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Abstract 

In this paper, development of a model using NN technique for prediction of GPS TEC over the 

Eastern Africa region is presented. TEC data was obtained from the Africa array and IGS network 

of ground based dual-frequency GPS receivers from 18 stations within the East African region. It 

covers approximately the area from ~2.6°N to ~26.9°S in magnetic latitudes and from ~95°E to 

~112
o
E in magnetic longitudes. The input layer of the developed model consisted of seven neurons 

which were selected by considering the parameters that are known to affect the TECv data. The 

results showed that when the number of hidden layer neurons surpassed about 18, the RMSEs 

were noted to continuously increase indicating poor predictions beyond this number. The RMSE at 

this point was observed to be about 5.2 TECU which was lowest of all. The errors and relative 

errors were fairly small. Developed NN model estimated GPS TECv very well compared to IRI 

model. It is established in this study that, the IRI electron density at F2 peak (NmF2) gives good 

GPS TECv prediction when added as an input neuron to the NN. 
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Introduction 

Global Positioning System (GPS) has been 

widely used in scientific studies to develop an 

improved understanding of the ionosphere and 

plasmasphere. It is used to provide users with 

navigation, positioning and time information 

on a global scale (Norsuzila et al. 2010). 

However, the GPS has become widespread for 

providing information about the total electron 

content (TEC) within the ionosphere (Liu et al. 

2013). TEC is important in providing the 

ionospheric description in general and has 

many practical applications, for example; 

satellite navigation, time delay and range error 

corrections for single frequency GPS satellite 

signal receivers (Bhuyan and Borah 2007). 

GPS receivers are not installed at every 

location on the earth to allow global 

measurements of TEC. This has led to the 

importance of having some models that will 

help to get data from the locations with no data 

to understand the global behavior of the TEC. 

In this study we aimed at developing a model 

for predicting GPS derived TEC using Neural 

Networks (NNs). 

NNs are the powerful tools for predictive 

modeling with the ability of machine learning 

as well as pattern recognition. They can learn 

trends and patterns in specific data given to 

them and therefore be able to predict correctly 

future trends and patterns for the data. It has 

also been shown that a neural network can be 

trained to perform a particular function by 

adjusting the weights (Demuth and Beale 2002, 

Okoh et al. 2016). The strength of neural 

networks is based on the fact that, they have 

the ability to represent both linear and 

nonlinear relationships directly from the data 

being modeled (Okoh et al. 2016).  

A number of studies carried out at different 

locations have demonstrated the capability of 

neural networks in ionospheric modeling. Okoh 
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et al. (2016) in their study on a regional GNSS-

VTEC model over Nigeria using neural 

networks, observed that disturbance storm time 

(DST), sunspot number (SSN), and IRI-foF2 as 

input layer neurons on the networks are 

effective in increasing the network 

performances. A study by Habarulema et al. 

(2007) on prediction of global positioning 

system total electron content showed that, 

neural networks are suitable for predicting the 

GPS TEC values at locations within South 

Africa and also their results were able to 

predict the TEC values more accurately than 

IRI-2001. They further showed that, the NN 

model accurately predicted the trend of GPS 

TEC diurnally and seasonally, although in 

some instances, the developed model 

overestimated or underestimated the TEC. The 

observation by Homam (2014) revealed that, a 

network configuration which utilized TEC 

values during lower solar activity gives a better 

root mean square error (RMSE), and both 

absolute and relative error, in comparison with 

the configurations which used TEC values 

during relatively higher solar activity. Another 

study on a neural network approach for 

regional vertical total electron content 

modeling was conducted by Leandro and 

Santos (2007) using Brazilian network. The 

results showed that, neural network model 

provided estimates of TECv values with an 

average absolute error of 3.7 TECU with 

standard deviation of 2.7 TECU. 

