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Abstract 

Linear Ordering is a problem of ordering the rows and columns of a matrix such that the sum of 

the upper triangle values is as large as possible. The problem has many applications including 

aggregation of individual preferences, weighted ancestry relationships and triangulation of 

input-output tables in economics. As a result, many researchers have been working on the 

problem which is known to be NP-hard. Consequently, heuristic algorithms have been 

developed and implemented on benchmark data or specific real-world applications. Simulated 

Annealing has seldom been used for this problem. Furthermore, only one attempt has been done 

on the Tanzanian input output table data. This article presents a Simulated Annealing approach 

to the problem and compares results with previous work on the same data using Great Deluge 

algorithm. Three cooling schedules are compared, namely linear, geometric and Lundy & Mees. 

The results show that Simulated Annealing and Great Deluge provide similar results including 

execution time and final solution quality. It is concluded that Simulated Annealing is a good 

algorithm for the Linear Ordering problem given a careful selection of required parameters.  

Keywords: Combinatorial Optimization; Linear Ordering Problem; Simulated Annealing; 

Triangulation; Input Output tables 

Introduction 

Linear Ordering Problem (LOP) is a 

problem of ordering the rows and columns 

of a matrix in such a way that the sum of the 

upper triangle values is as large as possible. 

The problem has many applications 

including aggregation of individual 

preferences (Hurdy 2008), weighted 

ancestry relationships (Glover et al. 1974), 

scheduling with preferences (Boenchendorf 

et al 1982), triangulation of input-output 

matrices in economics (Chenery and 

Watanabe 1958) and many others. In 

economics, the sectors of the economy are 

normally divided into n sectors. A matrix 

called input-output table is constructed in 

such a way that the entries represent the 

amount of deliveries from one sector to 

another. The ordering of rows and columns 

of the matrix in such a way as to maximize 

the sum of entries in the upper triangle is 

called triangulation problem and is a direct 

application of the LOP. The triangulated 

matrix provides interesting economic 

interpretations and comparisons between 

countries (Grötschel et al. 1984).  

LOP is normally modeled as a weighted 

directed graph where the task is to find a 

complete acyclic tournament with highest 

weight. That is, given a complete digraph 

Dn = (Vn, An) of n nodes with a non-

negative weight function C: AR+, find an 

acyclic sub digraph of maximum total 

weight. Mathematically, it can be 

represented as an integer programming 
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problem as in the following formulation by 

Martí and Reinelt (2011):  

Since the solution is a diagraph, define 
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Then the problem is formulated as follows:  
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Where: cij are weights in the matrix (input-

output table in this case) and the constraint 

ensures that only one of xij or xji is selected 

in a solution. However, the solution space is 

exponential, making the problem highly 

complex. Many researchers have been 

working on this problem through exact 

methods. The approach is to design a 

mathematical model and solve using 

available exact algorithms; the most 

common being cutting planes and branch 

and bound. Since the problem is NP-Hard, 

no algorithm is known that can solve a 

general problem to optimality within 

reasonable time. However, many efforts 

have been made in the exact methods to try 

and improve the size of problems that can be 

solved to optimality. The integer constraints 

are relaxed in the LOP model and cutting 

planes added to prune infeasibilities from 

the relaxation. The deepest cutting planes 

are called facets and once identified they can 

greatly improve performance of the cutting 

planes method. Reinelt (1985) presented a 

number of facets to the LOP and proposed a 

cutting plane method coupled with branch 

and bound. The cutting planes component 

involved the generation of facets that 

included 3-dicycles, k-fences and Mobius 

ladder. The relaxation then became;  
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A test was done on small size instances 

which demonstrated great reduction in the 

size of the resulting polyhedron and thereby 

increasing the chance for obtaining an 

optimal solution when solving the relaxation 

through Linear Programming methods. 

Mushi (2005) implemented this algorithm 

on a real life problem of the Irish input-

output tables and managed to solve a 

problem of 41×41 sectors to optimality. 

