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Abstract 

The balance between oxidation and reduction is important for maintaining a healthy biological system. 
Oxidative stress results from an imbalance between excessive formation of reactive oxygen species 
(ROS) and/or reactive nitrogen species (RNS) and limited endogenous defense systems, and this 
imbalance can adversely alter lipids, proteins and DNA, causing a number of human diseases. Thus, 
exogenous antioxidants that can neutralize the effect of free radicals are needed to diminish the 
cumulative effects of oxidative damage over human life span. Current research reveals that phenolic 
compounds in plants possess high antioxidant activity and free radical scavenging capacity and can 
prevent the body from oxidative damage over human life span. This review focuses on the present 
understanding of free radicals and antioxidants and their importance in human health and disease. 
Information about the chemical features of free radicals as well as their deleterious effects on cell 
structures is reviewed. The chemical structure and anti-oxidative mechanisms of essential polyphenols 
and their potential health benefits are presented. In addition, the limitation of natural antioxidants and a 
perspective on likely future trends in this field are also discussed. 
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INTRODUCTION 
 
Oxidation is a chemical reaction involving 
transfer of an electron from electron - rich to 
electron - deficient entity. In human body, the 
oxygen molecule (O2) is an element 
indispensable for life and used biologically to 
oxidize (burn) carbon-and hydrogen-rich 
molecules to obtain chemical energy and heat 
[1]. However, oxygen is a dangerous friend. The 
by-products of its metabolism called free 
radicals, usually including reactive oxygen 
species (ROS) and reactive nitrogen species 
(RNS) are unstable, violently reactive and 
potentially destructive [2]. Although ROS and 

RNS exert beneficial effects on cellular 
responses and immune function at low/moderate 
levels, they also can damage all cell structures at 
high concentrations (termed as oxidative stress), 
leading to a number of diseases such as cancer, 
aging, cardiovascular and neurodegenerative 
diseases [3,4]. 
 
Antioxidants are substances capable of 
preventing or slowing the oxidation of other 
molecules. They exert their protective action 
either by suppressing the formation of free 
radicals or by scavenging free radicals [5]. 
However, oxidative stress occurs in the body 
when there is a serious imbalance between the 
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generation of free radicals and the antioxidant 
defence systems [6]. Despite the fact that 
humans naturally produce antioxidants, the 
process is not effective under some 
physiopathological situations (cigarette smoke, 
air pollutants, UV radiation, inflammation) [7,8]. 
Thus, increasing the antioxidant intake can 
prevent diseases and lower the health problems 
caused by free radicals. Plants, especially the 
medicinal plants are important sources of 
antioxidant substances, which can inhibit free 
radical formation and/or interrupt propagation of 
autoxidation. In recent years, plant polyphenols 
have gained a lot of importance because of their 
potential use as prophylactic and therapeutic 
agents in many diseases related to oxidative 
stress and free radical-induced damage.  
 
BASICS OF FREE RADICAL RESEARCH 
 
Free radicals 
 
The term ‘free radicals’ is defined as the reactive 
molecular species that contain unpaired 
electrons in their outermost orbital [2,3]. Free 
radicals can be formed from molecules by the 
homolytic fission of a chemical bond and via 
redox reactions, which is a far more common 
process in biological systems [2]. In popular 
scientific/biomedical literature, ‘free radical’ is 
used in a broad sense and also includes related 
reactive species such as ‘excited states’ that lead 
to free radical generation or those species that 
result from free radical reactions. Usually, free 
radicals are very short - lived and derived from 
two elements: oxygen and nitrogen, thus creating 
highly reactive molecules like reactive oxygen 
species (ROS) and reactive nitrogen species 
(RNS). ROS include superoxide anion radicals 
(O2

‒•), reactive hydroxyl radicals (OH•), 
hydroperoxyl radical (HO2•) and other species 
like hydrogen peroxide (H2O2), hypochlorous acid 
(HOCl) and singlet oxygen (1O2) [9]. The 
nitrogen-derived free radicals are nitric oxide 
(NO•), nitrogen dioxide (NO2), peroxy-nitrite 
anion (ONOO–) [10]. 
 
Oxidative damages induced by free radicals 
 
Although structurally different, the presence of 
unpaired electron results in free radicals sharing 
common properties, oxidizing other molecules to 
gain electrons and stabilizing themselves. Free 
radicals can attack important macromolecules in 
the human body, including lipids, proteins and 
DNA [11], and have been implicated as the 
cause of cancer, aging and neurodegenerative 
diseases such as Alzheimer’s disease, Parkinson 
disease and cardiovascular diseases such as 
arteriosclerosis. They are also the primary cause 

of cell death and tissue damage resulting from 
heart attack and stroke [12]. Lipids are more 
susceptible to free radical damage among all the 
major classes of biomolecules. When they react 
with membrane lipids, free radicals cause lipid 
peroxidation (LP). The consequences of lipid 
peroxidation are cross linking of membrane 
proteins, change in membrane fluidity and 
formation of adducts with protein and DNA which 
may be detrimental to the functioning of the cell 
[13]. In addition, a large number of toxic products 
are also formed due to lipid peroxidation, such as 
malondialdehyde (MDA), 4-hydroxynonenal (4-
HNE) and various 2-alkenals.  
 