Tulunay et al. (2004) introduced the Middle 

East Technical University Neural Networks 

model to forecast 10 min TEC variations 

during high solar activity of the years 2000– 

2001 and obtained a satisfactory sensitivity and 

accuracy of NN model. They concluded that, 

the methods that they developed can be used 

for characterizing the electromagnetic wave 

propagation medium for the purposes of radio 

system planning and operation. In their studies 

on TEC prediction with neural network at 

equatorial latitude station in Thailand,  

Watthanasangmechai et al. (2012) observed a 

good prediction of TEC by NN model 

compared with the IRI-2007 model. Their 

results further revealed a considerable 

difficulty for the NN to learn during some 

periods due to large variations of TEC, and 

associated this difficulty with the occurrence of 

an equatorial plasma bubble and with day-to-

day TEC variations in the equatorial region. 

The work by Uwamahoro and Habarulema 

(2015) when they were modeling total electron 

content during geomagnetic storm conditions 

in South Africa suggests the selection of 

hidden node number as the reason that could 

affect the NN prediction capability.  

In the present study we focus on developing 

a model using neural network technique for 

significant prediction of GPS TEC over the 

Eastern Africa region. 

 

Materials and Methods 

TEC data were obtained from the Africa 

array and IGS network of ground based dual-

frequency GPS receivers within the East 

African region as shown in Figure 1. The 

network array comprised of 18 stations (Table 

1) covers approximately the area from 17°S to 

12°N in geographical latitude (magnetic lat. 

~2.6°N to ~26.9°S) and from 26°E to 40°E in 

geographical longitude (magnetic long. ~95°E 

to ~112°E). The data from these stations were 

obtained from the UNAVCO website 

(http://www.unavco.org/).  

 

http://www.unavco.org/
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Figure 1: Eastern Africa map showing the network of GPS receivers used to derive TEC for NN 

model development.  

Table 1: GPS receiver stations with their corresponding latitudes and longitudes 

Country Station  Geographic Geomagnetic 

Name Code Latitude Longitude Latitude Longitude 

Tanzania Dodoma DODM 6.19°S 35.75°E 16.10°S 107.22°E 

Mtwara MTVE 10.26°S 40.17°E 20.35°S 111.25°E 

Tanz. CGPS TANZ 6.77°S 39.21°E 16.59°S 110.65°E 

Kenya Malindi MAL2 2.99°S     40.19°E 12.42°S 111.86°E 

Eldoret MOIU 0.29°N 35.29°E 9.17°S 107.00°E 

Nairobi RCMN 1.22°S 36.89°E 10.69°S 108.59°E 

Uganda Mbarara  MBAR 0.60°S 30.74°E 10.22°S 102.36°E 

Ethiopia 

  

  

  

  

Asosa ASOS 10.06°N 34.55°E 0.70°N 106.17°E 

Bahir Dar BDAR 11.60°N 37.36°E 2.64°N 108.98°E 

Robe ROBE 7.11°N 40.03°E 1.69°S 111.78°E 

Nazret NAZR 8.57°N 39.29°E 0.25°S 111.01°E 

Negele NEGE 5.34°N 39.59°E 3.59°S 111.36°E 

Rwanda Kigali NURK 1.95°S 30.09°E 11.63°S 101.66°E 

Malawi Zomba ZOMB 15.38°S 35.33°E 26.07°S 105.58°E 

Mozambique Tete TETE 16.15°S 33.58°E 26.94°S 103.66°E 

Zambia 

  

  

Mzuzu MZUZ 11.43°S 34.01°E 21.88°S 104.92°E 

Itezi-Tezi TEZI 15.75°S 26.02°E 26.59°S 95.95°E 

Lusaka ZAMB 15.43°S 28.31°E 26.27°S 98.40°E 
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GPS data were processed into TEC data 

using the GPS-TEC processing software 

developed by Gopi Krishna Seemala 

(http://seemala.blogspot.com/). This software 

allows for the extraction of TECv from the 

GPS measurements. It reads raw data, 

processes cycle slips in phase data, reads 

satellite biases from International GNSS 

Service (IGS) code file (if not available, it 

calculates them), calculates receiver bias, and 

calculates the interchannel biases for different 

satellites in the receiver. It calculates the slant 

TEC (TECs) along the path of the GPS signal 

using equation 

 212
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where P1 and P2 are pseudoranges observable 

on L1 and L2 signals, f1 and f2 are the 

corresponding high and low GPS frequency, 

respectively. Then, TECs measured at an 

interval of 30 s were converted to TECv using 

the mapping function M(e), which takes the 

curvature of the Earth into account (Shim 

2009) as follows: 

   rxrs bbbTECseMTEcv          (2) 

where bS is satellite bias, br is a receiver bias 

and brx is a receiver interchannel bias, and 
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Here e is an elevation angle of a satellite, h is 

ionospheric shell height assumed to be 350 km 

in this study, and RE is the Earth's mean radius. 