Other researchers have also been working on 

the problem by following the same exact 

procedures. Méndez-Díaz et al. (2019) 

analyzed a general LOP through integer 

programming by defining the convex hull, 

proposed a set of facets and applied branch 

and cut algorithm which is a combination of 

branch and bound and cutting planes 

algorithms. They provided extensive 

experimental results for randomly generated 

data of different structures where the results 

performed well on the generated samples. 

Mitchel and Botchers (1996) applied the 

primal-dual interior point cutting plane 

method to solve real world problems. They 

applied their method to input output tables 

of countries in the European Community 

and USA from 1954 to 1979 and produced 

some good results. The challenges of the 

branch and cut methods include the 

branching strategy that heavily affects 

performance. Agrawal et al (2019) proposed 

a primal heuristic procedure to generate 

feasible integer solutions to be applied in the 

branch and bound algorithm. They presented 

results on standard problems with improved 

performance. However, the problem is NP-
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hard and therefore heuristic approaches are 

necessary for large problems which are 

typical of real-world situations.  

Many heuristic approaches have been 

proposed from early years of the problem 

studies including the work by Chenery and 

Watanabe (1958), Aujac and Masson 

heuristic, Becker heuristic and many others 

are described in Martí and Reinelt (2011) 

with applications to mostly randomly 

generated problems. Recent heuristic 

techniques have also been presented in 

various articles with some success. Laguna 

et al. (1999) presented a Tabu Search 

algorithm for the LOP and applied 

intensification and diversification strategies 

to improve performance where they 

managed to solve 49 instances from LOP 

library (LOLIB). The results outperformed 

the work by Chanas and Kobylański (1996). 

Duarte et al. (2011) also applied Tabu 

Search to the LOP with cumulative costs. 

They experimented with 218 instances and 

managed to show that the Tabu Search 

procedure performed better in terms of 

solution quality with reasonable computing-

time. Garcia et al. (2006) applied the 

Variable Neighbourhood Search (VNS) 

algorithm which is based on systematic 

change of neighbourhoods in local search 

procedures in search for global convergence. 

Experimentation with 249 instances from 

LOLIB revealed that the strategy is capable 

of producing good solutions. Scatter search 

which is a population based method has 

been applied by Campos et al. (1999) to the 

LOP and compared the results with Tabu 

Search algorithm using the LOLIB Library. 

The results showed that a careful scatter 

search implementation compares well with 

Tabu Search in terms of performance. 

Garcia et al (2019) presented hybrid 

heuristics that combines iterated local search 

and exact methods to the LOP. They applied 

their results to 78 problems in the LOLIB 

and managed to obtain better results for 77 

out of them. Other heuristic algorithms 

include Local Search (Sakuraba and Yagiuri 

2010), Multi-level algorithm (Safro et al 

2009), Genetic algorithm (Cergibozan and 

Taşan 2019), Differential evolution 

algorithms (Baioletti et al 2020), Block-

insertion (Qian et al 2020) and Memetic 

algorithms (Song et al 2018). A survey of 

heuristic algorithms for the LOP is given by 

Martí et al. (2012) together with a 

benchmark library LOLIB for further 

exploration of methods.  

Simulated Annealing (SA) algorithm is 

a popular method which has been widely 

applied in combinatorial optimization 

problems. However, it has been hardly 

applied to the LOP; the author has been able 

to find one article which applied SA to the 

LOP and this is the work by Martí et al. 

(2012) when they surveyed heuristics and 

compared the results on the LOLIB Library. 

Furthermore, only one heuristic procedure 

has been applied to the Tanzanian Input-

Output tables which have 79 sectors of the 

economy. That is the work by Amos and 

Mushi (2015) that applied the Great Deluge 

Algorithm. It is worth applying a different 

heuristic method and compare the results; a 

work that is the main objective of this 

article. Simulated Annealing has been 

chosen because of its popularity with many 

successful implementations to other 

combinatorial optimization problems.  

