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Abstract 

To improve image quality generated from the electrical capacitance tomography measurement 

system, the use of entropic thresholding techniques is investigated in this article. Based on the 

analysis of the principle of Electrical Capacitance Tomography (ECT) image reconstruction and 

entropic thresholding, various algorithms have been proposed for easy extraction of quantitative 

information from tomograms generated from the ECT system. Experiments indicate that proposed 

algorithms can provide high-quality images at no or minimum computational cost. It is easier to 

implement and integrate with classical algorithms such as Linear Back Projection, Singular value 

decomposition, Tikhonov regularization, and Landweber. Entropic thresholding techniques present 

a feasible and effective way toward the industrial utilization of ECT measurement systems. 

 

Keywords: Electrical Capacitance Tomography, Inverse Problem, Image Reconstruction, Entropic 

Thresholding. 

 

Introduction 

Electrical Capacitance Tomography (ECT) 

is a high-speed measuring technique that 

allows information about the operation of the 

process plant to be generated and presented as 

an image (Perera et al. 2017, Almutairi et al. 

2020, Faia et al. 2020,). The idea is to measure 

the capacitances of a multi-electrode sensor 

surrounding an industrial vessel or pipe. These 

measurements are then used to reconstruct the 

cross-sectional image of the material being 

monitored. The generated image can then be 

used for industrial process diagnosis and 

control. ECT imaging, when compared with 

most other techniques, has drawn the 

considerable attention of researchers for it 

offers several merits, including a simplified 

structure, a wide range of applications, lower 

cost, non-destructive and non-invasive nature, 

and guaranteed safety (Chandrasekera et al. 

2012). ECT image reconstruction relies on the 

measured capacitances and endures the 

following limitations: few measurements, soft-

field nature of the ECT sensor, non-linearity 

between measured capacitance and permittivity 

distribution, and severe ill-conditionedness 

caused by measurement errors (Zeeshan et al. 

2019, Guo et al. 2020). Indeed, these 

weaknesses make solving the ECT image 

reconstruction problem a rather challenging 

task. 
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Several image reconstruction methods have 

been proposed in the past years, with the 

popular ones being: Linear Back Projection 

(LBP) (Xie et al. 1992), Singular Value 

Decomposition (SVD) (Chen et al. 2010), 

Tikhonov regularization (Jinchuang et al. 2002, 

Soleimani and Lionheart 2005, Jing et al. 2009) 

Landweber and its variations (Yang et al. 1999, 

Lu et al. 2005, Jang et al. 2006), Conjugate 

gradient (Wang et al. 2005), and artificial 

neural networks and genetic algorithms 

(Warsito and Fan 2003, Changhua et al. 2005, 

Marashdeh et al. 2006). 

The LBP is computationally efficient but 

suffers from larger reconstruction errors 

(Mwambela et al. 1997). The standard 

Tikhonov regularization whilst adequately 

addresses the ill-posed problem, its major 

weakness is to generate images with low 

resolutions (Yang and Peng 2003). Landweber 

iteration offers a good image reconstruction 

quality. However, it suffers from slow 

convergence rates, and thus unsuitable for 

online imaging environments (Lu et al. 2005). 

Artificial neural networks and genetic methods 

use the evolution of the initial estimate to select 

the best fitting data, which form an optimal 

solution. However, they prematurely converge 

a situation that makes them fail to reach a 

globally optimal solution (Zheng and Peng 

2018, Guo et al. 2019, Zheng et al. 2019, 

Rymarczyk et al. 2019, 2021). 

A different approach to improve the quality 

of the reconstructed images from the ECT 

system is to post-process the reconstructed 

images using image enhancement techniques 

(Xie et al. 1992, Mwambela et al. 1997, 

Mwambela and Johansen 2001, Nombo et al. 

2014, Mwambela 2018). Image thresholding 

enhancement technique, which helps to stratify 

the multiphase-flow components (for example, 

oil and gas) has been investigated. 

Thresholding techniques are well-known and 

are the most efficient techniques in image 

enhancement due to their simplicity and fast 

processing speed. Entropic thresholding 

techniques were first proposed by Mwambela 

et al. (1997). In that work, entropic 

thresholding techniques based on the maximum 

entropy principle framework (Kapur et al. 