Proteins can be oxidatively modified in three 
distinct ways: oxidative modification of a specific 
amino acid, free radical-mediated peptide 
cleavage, and formation of protein cross-linkage 
due to reaction with lipid peroxidation products 
[14]. The side chains of all amino acid residues 
of proteins, in particular tryptophan, cysteine and 
methionine residues are susceptible to oxidation 
[15]. Free radical mediated protein modification 
increases susceptibility to enzyme proteolysis. In 
addition, oxidative damage to cellular proteins 
can affect the signal transduction pathways, 
enzyme activity and heat stability which leads to 
aging [16].  
 
Although DNA is a stable, well-protected 
molecule, ROS/RNS still can interact with it and 
cause several types of damage such as 
production of base-free sites, deletions, 
modification of all bases, frame shifts, double 
strand DNA breaks, DNA-protein cross-links and 
chromosomal arrangements [17]. Because 
oxidative damage to DNA can affect the cell 
cycle and lead to mutations, DNA alteration has 
been suggested to be responsible in part in 
carcinogenesis [18,19].  
 
Source of free radicals in human body 
 
Free radicals and other ROS are derived either 
from endogenous metabolic process in the 
human body or from external sources, such as 
exposure to X-rays, ozone, cigarette smoking, air 
pollutants, and industrial chemicals. In the cells, 
formation of ROS and RNS can occur 
continuously as a consequence of both 
enzymatic and non-enzymatic reactions. 
Enzymatic reactions generating free radicals 
include those involved in the respiratory chain, in 
phagocytosis, in the prostaglandin synthesis, and 
in the cytochrome P450 system [20]. 
Mitochondria have long been recognized as the 
major site for ROS production and both 
complexes I and III have been established to be 
the specific sites for mitochondrial ROS 
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generation [21,22]. Besides mitochondria, many 
enzymes are also capable of producing ROS, 
such as, NADPH oxidase, xanthine oxidase, D-
amino acid oxidase and dihydrolipoamide 
dehydrogenase [23]. For example, the 
superoxide anion radicals (O2

‒•) is generated via 
cellular oxidase systems, such as NADPH 
oxidase, xanthine oxidase, peroxidases. 
Hydrogen peroxide (H2O2) is produced by the 
action of several oxidase enzymes, including 
amino acid oxidase and xanthine oxidase. In 
particular, xanthine oxidase catalyzes the 
reaction of hypoxanthine to xanthine and 
xanthine to uric acid. In both steps, molecular 
oxygen is reduced, forming the superoxide anion 
in the first step and hydrogen peroxide in the 
second [20-22]. Hydroxyl radical (OH•), the most 
reactive free radical is formed by the reaction of 
O2

‒• with H2O2 in the presence of Fe2+ or Cu+ (the 
Fenton reaction) [24]. The various pathways 
involved in the generation of some of the reactive 
oxygen species are given in Figure 1. In addition, 
free radicals can also be formed in non-
enzymatic reactions of oxygen with organic 
compounds as well as those initiated by ionizing 
radiations. 
 
Oxidative stress and antioxidant protection 
mechanisms  
 
In general, free radicals as necessary 
intermediates are produced in a variety of normal 
biochemical reactions and a homeostatic balance 
exists between free radical generation and 
quenching under normal physiological conditions 
[25,26]. Oxidative stress occurs when this 
balance is disrupted by excessive production of 
reactive oxygen species. Antioxidants are central 
to the redox balance in the human body. The 
term ‘antioxidant’ refers to any molecule stable 

enough to donate an electron to a rampaging 
free radical and neutralize it, thus reducing its 
capacity to damage a target molecule [2,3]. 
Antioxidants may exert their effects by different 
mechanisms, such as suppressing the 
production of active species by reducing 
hydroperoxides and H2O2 and also by 
sequestering metal ions, termination of chain 
reaction by scavenging active free radicals, 
repairing and/or clearing damage of cell. 
Similarly, some antioxidants also induce the 
biosynthesis of other antioxidants or defence 
enzymes [27]. 
 
Humans have several mechanisms to counteract 
oxidative stress, either by producing antioxidants 
from endogenous antioxidant systems or 
externally supplied through exogenous 
antioxidants (Figure 2). The endogenous 
antioxidant systems, including enzymatic and 
non-enzymatic antioxidants, play a crucial role in 
maintaining optimal cellular functions. The major 
antioxidant enzymes directly involved in the 
neutralization of ROS and RNS are superoxide 
dismutase (SOD), catalase (CAT), glutathione 
peroxidase (GPx), glutathione reductase (GRx) 
[3,28]. SOD, the first line of defense against free 
radicals, catalyzes the dismutation of O2

‒• to O2 
and to the less-reactive species H2O2 by 
reduction. In humans there are three forms of 
SOD: cytosolic Cu, Zn-SOD, mitochondrial Mn-
SOD, and extracellular SOD (EC-SOD) [29]. The 
H2O2 is transformed into water and oxygen by 
CAT or GPx. The selenoprotein GPx enzyme 
removes H2O2 by using it to oxidize reduced 
glutathione (GSH) into oxidized glutathione 
(GSSG). Glutathione reductase, a flavoprotein 
enzyme, regenerates GSH from GSSG, with 
NADPH as a source of reducing power (Figure 
1). 