The rest of the paper is organized as 

follows: a description of the Simulated 

Annealing algorithm is provided with its 

adaptation to the LOP. Then Summary of 

results is presented with comparison to 

previous work on the same data and finally a 

conclusion and future research directions are 

presented.  

 

Simulated Annealing and the LOP 

implementation  

Simulated Annealing mimics the cooling 

process of an object from gaseous to solid 

state. The cooling curve follows a particular 

path which is not always decreasing and the 

process is called annealing. SA is one of 

global heuristic techniques that try to avoid 

falling into a local solution by accepting bad 

solutions by a probability function that 

depends on temperature and solution 

improvement. A good description is 

provided by Reeves (1993) where a general 
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algorithm is as shown in the following 

pseudo-code:  
 

Simulated_Annealing_Algorithm  

Initialize parameters (Temperature T, 

freezing point F); 

Get Initial Solution 𝑆𝑜; 

While temperature T > freezing point F { 

Get Solution in the neighborhood 

of 𝑆 (𝑆 ∈ 𝑁(𝑆𝑜)); 

Calculate 𝜎 = 𝑓(𝑆) − 𝑓(𝑆𝑜); //𝑓 is 

the objective function  

If (𝜎 > 0)  

Accept new solution 

(𝑆𝑜 = 𝑆); 

Else {Generate a random value 𝑥 

between 0 and 1; 

If (𝑥 < 𝑒−
𝜎

𝑇) 

Accept new solution (𝑆𝑜 =  𝑆); 

Else 

Reject new solution  

} 

Update temperature (𝑇 =  𝛼(𝑇)); 

} 

End Simulated Annealing 

 

The main challenges in the adaption of the 

SA to LOP are associated with the choice of 

solution structure, getting initial solution, 

neighbourhood structure, the kind of moves 

to be used, the cooling schedule, initial 

temperature, freezing point and choice of 

parameters in the cooling schedule as 

discussed next.  

Solution structure and initial solution  

A quick initial solution can easily be found 

by picking the upper triangle values of the 

original un-triangulated input-output table. 

This solution guarantees feasibility by 

making sure that it does not contain cycles 

and covers all nodes of the matrix. This is 

similar to the structures used in Amos and 

Mushi (2015) and is presented as follows:  

s0 = (yij
0) where yij = {

1 for all i < j 
0 Otherwise

  

and therefore the objective function 

becomes 
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Move selection  

The same move type as in Amos and Mushi 

(2015) is applied where two randomly 

selected nodes i and j are swapped to get a 

new configuration. The new move is then 

checked for violation of constraints and 

accepted when no violation is found, 

otherwise it is rejected and a new set is 

swapped randomly. The move is feasible it 

satisfies two sets of constraints;  

,1 allfor  ,1 njiyy jiij
   

ACy nin  C Dicycles-3 allfor  ,2)( 
 
 

The first set of constraints is always satisfied 

because of the structure of move selection 

which ensures that only one of yij and yji 

becomes 1 in any solution. The second set of 

constraints (3-dicycles inequality) is 

expressed in the form;  

kjVkjiyyy nkijkij  ,,,,2 .  

Therefore, for any swapped indices i, j the 

algorithm uses another index k ≠ j and 

checks for violations. If no violations are 

found, then the move is feasible and is taken 

as a candidate move in the neighbourhood. 

Otherwise the move is rejected as soon as 

the first violation is detected. The process is 

repeated until a candidate move has been 

found.  

Cooling schedules  

A good cooling schedule must allow an 

ample time for exploration of solution space 

in the initial levels by accepting bad moves 

and converges to an extreme point without 

wasting too much time on the final levels. 