1985) were implemented. Only two definitions 

of entropies; the Shannon and Pal entropy 

definitions were investigated. The performance 

of the resulting algorithms was evaluated using 

the LBP reconstruction method, which was the 

only available reconstruction algorithm in ECT 

at the time. It was established that algorithms 

using Shannon entropy were better than their 

counterpart using Pal entropy. The work was 

extended to include other more general 

definitions of entropy–Renyi and Tsallis, which 

addresses the limitations of the Shannon 

entropy as a source of information (Mwambela 

2018). The authors underscored that 

incorporating entropic techniques in ECT 

image reconstruction significantly improves the 

image quality. In this study, the use of entropic 

thresholding techniques is extended to other 

conventional reconstruction methods evaluated 

for ECT systems to assess their performance. 

Specifically, entropic thresholding has been 

implemented along with LBP, SVD (Yan et al. 

2004), Tikhonov (Tikhonov and Arsenin 1977, 

Jing et al. 2009), and Landweber (Yang et al. 

1999, Lu et al. 2005, Jang et al. 2006) methods. 

The choice for these methods was based on 

their industrial applicability which includes 

high reconstruction speed and spatial 

efficiency. 

Results show that thresholding techniques 

have improved spatial resolutions and the 

distribution error over a full component 

fractional range while saving the computational 

costs of timing errors. In particular, Kapur-

based thresholding provides superior results for 

both annular and stratified flows. 

 

Materials and Methods 

ECT measurement system 

ECT is an electronic measurement system, 

which comprises of three parts: sensor head, 

sensor electronics, and image reconstruction 

control and display units (Figure 1). 
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Figure 1: Basic components of an ECT system. 

 

The ECT sensor consists of several electrodes, 

which are mounted around the process being 

monitored. A sensor with  𝑛 electrodes contains 
𝑛(𝑛−1)

2
 possible combinations of electrode pairs 

and, therefore, 
𝑛(𝑛−1)

2
 independent 

measurements of capacitance (Peng et al. 

2011). The sensor electronics provide an 

electronic interface between the ECT sensor 

head and the image reconstruction unit, thus 

enabling the ECT sensor to interrogate the 

target process. The image reconstruction unit is 

a computer that controls the system and 

implements the associated methods. 

 

Image reconstruction problem in ECT 

The ECT image reconstruction process 

demands solving two computational problems, 

namely forward and inverse (Yang and Peng 

2003). The forward problem, given by 

Equation 1 

 
𝐶 = 𝑆𝐺 (1) 

is called a simplified model of the ECT system 

(Isaksen 1996), and calculates the capacitance 

values from a given permittivity distribution 

(image vector). From Equation 1, G is an 𝑁 × 1 

dimensional vector representing image vector, 

N is the number of pixels in the image, C 

represents an 𝑀 × 1 dimensional vector 

indicating the normalized capacitance values, 

𝑀 is the number of capacitance measurements, 

and S is an 𝑀 ×  𝑁  field sensitivity matrix, 

which reflects the effect of permittivity 

distribution at each pixel on the inter-electrode 

capacitance. 

The inverse problem attempts to calculate G 

from the given capacitance data. In most cases, 

however, S is a non-square matrix that lacks a 

direct inverse, thus making the system prone to 

ill-posedness (Yang et al. 1999). Resulting in 

various reconstruction methods to address the 

problem. 

 

Image reconstruction algorithms in ECT 

Techniques to address inverse problems can 

be put into two groups: direct (single-step), 

where a single mathematical step is needed to 

directly generate the result from the measured 

capacitance and the sensitivity matrix; and 

iterative techniques, where a set of objective 

functions are optimized iteratively until steady 

conditions are encountered. Direct methods are 

computationally efficient but suffer from larger 

reconstruction errors compared to iterative 

ones. This section presents the conventional 

methods used to solve the ECT image 

reconstruction problem. 

 

Linear back projection 

In the LBP, the image vector is obtained 

through a linear mapping of the capacitance 
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vector using the transpose of sensitivity matrix 

as given in Equation 2. 

 𝐺 = 𝑆𝑇𝐶. (2) 

LBP performs better at a lower permittivity 

difference due to a smaller effect of the non-

linear interaction between pixels. At a higher 

permittivity difference, the effect of non-

linearity is higher, and consequently, LBP 

produces blurred images.  

