antimicrobial applications. Exploring drug delivery systems for Mitrephora-derived compounds may also optimize their therapeutic potential. Furthermore, existing studies are primarily conducted in vitro, thus lacking comprehensive clinical validations. Therefore, clinical trials are needed to confirm the safety, efficacy, and pharmacokinetics of bioactive compounds derived from *Mitrephora* species. Therefore, the genus *Mitrephora* may significantly contribute to the development of novel therapeutic agents.

CONCLUDING REMARKS

This review has highlighted the diversity of phytoconstituents (alkaloids, terpenoids, lignans, and polyacetylene acids) across *Mitrephora species* and their corresponding pharmacological effect. The literature presents evidence of these compounds in combating human cancer cells, microbial infections, malaria, inflammation, and PAF inhibition. Notably, aporphine alkaloids and diterpenoids have emerged as key bioactive agents, underlining the therapeutic potential of this genus in modern drug development.

DECLARATIONS

Acknowledgement/Funding

The authors would like to thank Universiti Kebangsaan Malaysia for supporting this study.

This study was funded by Universiti Kebangsaan Malaysia (Grant no. GUP-2021-005).

Ethical approval

Not applicable.

Use of Artificial intelligence/Large language models

We declare also that we did not use Generative artificial intelligence (AI) and AI-assisted technologies in writing the manuscript.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflict of interest

No conflict of interest is associated with this work.

Contribution of authors

We declare that this work was done by the author(s) named in this article, and all liabilities pertaining to claims relating to the content of this article will be borne by the authors.

REFERENCES

- Kaushik B, Sharma J, Yadav K, Kumar P, Shourie A. Phytochemical properties and pharmacological role of plants: Secondary metabolites Biosci Biotechnol Res Asia 2021; 18: 23–35.
- Aware CB, Patil DN, Suryawanshi SS, Mali PR, Rane MR, Gurav RG, Jadhav JP. Natural bioactive products as promising therapeutics: A review of natural productbased drug development. S Afr J Bot 2022; 151: 512-528
- 3. Weerasooriya AD, Saunders RMK. The genus Mitrephora (Annonaceae) in Cambodia, Laos, and Vietnam. Syst Bot 2005; 30(2): 248–262.
- Li C, Lee D, Graf TN, Phifer SS, Nakanishi Y, Riswan S, Setyowati FM, Saribi AM, Soejarto DD, Fransworth NR, et al. Bioactive constituents of the stem bark of Mitrephora glabra. J Nat Prod 2009: 72: 91949–91953.
- Li C, Lee D, Graf TN, Phifer SS, Nakanishi Y, Burgess JP, Riswan S, Setyowati FM, Saribi AM, Soejarto DD, et al. A Hexacyclic ent-trachylobane diterpenoid possessing an oxetane ring from Mitrephora glabra. Org Lett 2005; 7(25): 5709–5712.
- Mueller D, Davis RA, Duffy S, Avery VM, Camp D, Quinn RJ. Anti-malarial activity of azafluorenone alkaloids from the Australian tree Mitrephora diversifolia. J Nat Prod 2009; 72: 1538–1540.
- Moharam BA., Jantan I, Jalil J, Shaari K. Inhibitory effects of phylligenin and quebrachitol isolated from Mitrephora vulpina on platelet-activating factor receptor binding and platelet aggregation. Mol 2010; 15: 7480–7848.
- 8. Deepralard K, Pengsuparp T, Moriyasu M, Kawanishi K, Suttisri R. Chemical constituents of Mitrephora maingayi. Biochem Syst Ecol 2007; 35: 696–699.
- Anantachoke N, Lovacharaporn D, Reutrakul V, Michel S, Michel S, Gaslonde T, Piyachaturawat P, Suksen K, Prabpai S, Nuntasaen N. Cytotoxic compounds from the leaves and stems of the endemic Thai plant Mitrephora sirikitate. Pharm Biol 2020; 58(1): 490–497.
- Yu R, Li BG, Ye Q, Zhang GL. A novel alkaloid from Mitrephora maingayi. Nat Prod Res 2005; 19(4): 359– 362.
- Lee NHS, Xu YJ, Goh SH. 5-Oxonoraporphines from Mitrephora cf. maingayi. J Nat Prod 1999; 62: 1158– 1159.

- 12. Zgoda JR, Freyer AJ, Killmer LB, Porter JR. Antimicrobial diterpenes from the stem bark of Mitrephora celebica. Fitoterapia 2002; 434–438.
- 13. Supudompol B, Chaowasku T, Kingfang K, Burud K, Wongseripipatana S, Likhitwitayawuid K. A New Pimarane from Mitrephora tomentosa. Nat Prod Res 2004; 18(4): 387–390.
- Rayanil K, Limpanawisut S, Tuntiwachwuttikul P. Entpimarane and ent-trachylobane diterpenoids from Mitrephora alba and their cytotoxicity against three human cancer cell lines. Phytochem 2013; 89: 125–130.
- 15. Meng DH, XuYP, Chen WL, Zou J, Lou LG, Zhao WM. Anti-tumour clerodane-type diterpenes from Mitrephora thorelii. J Asian Nat Prod Res 2007; 9(7): 679–684.
- 16. Brophy J, Goldsack R. Essential oils from the leaves of some Queensland Annonaceae. J Essent Oil Res 2004; 16: 95–100.
- 17. Dan S, Dan SS, Mukhopadhyay P, Mukherjee MK. Chemical investigation of some Annonaceae species. Int J Crude Drug Res 1985; 23(2): 73–76.
- 18. Ge F, Tang CP, Ye Y. Liganamides and Sesquiterpenoids from Stems of Mitrephora thorelii. Helv Chim Acta 2008; 91: 1023–1030.
- 19. Zgoda JR, Freyer AJ, Killmer LB, Porter JR. Polyacetylene carboxylic acids from Mitrephora celebica. J Nat Prod 2001; 64: 1348–1349.
- 20. Rayanil K, Sutassanawichanna W, Suntornwat O. Tuntiwachwuttikul P. A new dihydrobenzofuran lignan and potential α-glucosidase inhibitory activity of isolated compounds from Mitrephora teysmannii. Nat Prod Res 2016; 30(23): 2675–2681.
- 21. Zhang Q, Di YT, He HP, Li SH, Hao XJ. Mitregenin, a new Annonaceous acetogenin from Mitrephora maigayi. Nat Prod Commun 2010; 5(11): 1793–1794.
- 22. Jaidee W, Maneerat W, Andersen RJ, Patrick BO, Pyne SG, Laphookhieo S. Antioxidant neolignans from the twigs and leaves of Mitrephora wangii HU. Fitoterapia 2018; 130: 219–224.
- 23. Mangmool S, Limpichai C, Han KK, Reutrakul V, Anantachoke N. Anti-inflammatory effects of Mltrephora sirikitate leaf extract and isolated lignans in RAW 264.7 Cells. Mol 2022; 27: 3313–3326.
- 24. Sukdee S, Meepowpan P, Nantasaen N, Jungsuttiwong S, Hadsadee S, Pompimon W. Anti-cancer activities of chemical constituents from leaves and twigs of Mitrephora winitii. Indones J Chem 2021; 21(3): 699– 707.