To ensure the data used have no undesirable 

errors which might result from the effect of 

multipath, a minimum elevation angle of 30° 

was used. 

The input layer of the developed model 

based on neural network consisted of seven 

neurons which were selected by considering 

the parameters that are known to affect the 

TECv data such as the year, day of the year, 

hour of the day, latitudes, longitudes, the 

sunspot number (SSN) and the IRI electron 

density at F2 peak (NmF2). The first three 

inputs help the network in learning temporal 

variations. The year represents solar circle 

variations, the day of the year represents 

seasonal variation and the hour of the day 

represents diurnal variation. The fourth and 

fifth inputs represent the spatial variations and 

the sixth is used as a measure of solar activity. 

SSN were obtained from the WDC-SILSO 

website, http://www.sidc.be/silso/datafiles. 

The seventh input is used to aid the learning 

in TECv variations because both TECv and 

NmF2 normally demonstrate identical day-to-

day variations (Leitinger et al. 2004, Jin and 

Maruyama 2009), and this is a new approach as 

established in this study. The IRI-NmF2 values 

have been chosen rather than measured values 

because of scarce instruments for measuring 

this parameter within the region in study. 

However, using IRI-NmF2 values facilitates 

predictions of TECv at all anticipated locations 

and time periods within the eastern part of the 

African sector. Furthermore, the use of NmF2 

from IRI was considered since the IRI is an 

empirical model established using accessible 

data from all around the world, and has been 

widely accepted as a reliable ionospheric 

model that has incorporated long-term solar 

cycle variation (Okoh et al. 2016). Hence, 

supports the networks' capacity to learn long-

term variations especially for regions with 

short period data. For effective learning of 

input-target links, an 11-year dataset is 

required as the results of the solar cycle 

variations. Thus the insertion of the IRI model 

as an additional input neuron improves the 

networks in learning solar cycle variations. 

In this study, the multi-layer perceptron 

neural network was used because of its speed 

and effectiveness during learning process 

(Okoh et al. 2016, Razin et al. 2015). Also, one 

input layer, one hidden layer and one output 

layer were used (Figure 2). 

http://seemala.blogspot.com/
http://www.sidc.be/silso/datafiles
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Figure 2: Schematic diagram showing the neural network used in this study. 

 

In order to obtain the optimal number of 

neurons in the hidden layer, four different 

networks configurations were trained varying 

depending on the number and type of input 

neurons used as follows: 

(i) The first network consisted of five 

neurons; year, day of the year, hour of the 

day, geographic latitudes and geographic 

longitudes. 

(ii) The second network comprised of six 

neurons; all input neurons used in the first 

network and SSN as an additional input 

neuron. 

(iii) The third network comprised of six 

neurons also; all input neurons used in the 

first network and IRI-NmF2 as an 

additional input neuron. 

(iv) The fourth network comprised of seven 

input neurons; year, day of the year, hour 

of the day, geographic latitudes, 

geographic longitudes, SSN and IRI-

NmF2. 

Each of the four systems of networks used 

to train the neural network was simulated 50 

times by varying the number of the hidden 

layer neurons from 1 to 50. The RMSE was 

used to choose the number of hidden layer 

neurons which performs better than others. 

Among the four systems trained, decision of 

the best network was done based on the most 

minimum RMSE on various configurations. 

The RMSE method has been commonly used 

as a means to decide optimal factors for 

statistically based predictions such as solar and 

geomagnetic activity data predictions, solar 

cycle predictions using neural networks and 

modeling of the interaction between solar wind 

and magnetosphere (Conway et al. 1998, 

Habarulema 2010).  