 

Singular value decomposition (SVD)  
Due to the ill-posedness of the ECT inverse 

problem, it is challenging to directly invert the 

sensitivity matrix, and a pseudoinverse 

substitute method, which provides the least 

norm solution is preferred. Using the SVD 

method (Yan et al. 2004), an image can be 

obtained through a pseudoinverse process by 

using Equation 3; 

𝑆 = 𝑈𝛴𝑉𝑇. (3) 

where columns of 𝑈 and 𝑉 are, respectively, 

formed by the eigenvectors of 𝑆 × 𝑆𝑇 and 𝑆𝑇 ×
𝑆, and 𝛴 is a diagonal matrix of the same size 

as S—which is formed by the square roots of 

the nonzero eigenvalues of both 𝑆 × 𝑆𝑇 and 

𝑆𝑇 × 𝑆. Hence, the pseudoinverse of S is 

obtained by Equation 4 

S+ = VΣ−1UT, (4) 

and image reconstruction equation becomes 

(Equation 5) 

 
𝐺 = 𝑆+𝐶.   (5) 

Tikhonov and iterative Tikhonov 

regularization 

Tikhonov regularization uses the least-squares 

technique and introduces a regularization 

parameter into the formulation to solve the 

inverse problem (Jinchuang et al. 2002, 

Soleimani and Lionheart 2005). Therefore, the 

least-square form of Equation 1 is given in 

Equation 6; 

𝑆𝑇𝐶 = 𝑆𝑇𝑆𝐺, (6) 

and G is calculated by Equation 7; 

 
𝐺 = (𝑆𝑇𝑆)−1𝑆𝑇𝐶. (7) 

In Equation 7, 𝑆𝑇𝑆 is usually not invertible, 

which makes the system unstable and 

susceptible to multiple solutions; these issues 

may be addressed by incorporating a 

regularization parameter,𝜇, as in Equation 8; 

𝐺 = (𝑆𝑇𝑆 + 𝜇𝐼)−1𝑆𝑇𝐶, (8) 

where I is the identity matrix. The quality of 

the reconstructed images depends strongly on 

the value of 𝜇. The Tikhonov method suffers 

from excessive smoothness, an effect that 

degrades the quality and spatial resolution of 

the reconstructed images (Jing et al. 2009). 

Addressing the weakness requires that the 

method is implemented iteratively, but at the 

expense of larger computational times, as in 

Equation 9 

𝐺𝑘+1 = 𝐺𝑘 + (𝑆𝑇𝑆 + 𝜇𝐼)−1𝑆𝑇(𝐶
− 𝑆𝐺𝑘), 

(9) 

and this is called the iterative Tikhonov 

regularization. 

 

Landweber and Projected Landweber 

Landweber iteration is an algorithm to 

solve linear inverse problems, and it has been 

extended to solve constrained non-linear 

problems. Proposed in the 1950s, the 

algorithm is currently regarded as a special 

case for many other general methods that solve 

inverse problems (Landweber 1951, Bauschke 

et al. 2011). Using the least of squares 

methods, Equation 1 can be modified to 

Equation 6. The Landweber algorithms (Yang 

et al. 1999) for solving Equation 6 is given by 

Equation 10; 

𝐺𝑘+1 = 𝐺𝑘 − 𝛼𝑆𝑇(𝑆𝐺𝑘 − 𝐶), (10) 

where 𝛼 is a relaxation factor, and 𝐺𝑘 is an 

initial image vector.  

Although Landweber iteration is fast, it 

requires many iterations to achieve steady 

conditions (Jang et al. 2006). This makes the 

Landweber algorithm unsuitable for imaging in 

online industrial processes. To reduce 

computational times, a preconditioner matrix 

proposed by Strand (1974), can be applied, and 

the method is called preconditioned Landweber 

(Lu et al. 2005) as expressed in Equation 11 
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𝐺𝑘+1 = 𝐺𝑘 − 𝛼𝐷𝑆𝑇(𝑆𝐺𝑘 − 𝐶), (11) 

where D is a preconditioner matrix. For 

simplicity, D is normally chosen to be a 

diagonal matrix (Benzi 2002). To ensure 

convergence at every iteration step, Yang and 

Peng (2003) introduced a projection operator 

P to improve the overall convergence property 

of the Landweber iteration, and the algorithm is 

called Projected Landweber iteration as 

presented in Equation 12.  

𝐺𝑘+1 = 𝑃[𝐺𝑘 − 𝛼𝑆𝑇(𝑆𝐺𝑘 − 𝐶)], (12) 

P is defined by Equation 13 as 

𝑃[𝐺𝑘] = {

0    𝑖𝑓 𝐺𝑘 < 0
𝐺𝑘  𝑖𝑓 0 ≤ 𝐺𝑘 ≤ 1

1    𝑖𝑓 𝐺𝑘 > 1.
 (13) 

The projection operator ensures that the 

reconstructed images are non-negative and 

upper-bounded. The Landweber algorithm is 

computationally efficient compared with other 

iteration algorithms as it uses first-order 

derivatives but suffers from a semi-

convergence condition (Liu and Chang 2009) 

(image error decreases fast at the beginning of 

the iteration, but increases after reaching the 

local minimum point). 