 

 
 
Figure 1: A schematic diagram showing the production of free radicals via different routes and the interaction 
between intracellular antioxidants. SOD=superoxide dismutase; CAT= catalase; GPx=glutathione peroxidase; 
GRx= glutathione reductase; GSH=reduced GSH (L-γ-glutamyl-L-cysteinyl-glycine); GSSG=oxidized GSH 
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Figure 2: Enzymatic and non-enzymatic classification of antioxidants 
 
The non-enzymatic antioxidants are also divided 
into endogenous (metabolic) and exogenous 
(nutrient) antioxidants. Endogenous antioxidants 
are produced by metabolism in the body, such as 
lipoid acid, glutathione, L-ariginine, coenzyme 
Q10, melatonin, uric acid, bilirubin, metal-
chelating proteins, transferrin [30]. Exogenous 
antioxidants are compounds that cannot be 
produced in the body, such as vitamin E, vitamin 
C, carotenoids, trace metals (selenium, 
manganese, zinc), flavonoids, omega-3 and 
omega-6 fatty acids. These exogenous 
antioxidants must be provided by foods or 
supplements via diet. 
 
PLANTS AS SOURCES OF NATURAL 
ANTIOXIDANTS 
 
Despite the fact that humans are equipped with 
an impressive repertoire of antioxidant enzymes 
as well as small antioxidant molecules, these 
agents may not be sufficient enough to normalize 
the redox status during oxidative stress [31]. 
Antioxidant supplementation/treatment has been 
adopted for maintaining optimal cellular 
functions. There are a number of synthetic 
phenolic antioxidants that have been widely used 
as food antioxidants, such as butylated 
hydroxyanisole (BHA), butylated hydroxytoluene 
(BHT) and ter-butylhydroquinone (TBHQ) [32]. 
However, some physical properties of synthetic 
antioxidants, such as their high volatility and 
instability at elevated temperatures, carcinogenic 
nature and consumers’ preference for natural 
ingredients have reinforced the efforts for the 
development of alternative antioxidants from 
natural origins. 
 
Plants, especially medicinal herbs, have been 
used for the prevention and/or treatment of 

several diseases since very old times [33]. Plant 
extracts, such as flavonoids and phenolics, have 
raised public interest in their potential to act as 
antioxidants. Natural antioxidants can strengthen 
the endogenous antioxidant defense from ROS 
ravage and restore the optimal balance by 
neutralizing the reactive species [34]. In 
traditional Chinese medicine (TCM), a similar 
concept of balance between anti-oxidation and 
oxidation called yin-yang has existed for more 
than 2000 years [35]. ‘Yang-invigorating’ action 
usually associates with immune-enhancement 
and energy generation enhancement, i.e., 
through the enhancement of the mitochondrial 
oxidative process, while ‘yin-nourishing’ action 
suppress the symptom of heat-fire or ‘yang’ i.e., 
preventing the over oxidation process [36]. 
Maintaining yin and yang in harmony is akin to 
attaining the homeostatic state. An imbalance 
between ROS and the inherent antioxidant 
capacity of the body, has directed the use of 
dietary and/or medicinal supplements particularly 
during the disease attack [36]. The 
epidemiological studies have demonstrated an 
inverse association between ingestion of these 
natural antioxidants and mortality from age-
related diseases, such as coronary heart 
diseases and cancer [37]. Based on a recent 
large-scale research [38], large number of 
medicinal plants has been identified as having 
potential antioxidant activities [39-42]. The raw 
extracts or isolated pure compounds from 
medicinal plants are more effective antioxidants 
in vitro than BTH or vitamin E [43,44]. Moreover, 
the medicinal plants also exhibit far stronger 
antioxidant activity and contain significantly 
higher levels of phenolic compounds than 
common vegetables and fruits [38]. Therefore, 
the medicinal plants are promising sources of 
natural antioxidants [45]. 
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Structures and classes of polyphenols  
 
Polyphenols are secondary metabolites of plants 
and generally involved in defense against 
ultraviolet radiation or aggression by pathogens 
[46]. They comprise a wide variety of molecules 
that have polyphenol structures, i.e. several 
hydroxyl groups on aromatic rings, but also 
molecules with one phenol rings, such as 
phenolic acid and phenolic alcohols. According to 
the number of phenol rings that they contain and 
to the structural elements that bind these rings to 
one another, polyphenols are classified into 
different groups, including phenolic acids, 
flavonoids, stilbenes and lignans [47]. Flavonoids 
and phenolic acids have been considered as the 
major contributors to the antioxidant activity in 
medicinal plants [47]. 
 
Flavonoids comprise the most abundant group of 
plant polyphenols [48]. Their common structural 
feature is the diphenylpropane moiety, which 
consists of two aromatic rings linked through 
three carbon atoms that together usually form an 
oxygenated heterocycle (Figure 3). Based on the 
variation in the type of heterocycle involved, 
flavonoids are divided into six classes: flavones, 
flavanones, flavonols, isoflavones, 
anthocyanidins and flavanols (or catechins) 
(Figure 3). Flavonols are the most ubiquitous 
flavonoids in foods with quercetin and 
kaempferol as the more representative 
compounds. Phenolic acids can be divided in two 
classes: derivatives of benzoic acid and 
derivatives of cinnamic acid (Figure 3). The 
hydroxybenzoic acids, such as gallic acid and 
protocatechuic acid, are found in very few edible 
plants, except for certain red fruits, black radish, 
and onions [49]. The hydroxycinnamic acids are 
more common than are the hydroxybenzoic acids 
and consist chiefly of p-coumaric, caffeic, ferulic, 
and sinapic acids. Gallic acid, the precursor of 
many tannins, is one of the most studied and 
promising compounds in the hydroxybenzoic 
group, while cinamic acid is the precursor of all 
the hydroxycinnamic acids [50]. 
 