The dataset used in this study was from the 

quietest day of each month for the period of 

2012-2016. The TECv values averaged hourly 

were used as the output of the neural network 

for the specified period. From the available 

dataset within the period 2012 -2015, 70% of it 

was used in training the neural network, 15% 

for validation and the remaining 15% for 

random testing. Dataset from Mbarara (0.6°S, 

30.74°E) for 2016 were used in testing and 

these were randomly chosen. The decision of 

using data from Mbarara were purposely for 

testing the temporal performance of the model 
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since these data are from outside the period of 

the data used in training, validation and random 

testing. 

Likewise, in order to test the performance 

of the neural network model at different times, 

the results were compared by the TECv values 

of the test station. Different times in a day 

selected for testing were 3:00 UT (6:00 LT), 

9:00UT (12:00 LT) and 15:00 UT (18:00 LT). 

These times of the day were chosen in order to 

test the model near the time of sunrise (6:00 

LT), a time when production of the solar EUV 

starts, during noon (12:00 LT), a time of the 

day with higher ionospheric activities and near 

the time of sunset (18:00 LT), a time when 

production of the solar EUV ceases. On the 

other hand, the results of the neural network 

model were also tested at different seasons of 

the year; March equinox, June solstice, 

September equinox and December solstice. 

Using these procedures, the performance of the 

model for predictions within the area covered 

by the network of GPS receivers was 

investigated.  

In order to evaluate the capability of the 

performance of the model, the prediction errors 

(absolute errors) and the relative errors of the 

models were computed using the following 

equations: 

GPSNN TECTECe   (4) 

100
GPSTEC

e
   (5) 

Where: |e| = prediction (absolute) error, |ɛ| = 

relative error, TECNN = TEC estimated by the 

NN model, TECGPS = measured TEC obtained 

from the GPS receivers. 

 

Results and Discussion 

In this section, the results of the four trained 

neural network architectures for GPS TECv 

prediction are presented so as to select the one 

that provides the optimal results. The RMSEs 

of the neural network (NN) TECv from GPS 

TECv and correlations coefficients between the 

GPS TECv and the NN TECv are also 

presented. Finally, comparison of 

hourly and seasonal values of the NN modeled 

TECv with GPS TECv is conferred.  

 

Statistical analysis of GPS-TEC and        

NN-TEC 

Figures 3 and 4 show the RMSEs for random 

dataset and Mbarara station (16.15°S, 33.58°E) 

dataset, respectively, while Figure 5 shows 

scatter plots of GPS TECv versus TECv 

obtained from the NN model over Mbarara 

station. 

From the figures, it is clearly seen that 

network 4 presented the best results since its 

RMSEs were lower than those from the other 

three networks, indicating good agreements 

between the measured values and the network 

estimated values when the NmF2 is added as 

an input neuron. However, from Figure 3, it 

was observed that, the 15% random test data 

displayed a continuous general decrease of the 

RMSEs with the increase in the number of 

hidden layer neurons. Okoh (2016) suggested 

that, if the test data used is randomly picked, it 

is very possible for RMSEs to continuously 

decrease when the number of hidden layer 

neurons increases. This scenario occurs when 

data used for testing are within the range of 

data used for the training. 

Figure 4 which presents the results for test 

station clearly provided the optimal results for 

NN configurations used in testing. From the 

figure, it was observed that, when the number 

of hidden layer neurons surpassed about 18, the 

RMSEs were noted to continuously increase 

indicating poor predictions beyond this 

number. This scenario occurred because when 

the number of hidden layers goes above 18, the 

networks are said to be over-trained (Okoh 

2016). The RMSE at this point were observed 

to be about 5.2 TECU which was lowest of all. 
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Figure 3: A plot of RMSEs using random dataset for all the four networks. 

 
Figure 4: A plot of RMSEs using Mbarara station dataset for all the four networks. 
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On the other hand, network 1 presented the 

poorest results with higher RMSEs. This 

scenario is due to the fact that, the learning 

capacity of neural networks is facilitated by the 

increase in number of the neurons in the input 

layer. Networks 2 and 3 provided better results 

as compared to network1, but not as good as 

network 4. It is thus established that, the more 

input layer neurons are additionally included to 

the network, the better the networks learn and 

give the best results. 