 

Entropic image thresholding techniques 

One promising approach to enhance the 

quality of reconstructed images is to post-

process tomograms using thresholding 

techniques, which involve binarization for easy 

interpretation, analysis, and processing 

(Mwambela 2018). With this technique, we can 

cheaply segment the contents of tomograms 

into two components of interest (oil and gas). 

The proposed ECT system that incorporates the 

thresholding process is depicted in Figure 2. 

 
Figure 2: ECT system incorporating data fitting and thresholding processes. 

 

The ECT system in Figure 2 is an extended 

version of the one proposed by Mwambela et 

al. (1997). It consists of two main parts: 

hardware—which consists of a multi-electrode 

sensor and sensor electronics—and software 

that holds an imaging program, which 

implements sampler, filter, quantizer, and 

thresholder. The sampler uses the sensitivity 

matrix to convert measured capacitance data to 

grey levels (which constitute a discrete-

continuous image); filter removes extraneous 

noise in the measured capacitance; quantizer 

converts a discrete-continuous image into a 

discrete-discrete image by spanning the image 

data with the selected quantizer resolution as 

the multiplying factor, then rounding to the 

nearest integer; and thresholder converts the 

quantized image into a new simple discrete-

discrete image, whose image values are 

binarized (0 and 1). For the case of the oil-gas 

tomogram, the basic assumption is that oil and 

gas pixels in the tomogram can be 

distinguished by their grey levels. By carefully 

selecting a thresholding grey level between 

dominant values of oil and gas intensities, the 

original grey level tomogram can be 

transformed into a binary image so that the 

tomogram pixels associated with the oil and 

gas will assume values of one and zero, 

respectively. 

Automatically selecting the threshold grey 

level is critical in industrial automation and 

control. The challenge, however, is to find a 

thresholding function that can self-segment the 

required tomograms of interest. In this work, 

we have adopted the classical thresholding 

techniques based on the principle of maximum 

entropy (Chang and Chong-xu 2012, Sarkar 

and Das 2013, Sarkar et al. 2015) as they are 

simple, fast, and more efficient. In this section, 

a theoretical background of some superior 

thresholding algorithms is given. 
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Consider an image with 𝑁 pixels, n grey levels, 

and frequency distribution, 𝑓𝑖 , of the 𝑖𝑡ℎ grey 

level, such that ∑ 𝑓𝑖
𝑛
𝑖=1 = 𝑁. 

 

Renyi entropy 

 The entropy of a tomogram based on Renyi 

entropy is defined by Equation 14; 

   𝐻𝑛

=
1

(1 − 𝑞)
ln [

∑ (𝑝𝑖)
𝑞𝑛

𝑖=1

∑ (𝑝𝑖)𝑛
𝑖=1

], 
(14) 

where 𝑝𝑖 =
𝑓𝑖

𝑁
 is the probability of occurrence 

of the 𝑖𝑡ℎ grey level, 𝑞𝑖 ≠ 1 and 𝑞𝑖 > 0.  

 

Shannon entropy 

When 𝑞𝑖 → 1 the Equation 14 reduce to 

Shannon definition of entropy 

   𝐻𝑛

= ∑ ln(𝑝𝑖)

𝑛

𝑖=1

, 
(15) 

This Equation 15 is not defined at 𝑝𝑖 = 0, as a 

result, Pal proposed a new definition to address 

this problem.  

 

Pal entropy 

  𝐻𝑛 = ∑ 𝑝𝑖 𝑒𝑥𝑝(1 − 𝑝𝑖)

𝑛

𝑖=1

, (16) 

Tsallis entropy 

  𝐻𝑛 =
1

(𝑞 − 1)
(1

− ∑(𝑝𝑖)𝑞

𝑛

𝑖=1

), 

(17) 

The use of maximum entropy principles 

yields the same results for both Renyi and 

Tsallis entropic thresholding. It can be shown 

that the two entropy definitions are monotonic 

functions of each other.  

In this work, Shannon and Renyi entropy 

definitions have been used to determine the 

maximum entropy of tomograms as presented 

in Equation 18 to Equation 21. 

𝐻𝑛(𝑇) = 𝐻𝑜(𝑇) + 𝐻𝑏(𝑇) (18) 

𝐻𝑜(𝑇) =
1

(1 − 𝑞)
𝑙𝑛 [∑ (

𝑝𝑖

𝑃𝑇

)
𝑞

𝑇

𝑖=1

] 

(19) 

𝐻𝑏(𝑇) =
1

(1 − 𝑞)
𝑙𝑛 [ ∑ (

𝑝𝑖

(1 − 𝑃𝑇)
)

𝑞
𝑛

𝑖=𝑇+1

] 
(20) 

𝑇𝑜𝑝𝑡 = arg max [𝐻𝑜(𝑇) + 𝐻𝑏(𝑇)] (21) 

 

Various algorithms have been designed based 

on the building blocks presented in Figure 2. 