CLINICAL EFFECTS OF POLYPHENOLS IN 
OXIDATIVE STRESS-RELATED DISEASES 
 
It is well established that consumption of 
polyphenol-rich foods may increase plasma 
antioxidant capacity [51,52]. This increase in the 
anti-oxidative capacity of plasma may be 
explained either by the presence of reducing 
polyphenols and their metabolites in plasma, by 
their effects upon concentrations of other 
reducing agents (endogenous antioxidants), or 
by their effect on the absorption of pro-oxidative 

food components, such as iron [47]. 
Epidemiological studies have repeatedly shown 
that polyphenols, as antioxidants may protect cell 
constituents against oxidative damage and 
therefore limit the risk of various degenerative 
diseases associated with oxidative stress [53].  
 
Polyphenols and aging 
 
Aging can generally be defined as a progressive 
decline in the efficiency of biochemical and 
physiological processes after the reproduction 
phase of life. It is a natural accumulation process 
of diverse detrimental changes in cells and 
tissues, leading to the disabilities and diseases 
that limit normal body functions [54]. Among the 
theories proposed for the explaining the 
mechanism of aging [55-57], free 
radical/oxidative stress theory is one of the most 
accepted [58]. Although a certain amount of 
oxidative damage takes places under normal 
conditions, the rate of this damage significantly 
increases during the aging process as the 
efficiency of anti-oxidative and repair 
mechanisms decrease [59]. 
 
Anthocyanins are particularly abundant in brightly 
colored fruits such as berry fruits and concord 
grapes and grape seeds. They have been shown 
to have potent antioxidant/anti-inflammatory 
activities, as well as to inhibit lipid peroxidation 
and the activity of cyclo-oxygenase (COX)-1 and 
-2 [60]. Fruit and vegetable extracts that have 
high levels of flavonoids also display high total 
antioxidant activity. It is reported that the dietary 
supplementation with spinach, strawberry or 
blueberry extracts in a control diet were effective 
in reversing aging-related deficits in brain and 
behavioral function in aged rats [61]. Tea 
catechins have been shown to possess strong 
anti-aging activity and consuming green tea rich 
in these catechins may delay the onset of aging 
[62]. Resveratrol is a very recent entry as an anti-
aging agent for preventing oxidative stress-
induced aging in endothelia cells by preventing 
ROS-induced damage via increased expression 
of endothelia silencing information regulator 
(SIRT1). SIRT1 belongs to the nicotinamide 
adenine dinucleotide (NAD+) dependent histone 
deacetylase family regulates gene silencing and 
is believed to mediate the beneficial effects on 
health and longevity in normal cells by calorie 
restriction [63]. 
 
Polyphenols and cardiovascular disease 
 
Cardiovascular disease (CVD) is one of the 
leading causes of death in many developed 
nations [64].  
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Figure 3: Structural features of main classes of phenolics 

 
CVD is a chronic, multi-factorial disease in which 
a range of genetic and environmental factors 
plays a role in its initiation, progression and 
development [65,66]. Arteriosclerosis (hardening 
of the arteries), one of the classical examples of 
an ROS-mediated CVD, is the result of oxidative 
modification of low density lipoprotein (LDL) in 
the arterial walls [67]. Many human studies have 
showed an association of moderate intake of 
alcoholic drinks containing polyphenols with a 
reduced risk of coronary heart diseases [68-70]. 
The mechanisms by which polyphenols may be 
protective against CVD are inhibiting LDL 
oxidation inhibiting platelet aggregation and 
reducing inflammatory response [71,72]. 
 

Resveratrol is the active compound in red wine 
which is attributed for “French Paradox”, the low 
incidence of CVD despite the intake of high-fat 
diet and smoking among the French [73]. Studies 
have shown that resveratrol potentially inhibits 
the oxidation of the LDL particles via chelating 
copper or by direct scavenging of the free 
radicals [74,75]. Meanwhile, resveratrol can 
prevent platelet aggregation via preferential 
inhibition of COX-1 activity, which synthesizes 
thromboxane A2, an inducer of the platelet 
aggregation and vasoconstrictor [76]. In addition, 
quercetin has been shown to be inversely 
associated with mortality from coronary heart 
disease by inhibiting the expression of 
metalloproteinase1 (MMP1), and the disruption 
of atherosclerotic plaques [72].  
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Polyphenols and cancer 
 
Carcinogenesis is a multistage process and can 
be divided into three stages: initiation, promotion 
and progression. ROS can act in all these stages 
of carcinogenesis [77]. The anticancer effects of 
polyphenols have been observed at various 
sites, such as mouth, stomach, duodenum, 
colon, liver, lung, mammary gland and skin. 
Many polyphenols, such as quercetin, catechins, 
isoflavones, ligans, flavanones, ellagic acid, 
resveratrol have been tested; all of them showed 
protective effects in some models although their 
mechanism of action were found to be different 
[78]. 
 