Figure 5 presents the scatter plots for 

targets (GPS TECv) versus outputs (TECv 

obtained from the NN prediction model) over 

the test station; Mbarara station from January 

to October 2016, with lines of best fit inserted 

to the plot, as well as the correlation 

coefficients. From the figure, it is observed that 

correlation coefficients provided good levels of 

reliability of the developed NN model to 

estimate GPS TECv.  

From the same figure, it is clearly seen that, 

GPS TECv was highly correlated to NN TECv. 

The highest correlation coefficient (r) was 

0.9770 obtained during August and lowest 

correlation coefficient (r) was 0.9118 obtained 

during July. These correlation coefficients 

indicated better agreement in trend between the 

predictions and the observations when the IRI-

NmF2 was included as an input layer neuron. 

 
Figure 5: A plot of Outputs versus Targets for Mbarara during January - October 2016.
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Comparison of hourly values of the NN 

modeled TECv with GPS TECv 

To assess the effectiveness of NN output in 

predicting GPS TECv at some periods within a 

day, NN results were compared with GPS 

TECv from selected times of the day using data 

from Mbarara (2016) as a test station from 

January to October. There was no data for the 

specified year during November and 

December, which might be due to instrumental 

failures and electrical power shutdowns. 

Different times in a day selected for testing 

were 3:00 UT (6:00 LT), 9:00 UT (12:00 LT), 

15:00 UT (18:00 LT) and 21:00 UT (0:00 LT). 

The difference between universal time and the 

local time in the study region is three hours. 

Thus the selection of these times was based on 

different sun activities in a day such as 

midnight, sunrise, noon and sunset.  

Figure 6 illustrates the hourly comparison 

of the NN model TECv values with the TECv 

obtained from GPS receivers over Mbarara 

station in 2016. From the figure, it is clearly 

shown that, NN model results closely matched 

with the GPS TECv values in most of the times 

for the specified period. Figures 7 and 8 show 

the errors of NN model predictions from GPS 

TECv and their corresponding relative errors, 

respectively. The errors and relative errors 

were fairly small which indicated good 

prediction of GPS TECv by the NN model over 

the eastern part of the African sector 

represented by Mbarara as a test station. 

At 3:00 UT (6:00 LT), (left upper panel of 

Figure 6), it is observed that, NN model and 

GPS TECv closely matched giving a 

correlation coefficient of 0.9277 (Table 2) 

which was very good. In February, September 

and October, the errors were above 2.5 TECU 

but less than 4 TECU. But, in the rest of the 

months the errors were below 1 TECU (Figure 

7) which indicated a good prediction of the 

developed model. The maximum relative error 

of NN model to the GPS TECv was observed 

to be about 52% occurred in October while the 

minimum was about 0.3% occurred in January 

(Figure 8). 

Comparison of NN model with GPS TECv 

at 9:00 UT (12:00 LT) over Mbarara station in 

the year 2016 is shown in the right upper panel 

of Figure 6. From the figure, a fairly good 

agreement was observed between NN model 

and the TECv obtained from GPS receiver 

having a correlation coefficient of 0.7327 as 

presented in Table 2. Although this correlation 

coefficient was not as good as that at 3:00 UT 

(12:00 LT), but the errors and relative errors 

were significantly small indicating a good 

prediction of GPS TECv by the NN model at 

this particular hour. The maximum error of NN 

model prediction from GPS TECv was about 7 

TECU occurred in May and the minimum was 

about 0.3 TECU observed in April (Figure 7). 

On the other hand, the maximum and minimum 

relative errors of NN model to the GPS TECv 

as shown in Figure 8 were about 21% and 1%, 

respectively which were fairly small indicating 

a good prediction by the model.  

At 15:00 UT (18:00 LT), (left lower panel 

of Figure 6), NN model matched with the GPS 

TECv with a correlation coefficient of 0.8861 

(Table 2) which was reasonably good. The 

maximum error occurred from the prediction of 

GPS TECv by the NN model at this hour was 

about 7.6 TECU observed during August while 

the minimum was 0.1 TEC observed during 

June (Figure 7). Correspondingly, the 

maximum and minimum relative errors 

observed at this particular hour of the day were 

approximately 16% and 0.2%, respectively 

(Figure 8). These were fairly small errors for 

predictions by the model which indicated a 

good agreement between the modeled TECv 

and the observed TECv. 