Thus a cooling schedule that brings the 

temperature parameter from large initial 

value to freezing point too quickly may 

result into low solution quality because of 

the possible quick convergence to a local 

maximum without sufficient exploration of 

the search space. On the other hand, 

lowering the temperature too slowly may 
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result into a large computation time which 

may not be necessary. Several authors have 

proposed different cooling schedules with 

different characteristics. Inspired by the 

arithmetic-geometric progression which is 

defined as a recurrence affine relation 

between consecutive terms of the sequence, 

Mahdi et al. (2017) defined a function 

T(t) = αt + b. For convergence, the value 

of α must satisfy the relation |α| < 1 and 

converges to 
b

1−α
 when the condition is 

satisfied. However, this is very similar to 

pure geometric progression with only a 

constant shift (b) in the schedule. Geman 

and Geman (1984) introduced a logarithmic 

cooling schedule. The schedule follows 

logarithmic distribution that asymptotically 

converges towards the global minimum and 

is defined as T(t)  =
c

log (t+1)
. The value of c 

is a positive constant independent of t but 

should be greater than the largest energy 

barrier in the problem (Mahdi et al. 2017, 

Pepra et al. 2017). However, according to 

Mahdi et al. (2017), this schedule converges 

very slowly and therefore requires a long 

computation time. The choice of a cooling 

schedule is therefore essential in the 

performance of SA.  

In this article the following cooling 

schedules are compared due to their varying 

features and success in other SA 

implementations;  

Linear –was introduced by Kirkpatrick et al. 

(1983) and is described as follows: given an 

initial temperature T0, the temperature is 

reduced linearly by following the function 

F(t)  =  T0 − αt, where α is a decay rate 

whose value must be positive but close to 

zero for slow reduction. Different values of 

α are tested and results compared.  

Geometric–was introduced by van 

Laarhoven and Aarts (1987) and follows a 

geometric function T(t)  =  αt, where α is 

usually in the interval [0.8 – 0.9].  

Lundy & Mees–came from an observation 

by Lundy and Mees (1986) that the 

stationary distributions between successive 

temperatures must be closed and therefore 

calling for alternate decrementing rules for 

selecting cooling factor. They proposed the 

cooling schedule as T(t) =
1

t(1+βt)
 where β 

is a very small constant; Aarts and van 

Laarhoven (1985) applied β in the range 

[0.5, 0.9] but lower values are possible 

depending on the characteristics of the 

problem.  

 

Initial and final temperatures  

Initial temperature is set to high value and 

experimented for the best value. This 

temperature must be high enough to explore 

all solution space. Final temperature (F) 

which is termed freezing point is chosen in 

such a way as to allow convergence without 

wasting unnecessary time. This is found 

through experimentation and may vary 

between cooling schedules.  

 

Summary of Results  

The algorithm was coded in C++ and run on 

a 3GHz processor PC, where three cooling 

schedules were experimented with different 

sets of parameters. The best parameters for 

the linear cooling schedule were; initial 

temperature (T0 = 1,000) and freezing point 

(F = 0.1). The value of cooling rate (α) was 

found to be 0.0001 as shown in Table 1.  
 

Table 1: Summary of results - Linear cooling  

𝛂 Solution Sec. Iterations 

1 585,481  0 1  

0.1 595,147  0.015 153  

0.01 669,890  0.022 1,604  

0.001 837,970  0.238 16,111  

0.0001 839,842  2.442 161,173  

0.00001 839,842  25.85 1,611,802  

 

The best solution found is 839,842 after 

161,173 iterations and 2.442 seconds which 

is a reasonable time. On geometric cooling 

schedule, the best initial temperature was 

1,000,000 with freezing point 0.0001 and 

cooling rate α = 0.999 as shown in Table 2.  
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Table 2: Summary of results - Geometric cooling  

𝛂 Solution Sec. Iterations 

0.8 587,389  0 62  

0.85 591,352  0 86  

0.9 593,099  0 132  

0.95 600,440  0 270  

0.96 600,997  0 339  

0.97 603,530  0 454  

0.98 610,649  0.015 684  

0.99 656,452  0.02 1,375  

0.999 839,842  0.365 23,015  

0.9999 839,842  2.091 138,149  

0.99999 839,842  22.887 1,381,545  

 

The best solution is the same as in previous 

case; however, the solution was obtained 

after 23,015 iterations with 0.365 seconds 

which is faster than linear cooling.  