Several mechanisms of action have been 
identified for anticancer effects of polyphenols. 
These include removal of carcinogenic agents 
[79], modulation of cancer cell signaling [80] cell 
cycle progression [81], promotion of apoptosis 
[82] and modulation of enzymatic activities [83]. 
For example, polyphenols influence the 
metabolism of pro-carcinogens by modulating the 
expression of cytochrome P450 enzymes 
involved in their activation to carcinogens. 
Furthermore, they may modulate the activity of 
signaling pathways, such as MAPK kinase and 
PI3 kinase, which are involved in cancer 
proliferation [84]. 
 
Polyphenols and neurodegeneration 
 
Neurodegenerative disorders such as 
Parkinson’s and Alzheimer’s diseases represent 
an increasing problem in our aging societies [85]. 
Mitochondrial dysfunction and oxidative damage 
have been identified as the risk factors for 
neurodegenerative diseases [85]. Because 
polyphenols are highly antioxidative in nature, 
their consumption may provide protection in 
neurological diseases. For example, polyphenol-
rich Ginkgo biloba extracts have been shown to 
be neuroprotective by protecting hippocampal 
neurons from nitric oxide- and beta-amyloid-
induced neurotoxicity [86]. Anthocyanins and 
isoflavones can reduce the neurodegeneration 
associated with accumulation advanced glycation 
endproducts (AGEs) during normal and abnormal 
brain aging [87]. In addition, phenolic compounds 
such as caffeic acid and tyrosol are capable of 
inducing neuroprotective effects to a similar 
extent to that seen with flavonoids [88]. 
 
CONCLUSION 
 
There is no doubt that the correct balance 
between oxidation and reduction is critical in 
maintaining a healthy biologic system. In this 

review, we have summarized the chemical 
features of free radicals as well as their 
deleterious effects on cell structures. In addition, 
the potential roles of the natural antioxidants 
from medicine plants in preventing and repairing 
damages caused by oxidative stress are 
presented. For a proper evaluation of their 
potential health effects, we need more data on 
the concentrations and metabolic forms that 
tissues and cells are exposed to after ingestion 
of plant polyphenols via the diet. In addition, new 
genomic techniques will give tremendous 
opportunities to explore this field. The high-
through genomics tools will then be able to 
increase our understanding on how flavonoids 
affect metabolic pathways and, as a 
consequence, affect human health. 
 
ACKNOWLEDGEMENT 
 
This work was supported by National Natural 
Science Foundation of PR China (nos. 
31100173, 31200382, 31470230, 51320105006, 
51274268 and 50904080), China Postdoctoral 
Science Foundation (No. 2012M521562 and 
2013M540643) and Postdoctoral Science 
Foundation of Central South University (no. 
502080023). 
 
CONFLICT OF INTEREST 
 
No conflict of interest associated with this work. 
 
CONTRIBUTION OF AUTHORS  
 
We declare that this work was done by the 
authors named in this article and all liabilities 
pertaining to claims relating to the content of this 
article will be borne by the authors. 
 
REFERENCES 
 
1. Davies KJ. Oxidative stress: the paradox of aerobic life. 

Biochem Soc Symp 1995; 61: 1-31. 
2. Halliwell B, Gutteridge JMC, editors. Free Radicals in 

Biology and Medicine. 3rded. Oxford: Clarendon Press; 
1999; pp 1-139. 

3. Halliwell B. The wanderings of a free radical. Free Radic 
Biol Med 2009; 46:   531-542. 

4. Valko M, Leibfritz D, Moncola J, Cronin MD, Mazur M, 
Telser J. Free radicals and antioxidants in normal 
physiological functions and human disease. Int J 
Biochem Cell Biol 2007; 39: 44-84. 

5. Sivanandham V. Free radicals in health and diseases-a 
mini review. Pharmacologyonline 2011, 1: 1062-1077. 

6. Juránek I, Bezek S. Controversy of free radical 
hypothesis: reactive oxygen species-cause or 



Li et al 

Trop J Pharm Res, May 2016; 15(5): 1096  
 

consequence of tissue injury? Gen Physiol Biophys 
2005; 24: 263-278. 

7. Sies H. Oxidative Stress: Oxidants and Antioxidants. Exp 
Physiol 1997; 82: 291-195. 

8. Goldfarb AH. Antioxidants: role of supplementation to 
prevent exercise-induced oxidative stress. Med Sci 
Sports Exer 1993; 25: 232-236. 

9. Maxwell B. Reactive oxygen species in living system–
source, biochemistry and roll. Am J Med 1991; 91: 14S-
22S. 

10. Koppenol W, Moreno JPW, Ischiropoulos H, Beckman 
JS. Peroxiynitrite, a cloaked oxidant formed by nitric 
oxide and superoxide. Chem Res Toxicol 1992; 5: 834-
842. 

11. Pauwels EK, Erba PA, Kostkiewicz M. Antioxidants: A 
tale of two stories. Drug News Perspect 2007; 20: 579-
585. 

12. Scalbert A, Manach C, Morand C, Remesy C, Jimenez L. 
Dietary polyphenols and the prevention of diseases. Crit 
Rev Food Sci Nutr 2005; 5: 287-306. 