Comparison between the NN modeled 

TECv and the GPS derived TECv at 21:00 UT 

(0:00 LT) over Mbarara station in 2016 is 

presented in Figure 6 (right lower panel). The 

figure depicts good prediction of GPS TECv by 

the NN model although the correlation 

coefficient between these two quantities was 

small, i.e., r = 0.3800 (Table 2). The small 

correlation coefficient indicated unmatched 

trend between the two compared quantities, but 

the efficiency in prediction can also be 
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indicated by the errors and/or relative errors of 

one quantity to the other. Therefore, from 

Figures 7 and 8, the maximum and minimum 

errors of NN modeled TECv from GPS 

measured TECv were observed to be about 5 

TECU observed during August and 0.2 TECU 

observed during January, respectively. 

Similarly, the corresponding maximum relative 

error was about 29% and the minimum was 

about 1%. Hence, in spite of the small 

correlation coefficient between NN modeled 

TECv and the GPS measured TECv, the NN 

model predicted well the GPS TECv at 21:00 

UT (0:00 LT) based on the errors and relative 

errors. 

 
Figure 6: A plot of hourly comparison of GPS TECv and NN TECv for Mbarara 2016. 

 
Figure 7: Plot of errors of NN TECv from GPS TECv for hourly comparison for Mbarara 

2016. 
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Figure 8: Plot of relative errors of NN TECv from GPS TECv for hourly comparison for 

Mbarara 2016. 

 

Table 2: Hourly correlation coefficients for Mbarara 2016 

Time 21:00 UT 

(0:00 LT) 

3:00 UT 

(6:00 LT) 

9:00 UT 

(12:00 LT) 

15:00 UT 

(18:00 LT) 

Correlation coefficient 0.38 0.9277 0.7327 0.8861 

 

Comparison of seasonal values of the NN 

modeled TECv with the GPS TECv 

It is well known that, seasons of the year 

have a significant contribution in TECv 

variation (Watthanasangmechai et al. 2012). 

Thus it was important to also perform a 

seasonal TECv comparison to investigate the 

capability of the developed NN model in 

predicting the GPS TECv during different 

seasons of the year. In order to accomplish this, 

three seasons of the year were identified, and 

one day (quiet day) in each season was selected 

and analysed as shown in Figures 9 and 10. 

The seasons were March equinox, June solstice 

and September equinox. Due to lack of data 

during December solstice, this season was 

excluded in the analysis. In this analysis, TECv 

from IRI 2012 model using NeQuick option for 

the topside Ne were also included. This was 

done in order to investigate the performance of 

the developed NN model comparing with an 

International model (IRI model) in predicting 

GPS TECv.  

Seasonal comparison of GPS derived TECv 

with the TECv from NN model and IRI-2012 

model for Mbarara station in 2016 is shown in 

Figure 9. The errors of predicted TECv by both 

NN model and IRI model from GPS measured 

TECv are presented in Figure 10, and Figure 

11 presents their corresponding relative errors. 

The general observation showed that, NN 

model gave better estimates of the GPS TECv 

than the IRI model during all seasons for the 

specified year. It was also observed that, NN 

model well agreed with the GPS TECv during 

March equinox and June solstice, than it did 

during September equinox. 

During March equinox (Figure 9, left upper 

panel), both NN model and IRI model closely 

matched the GPS TECv from 1:00 UT to 7:00 

UT, and NN continued to well agree with GPS 

TECv up to 10:00 UT. During afternoon hours 

up to 24:00 UT, both models under estimated 

the GPS TECv, but NN model performed better 

than IRI model. The correlation coefficients 

between the GPS TECv and the TECv 

estimated by the NN model and IRI model 
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were equal to 0.9647 and 0.8361, respectively 