 

The Lundy & Mees cooling schedule results 

are as shown in Table 3 and were obtained 

with initial temperature of 1,000,000 and 

freezing point of 0.0001 and β = 0.0004.  

 
Table 3: Summary of results – Lundy & Mees 

cooling 

𝛃 Solution Sec. Iterations 

0.1 591,708  0 100  

0.05 569,929  0 200  

0.001 796,929  0.14 10,000  

0.0005 839,693  0.31 20,000  

0.0004 839,842  0.37 25,000  

0.0003 839,842  0.5 33,334  

0.0002 839,842  0.75 50,000  

 

 

The convergence to the solution is similar in 

terms of iterations although linear schedule 

took more iterations and time to converge to 

the best solution. Figure 1 demonstrates the 

iteration steps during convergence to the 

best solution for the linear cooling schedule.  

 
Figure 1: Iterations during solution search – 

Linear cooling. 

 

In both cases the solution was obtained after 

very few seconds indicating that all three 

cooling schedules are useful for the 

Simulated Annealing to LOP. Figure 2 

shows the solution search steps against time 

where Geometric and Lundy & Mees cases 

converged to the best solution within 

fractions of a second, while linear cooling 

converged after 2.4 seconds.  

 
Figure 2: Solution search versus time 

 

Although linear cooling is slightly slower 

than the other two cooling schedules it still 

performed well within tolerable range. The 

same solution is also found by Amos and 

Mushi (2015) on great deluge algorithm, and 

therefore the same degree of linearity is 

observed with the same sector orders and 

similar time in seconds.  

Lundy & Mees cooling schedule showed a 

slight fall in solution before improvements 

to convergence, which is a typical 

characteristic of Simulated Annealing where 
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bad moves may be accepted in anticipation 

of better moves in future (Figure 2).  

In general, the Simulated Annealing 

algorithm performed well for both cooling 

schedules, an evidence that it is a good 

algorithm for the LOP and has been able to 

provide a good solution to the Tanzanian 

input output tables within reasonable time.  

 

Conclusion and Further Research 

Directions  

The article intended to apply Simulated 

Annealing algorithm to the Linear Ordering 

Problem for the Tanzanian input output 

tables and compare results with previous 

work from Great Deluge Algorithm on the 

same data. To the best of knowledge, the 

algorithm has only been applied once to the 

standard library LOLIB data. The algorithm 

has been implemented and experimented 

with three different cooling schedules which 

are Linear, Geometric and Lundy & Mees. 

The results show that regardless of the 

choice of cooling schedule, the algorithm 

performed very well within a very short 

period of time. Linear cooling schedule is a 

little bit slower than the other two schedules 

but still gave a solution within 2.4 seconds 

which is tolerable. Simulated Annealing is 

therefore a good algorithm for the Linear 

Ordering Problem and has been able to 

generate the same solution as in the Great 

Deluge case. The results compare very well 

with the previous work including the 

solution, and therefore provide the same 

linear order and same degree of linearity 

(94.3%). More applications of LOP to real 

world problems are recommended such as 

aggregation of individual preferences and 

breaking ties in sports (Grötschel et al. 

1984). There are variants of the LOP which 

have not been well explored, including 

Steiner Linear Ordering Problem 

(Magagnotti 2010), Checkpoint Ordering 

Problem (Hungerländer 2017) and Quadratic 

Linear Ordering Problem (Buchheim et al. 

2010). Further studies in these variants 

especially applications of global heuristic 

techniques are recommended.  
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