13. Machlin LJ, Bendich A. Free radical tissue damage: 
protective role of antioxidant nutrients. FASEB J 1987; 
1: 441-445. 

14. Kunwar A, Priyadarsin KI. Free radicals, oxidative stress 
and importance of antioxidants in human health. J Med 
Allied Sci 2011; 1: 53-60. 

15. Freeman BA, Crapo JD. Biology of disease: Free radicals 
and tissue injury. Lab Invest 1982; 47: 412-426. 

16. Stadtman ER. Protein oxidation and aging. Free Radic 
Res 2006; 40: 1250-1258. 

17. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free 
radical-induced damage to DNA: mechanisms and 
measurement. Free Radic Biol Med 2002; 32: 1102-
1115. 

18. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. 
Role of oxygen radicals in DNA damage and cancer 
incidence. Mol Cell Biochem 2004; 266: 37-56. 

19. Gupta RK, Patel AK, Kumar R, Chugh S, Shrivastav C, 
Mehra S, Sharma AN. Interactions between oxidative 
stress, lipid profile and antioxidants in breast cancer: a 
case control study. Asian Pac J Cancer Prev 2012; 13: 
6295-6298. 

20. Inoue M, Sato M, Nishikawa M, Park AM, Kira Y, Imada I, 
Utsumi K. Mitochondrial generation of reactive oxygen 
species and its role in aerobic life. Curr Med Chem 
2003; 10: 2495-2505. 

21. Lenaz G. Mitochondria and reactive oxygen species. 
Which role in physiology and pathology? Adv Exp Med 
Biol 2012; 942: 93-136. 

22. Drose S, Brandt U. Molecular mechanisms of superoxide 
production by the mitochondrial respiratory chain. Adv 
Exp Med Biol 2012; 748: 145-169. 

23. Gupta RK, Patel AK, Shah N, Choudhary AK, Jha UK, 
Yadav UC, Gupta PK. Oxidative stress and antioxidants 
in disease and cancer: a review. Asian Pac J Cancer 
Pre 2014; 15: 4405-4409. 

24. Toyokuni S. Iron and carcinogenesis: from Fenton 
reaction to target genes. Redox Rep 2002; 7: 189-197. 

25. Gutteride JMC, Mitchell J. Redox-imbalance in the 
critically ill Br Med Bull 1999; 55: 49-75. 

26. Droge W. Free radicals in the physiological control of cell 
function. Physiol Rev 2002; 82: 47-95. 

27. Tiwari AK. Imbalance in antioxidant defense and human 
diseases: Multiple approach of natural antioxidant 
therapy. Curr Sci 2001; 8: 1179-1187. 

28. Matés JM, Pérez-Gómez C, Núnez de Castro I. 
Antioxidant enzymes and human diseases. Clin 
Biochem 1999; 32: 595-603. 

29. Landis GN, Tower J. Superoxide dismutase evolution and 
life span regulation. Mech Ageing Dev 2005; 126: 365-
379. 

30. Willcox JK, Ash SL, Catignani GL. Antioxidants and 
prevention of chronic disease. Crit Rev Food Sci Nutr 
2004; 44: 275-295. 

31. Seifried HE, Anderson DE, Fisher EI, Milner JA. A review 
of the interaction among dietary antioxidants and 
reactive oxygen species. J Nutr Biochem 2007; 18: 567-
579. 

32. Papas AM. Diet and antioxidant status. Food 
ChemToxicol 1999; 37: 999-1007. 

33. Ou B, Huang D, Hampsch-Woodili M, Flanagan JA. 
When the east meets west: the relationship between 
yin-yang and antioxidation-oxidation. FASEB J 2003; 17: 
127-129. 

34. Soobratte MA, Neergheen VS, Luxmimon-Ramma A. 
Phenolic as potential antioxidant therapeutic agents: 
Mechanism and actions. Muta Res 2005; 579: 200-213. 

35. Ni M. The Yellow Emperor’s Classic of Medicine: A New 
Translation of the Neijing Suwen with Commentary. 
Boston: Shambhala; 1995. 

36. Siu KM, Mak DHF, Chiu PY, Poon MKT, Du Y, Ko KM. 
Pharmacological basis of ‘Yin-nourishing’ and ‘Yang-
invigorating’ actions of Cordyceps, a Chinese tonifying 
herb. Life Sci 2004; 76: 385-395. 

37. Gulcin I. Antioxidant activity of food constituents: an 
overview. Arch Toxicol 2012; 86: 345-391. 

38. Cai YZ, Luo Q, Sun M, Corke H. Antioxidant activity and 
phenolic compounds of 112 traditional Chinese 
medicinal plants associated with anticancer. Life Sci 
2004; 74: 2157-2184. 

39. Katalinic V, Milos M, Kulisic T, Jukic M. Screening of 70 
medicinal plants extracts for antioxidant capacity and 
total phenols. Food Chem 2006; 94: 550-557. 

40. Wong CC, Li HB, Cheng KW, Chen F. A systematic 
survey of antioxidant activity of 30 Chinese medicinal 
plants using the ferric reducing antioxidant power assay. 
Food Chem 2006; 97: 705-711. 