as presented in Table 3. On the other hand, 

from Figure 10 which displays the errors of NN 

TECv and IRI TECv from GPS TECv, it was 

found that, the maximum error of NN model 

TECv from GPS TECv was about 17 TECU 

observed at 21:00 UT, and the minimum error 

was about 0.05 TECU occurred at 5:00 UT. For 

the IRI model, the maximum and minimum 

errors were found to be 29.7 TECU and 0.22 

TECU observed at 14:00 UT and 3:00 UT, 

respectively. Correspondingly, the maximum 

relative errors of NN model and IRI model 

were approximately 34.5% and 61%, 

respectively, while their minimum relative 

errors were about 0.08% and 0.45%, 

respectively (Figure 11). Based on this 

information, NN model showed reasonable 

performance in estimating the GPS TECv 

compared to IRI model, with a difference of 

more than 26% in their maximum relative 

errors. 

Figure 9 (right upper panel) presents the 

results for comparison of GPS TECv with the 

TECv estimated by NN model and IRI model 

during June solstice. The observation from this 

month showed that, NN model closely agreed 

with GPS TECv throughout the day, with a 

correlation coefficient of 0.9556 as shown in 

Table 3. From the same figure it is clearly 

observed that, IRI model performed better in 

predicting GPS TECv during night hours than 

it did during the day, having a correlation 

coefficient of 0.8428. The performance of the 

two models was also compared using the errors 

they made in predicting GPS TECv and their 

corresponding relative errors as well. From 

Figure 10, the maximum error of NN model 

from GPS TECv was found to be 

approximately 5 TECU occurred at 1:00 UT, 

and the minimum was about 0.1 TECU 

occurred at 15:00 UT. For IRI model, the 

maximum and minimum errors were about 11 

TECU occurred at 12:00 UT and 1.5 TECU 

occurred at 1:00 UT, respectively. Likewise, 

the corresponding maximum relative errors of 

NN model TECv and IRI model TECv to the 

GPS TECv were observed to be about 18% and 

39% respectively, and the minimum relative 

errors were about 0.1% and 1.6%, respectively 

(Figure 11). From these results it was found 

that, during June solstice, NN model performed 

well in estimating GPS TECv than the IRI 

model.  

For the case of September solstice (Figure 

9, left lower panel), NN model was again 

observed to well estimate the GPS TECv 

compared to IRI model. The correlation 

coefficients between GPS TECv and NN model 

and IRI model were equal to 0.9611 and 

0.7854, respectively (Table 3). From Figure 10 

it was observed that, the maximum and 

minimum errors of the NN model TECv from 

GPS TECv were respectively 8 TECU occurred 

at 21:00 UT and 0.02 TECU occurred at 4:00 

TECU. From the same figure, it was further 

noted that, the maximum error of IRI model 

from GPS TECv was approximately 12.5 

TECU occurred at 12:00 UT, while the 

minimum was about 0.4 TECU occurred at 

7:00 UT. Correspondingly, the maximum 

relative error of the NN model to the GPS 

TECv was roughly 28%, and that of the IRI 

model was 42% (Figure 11). On the other hand, 

the minimum relative errors of NN model and 

IRI model to the GPS TECv were observed to 

be approximately 0.07% and 1.4%, 

respectively. Based on this information, it is 

concluded that, NN model estimated GPS 

TECv very well compared to IRI model, and 

that, IRI model performed better only during 

night times.  
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Figure 9: Seasonal comparison of GPS TECv with the corresponding predictions from NN model 

TECv and IRI-Neq model TECv at Mbarara for 2016. 

 

Figure 10: Errors of NN TECv and IRI TECv from GPS TECv for seasonal comparison at 

Mbarara for 2016. 
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Figure 11: Relative errors of NN TECv and IRI TECv to GPS TECv for seasonal comparison at 

Mbarara for 2016. 