41. Gan RY, Kuang L, Xu XR, Zhang Y, Xia EQ, Song FL, Li 
HB. Screening of natural antioxidants from traditional 
Chinese medicinal plants associated with treatment of 
rheumatic disease. Molecules 2010; 15: 5988-5997. 

42. Matkowski A, Jamiolkowska-Kozlowska W, Nawrot L. 
Chinese medicinal herbs as source of antioxidant 
compounds-where tradition meets the future. Curr Med 
Chem 2013; 20: 984-1004. 



Li et al 

Trop J Pharm Res, May 2016; 15(5): 1097  
 

43. Gu LW, Weng XC. Antioxidant activity and components 
of Salvia plebeian R.Br. ‒ a Chinese herb. Food Chem 
2001; 73: 299-305. 

44. Pyo YH, Lee TC, Logendrac RT. Antioxidant activity and 
phenolic compounds of Swiss chard (Beta vulgaris 
subspecies cycla) extracts. Food Chem 2004; 85: 19-26. 

45. Krishnaiah D, Sarbatly R, Nithyanandam. A review of the 
antioxidant potential of medicinal plant. Food Bioprod 
Process 2011; 89: 217-233. 

46. Beckman CH. Phenolic-storing cells: keys to 
programmed cell death and periderm formation in wilt 
disease resistance and in general defence responses in 
plants? Physiol Mol Plant Pathol 2000; 57: 101-110. 

47. Pandey KB, Rizvi SI. Plant polyphenols as dietary 
antioxidants in human health and disease. Oxi Med Cell 
Longev 2009; 2: 270-278. 

48. Procházková D, Boušová I, Wilhelmová N. Antioxidant 
and prooxidant properties of flavonoids. Fitoterapia 
2011; 82: 513-523. 

49. Shahidi F, Naczk M, editors. Food phenolics, sources, 
chemistry, effects, applications. Lancaster: Technomic 
Publishing Co Inc; 1995. 

50. Kähkönen MP, Hopia AI, Heikki JV, Rauha JP, Pihlaja K, 
Kujala TS, Heinonen M. Antioxidant activity of plant 
extracts containing phenolic compounds. J Agric Food 
Chem 1999; 47: 3954-3962. 

51. Duthie GG, Pedersen MW, Gardner PT, Morrice PC, 
Jenkinson AM, McPhail DB, Steele GM. The effect of 
whisky and wine consumption on total phenol content 
and antioxidant capacity of plasma from healthy 
volunteers. Eur J Clin Nutr 1998; 52: 733. 

52. Young JF, Nielsen SE, Haraldsdóttir J, Daneshvar B, 
Lauridsen ST, Knuthsen P, Crozier A. Effect of fruit juice 
intake on urinary quercetin excretion and biomarkers of 
antioxidative status. Am J Clin Nutr 1999; 69: 87-94. 

53. Arts ICW, Hollman PCH. Polyphenols and disease risk in 
epidemiologic studies. Am J Clin Nutr 2005; 81: 317-
325. 

54. Armbrecht Hj. The biology of ageing. J Lab Clin Med 
2001; 138: 220-225. 

55. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the 
biology of ageing. Nature 2000; 408: 239-247. 

56. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, 
and ageing. Cell 2005; 120: 483-495. 

57. Biesalski HK. Free radical theory of ageing. Curr Opin 
Clin Nutr Metab Care 2002; 5: 5-10. 

58. Harman D. Free radical theory of aging: an update: 
increasing the functional life span. Ann N Y Acad Sci 
2006; 1067: 1-12. 

59. Rizvi SI, Maurya PK. Markers of oxidative stress in 
erythrocytes during aging in human. Ann N Y Acad Sci 
2007; 1100: 373-382. 

60. Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson 
J.A, Bagchi D. Berry anthocyanins as novel anti-
oxidants in human health and diseases prevention. Mol 
Nutr Food Res 2007; 51: 675-683. 

61. Shukitt-Hale B, Lau FC, Joseph JA. Berry fruit 
supplementation and the aging brain. J Agric Food 
Chem 2008; 56: 636-641. 

62. Maurya PK, Rizvi SI. Protective role of tea catechins on 
erythrocytes subjected to oxidative stress during human 
aging. Nat Prod Res 2009; 23: 1072-1079. 

63. Kao CL, Chen LK, Chang YL, Yung MC, Hsu CC, Chen 
YC, et al. Resveratrol protects human endothelium from 
H(2)O(2)-induced oxidative stress and senescence via 
SirT1 activation. J Atheroscler Thromb 2010; 17: 970-
979. 

64. Vauzour D, Rodriguez-Mateos A, Corona G, Orna-
Concha MJ, Spencer JPE. Polyphenols and human 
health: prevention of disease and mechanisms of action. 
Nutrients 2010; 2: 1106-1131. 

65. Tanasescu M, Leitzmann MF, Rimm EB, Willett WC, 
Stampfer MJ, Hu FB. Exercise type and intensity in 
relation to coronary heart disease in men. JAMA 2002; 
288: 1994-2000. 

66. Ambrose JA, Barua RS. The pathophysiology of cigarette 
smoking and cardiovascular disease: An update. J Am 
Coll Cardiol 2004; 43: 1731-1737. 