 

Table 3: Seasonal correlation coefficients (r) 

for Mbarara (2016) 

Model March June September 

NN  0.9647 0.9556 0.9611 

IRI  0.8361 0.8428 0.7854 

 

Despite good prediction of GPS TECv by 

the developed NN model, there were certain 

difficulties observed in predicting the GPS 

derived TECv during some periods. This might 

have been contributed by the fact that, this 

study was carried out during high solar activity 

where more TEC variations are evident. This is 

in agreement with the results obtained by 

Leandro and Santos (2007) in Brazil, 

Watthanasangmechai et al. (2012) in Thailand 

and Homam (2014) in Malaysia where the 

poorest absolute errors were attained during the 

period of high solar activity. Another reason 

for inaccuracy of NN model in predicting GPS 

TECv is the number of data set used in 

training. In NN modeling, an accuracy in 

predicting measured TECv is essentially 

contributed by a large data set for the training 

procedure (McKinnell and Poole 2004, 

Habarulema et al. 2007, Uwamahoro and 

Habarulema 2015). At least an 11-year dataset 

is required as the results of the solar cycle 

variations. Conversely, due to a short period of 

availability of data in the region, a relatively 

small dataset used in model development may 

be somewhat responsible for the NN model’s 

inaccuracy. 

The capability of NN to predict GPS 

derived TECv has been achieved by other 

researchers globally. The NN model developed 

by Watthanasangmechai et al. (2012) in the 

equatorial latitude station in Thailand was able 

to predict TECv quite well, although there was 

a significant difficulty for it to learn during the 

TECv prediction process due to large variations 

of TECv. They associated that difficulty by the 

occurrence of an equatorial plasma bubble and 

to day-to-day TECv variations that occur in the 

equatorial region. A study by Habarulema et al. 

(2007) showed that, the NN model was able to 

predict the TECv values diurnally and 

seasonally more accurately than the IRI- 2001 

over South Africa, although in some cases the 

model over or underestimated the TECv. 

Another study by Habarulema et al. (2011) 

showed the capability of NN to predict GPS 

TECv more accurately than the IRI-2001 

0 5 10 15 20 25
0

20

40

60

80
Mbarara, March

Time (Hours)

R
el

. 
E

rr
o

rs
 (

%
)

0 5 10 15 20 25
0

10

20

30

40

50
Mbarara, June

Time (Hours)

R
el

. 
E

rr
o

rs
 (

%
)

 

 

0 5 10 15 20 25
0

10
20
30
40
50 Mbarara, September

Time (Hours)

R
el

. 
E

rr
o

rs
 (

%
)

IRI

NN



Sulungu and Uiso - Total electron content prediction model using the artificial neural networks  

 

516 

 

model. He attributed this result by a scarcity of 

ionospheric data in Southern Africa that were 

used in developing IRI model. The same study 

showed that, correlation coefficients between 

the NN model and GPS TECv were more 

reliable as compared to those from the IRI-

2001 model over South Africa. The accuracy of 

the prediction by the NN model results is more 

evident when the verification dataset used is 

within the training dataset range (Habarulema 

et al. 2011). Okoh et al. (2016), when they 

were comparing TECv predictions from the 

NN model and those from the IRI model, 

observed better predictions by the developed 

NN model than the IRI model.  However, the 

results presented in this study do not challenge 

the strength and the effectiveness of global 

models like the IRI, but somewhat show that 

these models could assist as reliable supports 

when developing better regional models. 

 

Conclusions 

The NN architecture established comprised of 

seven input neurons; year, day of the year, hour 

of the day, geographic latitudes, geographic 

longitudes, SSN and IRI-NmF2. After training 

procedures, one hidden layer with 18 neurons 

was chosen as the one that provided the best 

results in this model. Moreover, the output of 

the NN used consisted of one neuron, which 

was the hourly TECv. The results showed that, 

the more input layer neurons were additionally 

included to the networks, the better the 

networks learned and gave the best results. 

Thus network 4 gave the optimal results since 

its RMSEs were lower than those from the 

other three networks, indicating good 

agreements between the measured values and 

the network predicted values when the NmF2 

was added as an input neuron. It was also 

observed that, correlation coefficients indicated 

good levels of reliability of the developed NN 

model to predict GPS TECv when the IRI-

NmF2 was included as an input neuron. This 

showed that the diurnal variational pattern of 

the TECv parameter was precise as predicted 

by the developed NN model. In addition to 

that, NN model was observed to closely match 

the GPS TECv in most of the time compared to 

IRI-2012 model with NeQuick topside Ne 

option.  
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