67. Vogiatzi G, Tousoulis D, Stefanadis C. The role of 
oxidative stress in atherosclerosis. Hell J Cardiol 2009; 
50: 402-409. 

68. Agewall S, Wright S, Doughty RN, Whalley GA, Duxbury 
M, Sharpe N. Does a glass of red wine improve 
endothelial function? Eur Heart J 2000; 21: 74-78. 

69. Hashimoto M, Kim S, Eto M, Iijima K, Ako J, Yoshizumi 
M, AkishitaM, Kondo K, Itakura H, Hosoda K et al. Effect 
of acute intake of red wine on flow mediated 
vasodilatation of the brachial artery. Am J Cardiol 2001; 
88: 1457-1460. 

70. Whelan AP, Sutherland WH, McCormick MP, Yeoman 
DJ, de Jong SA, Williams MJ. Effects of white and red 
wine on endothelial function in subjects with coronary 
artery disease. Intern Med J 2004; 34: 224-228. 

71. Nardini M, Natella F, Scaccini C. Role of dietary 
polyphenols in platelet aggregation. A review of the 
supplementation studies. Platelets 2007; 18: 224-243. 

72. García-Lafuente A, Guillamón E, Villares A, Rostagno 
MA, Martínez JA. Flavonoids as anti-inflammatory 
agents: implications in cancer and cardiovascular 
disease. Inflamm Res 2009; 58: 537-552. 

73. Shakibaei M, Harikumar KB, Aggarwal BB. Resveratrol 
addiction: to die or not to die. Mol Nutr Food Res 2009; 
53: 115-128. 

74. Wallerath T, Deckert G, Ternes T, Anderson H, Li H, 
Witte K, Forstermann U. Resveratrol, a polyphenolic 
phytoalexin present in red wine, enhances expression 
and activity of endothelial nitric oxide synthase. 
Circulation 2002; 106: 1652-1658. 

75. Gresele P, Pignatelli P, Guglielmini G, Carnevale R, 
Mezzasoma AM, Ghiselli A, Momi S, Violi F. Resverarol, 
at concentrations attainable with moderate wine 
consumption, stimulates human platelet nitric oxide 
production. J Nutr 2008; 138: 1602-1608. 



Li et al 

Trop J Pharm Res, May 2016; 15(5): 1098  
 

76. Pirola L, Frojdo S. Resveratrol: one molecule, many 
targets. IUBMB Life 2008; 60: 323-332. 

77. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. 
Free radicals, metals and antioxidants in oxidative 
stress-induced cancer. Chem Biol Interact 2006; 160: 1-
40. 

78. Johnson I.T, Williamson G, Musk SR. Anticarcinogenic 
factors in plant foods: A new class of nutrients. Nutr Res 
Rev 1994; 7: 175-204. 

79. Owen RW, Giacosa A, Hull WE, Haubner R, 
Spiegelhalder B, Bartsch H. The antioxidant/anticancer 
potential of phenolic compounds isolated from olive oil. 
Eur J Cancer 2000; 36: 1235-1247. 

80. Corona G, Deiana M, Incani A, Vauzour D, Dessi MA, 
Spencer JP. Inhibition of p38/CREB phosphorylation 
and COX-2 expression by olive oil polyphenols underlies 
their anti-proliferative effects. Biochem Biophys Res 
Commun 2007; 362: 606-611. 

81. Corona G, Deiana M, Incani A, Vauzour D, Dessi MA, 
Spencer JP. Hydroxytyrosol inhibits the proliferation of 
human colon adenocarcinoma cells through inhibition of 
ERK1/2 and cyclin D1. Mol Nutr Food Res 2009; 53: 
897-903. 

82. Mantena SK, Baliga MS, Katiyar SK. Grape seed 
proanthocyanidins induce apoptosis and inhibit 

metastasis of highly metastatic breast carcinoma cells. 
Carcinogenesis 2006; 27: 1682-1691. 

83. Adams LS, Chen S. Phytochemicals for breast cancer 
prevention by targeting aromatase. Front Biosci 2009; 
14: 3846-3863. 

84. Wang W, Wang X, Peng L, Deng Q, Liang Y, Qing H, 
Jiang B. CD24-dependent MAPK pathway activation is 
required for colorectal cancer cell proliferation. Cancer 
Sci 2010; 101: 112-119. 

85. Nussbaum RL, Ellis CE. Alzheimer’s disease and 
Parkinson’s disease. N Engl J Med 2003; 348: 1356-
1364. 

86. Tchantchou F, Xu Y, Wu Y, Christen Y, Luo Y. EGb 761 
enhances adult hippocampal neurogenesis and 
phosphorylation of CREB in transgenic mouse model of 
Alzheimer’s disease. FASEB J 2007; 21: 2400-2408. 

87. Hsieh HM, Wua WM, Hu ML. Soy isoflavones attenuate 
oxidative stress and improve parameters related to 
aging and Alzheimer’s disease in C57BL/6J mice 
treated with D-galactose. Food Chem Toxicol 2009; 47: 
625-632. 

88. Vauzour D, Cornona G, Spencer JP. Caffeic acid, tyrosol 
and p-coumaric acid are potent inhibitors of 5-S-
cysteinyl-dopamine induced neurotoxicity. Arch Biochem 
Biophy 2010; 501: 106-111. 

 