For convenience, the algorithms at each stage 

of reconstruction are summarized in Table 1. 

 

Table 1: List of implemented algorithms at sampler and thresholder stages 

Algorithm name Sampler 

Thresholder 

Shannon 

Thresholder Kapur 

Renyi 

Thresholder Pal 

Linear back projection LBP LBPS LBPR 

Singular value decomposition SVD SVDS SVDR 

Tikhonov regularization TIK TIKS TIKR 

Iterative Tikhonov regularization ITIK ITIKS ITIKR 

Landweber  LAND LANDS LANDR 

Projected Landweber  PLAND PLANDS PLANDR 

 

Evaluation criteria 

To evaluate the performance of the 

algorithms, experiments were conducted using 

a circular sensor ECT system with eight 

electrodes (excitation waveform: 

10𝑉𝑝𝑝, 300 − 500 𝑘𝐻𝑧), uniformly spaced 

and arranged around the vessel. The imaging 

area was divided into 900 pixels. MATLAB 

software was used for image reconstruction and 

presentation. Annular bubble and stratified 
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flows were used to evaluate the algorithms. 

These flows represent the gas-oil distribution 

frequently encountered in oil industries.  

Qualitative and quantitative metrics were 

used to evaluate the efficacy of various 

methods. In the former evaluation metric, 

visual results of the reconstructed images 

generated by different algorithms were 

subjectively compared. To quantify the quality 

of results,  image distribution error (DE) was 

used to compare the spatial resolution between 

the reference and the reconstructed images as 

defined by Equation 26 (Isaksen and Nordtvedt 

1994) 

 

DE =
1

N
∑|Gi

rec − Gi
ref|

N

i=1

. (22) 

where 𝐺𝑖
𝑟𝑒𝑐 and 𝐺𝑖

𝑟𝑒𝑓
 are, respectively, the 

reference and reconstructed image vectors for 

an element 𝑖, and 𝑁 is the total number of 

pixels. Lower DE signals better results; for 

reservoir management in oil industries, for 

example, the desired DE should be less or 

equal to 10%. 

 

Results and Discussions  

Figures 3 to 8, present qualitative 

evaluations of algorithms implemented at the 

sampler and the thresholder stages. The 

reconstructions are based on actual capacitance 

measurements of dielectric objects located at 

different positions of the sensing domain. Each 

row in every figure contains a reference image, 

and reconstructions at the sampler, and 

thresholder stages. Figure 3 shows the 

reconstruction results based on the LBP, LBPS, 

and LBPR. Results show an improvement in 

the quality of images generated using LBPS 

and LBPR compared with those of LBP for all 

three test objects. The thresholding method 

based on Reny entropy is superior to Shannon 

entropy for annular, and bubble flows.  

 

 Reference Image LBP LBPS LBPR 

 

 

Annular 

    
 

 

Bubble 

    
 

 

Stratified 

    
 

Figure 3: Images reconstructed using LBP, LBPS, and LBPR. 
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 Reference Image SVD SVDS SVDR 

 

 

Annular 

    
 

 

Bubble 

    

 

 

Stratified 

    

Figure 4: Images reconstructed using SVD, SVDS, and SVDR. 

 

In Figure 4 reconstruction results using 

SVD and SVDS, and SVDR are presented. The 

reconstructed images are distorted near the 

sensor walls and have a better resolution at the 

center for all three flows. This is due to 

artifacts in the pseudoinverse of the sensitivity 

matrix used in grey levels calculation when 

using SVD at the sampler stage. 

 

 Reference Image TIK TIKS TIKR 

 

 

Annular 

    

 

 

Bubble 

    
 

 

Stratified 

    

Figure 5: Images reconstructed using TIK, TIKS, and TIKR. 
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Figure 5 shows the results of images 

generated using TIK, TIKS, and TIKR 

methods. Both TIKS and TIKR generate 

deformed imaged at the sensor walls and near 

the edges. Since TIK reconstruction strongly 

depends on the regularization parameter, with 

an appropriate regularization parameter, TIKS 

and TIKR can generate better results 

 Reference Image ITIK ITIKS ITIKR 

 

 

Annular 

    

 

 

Bubble 

    

 

 

Stratified 

    

Figure 6: Images reconstructed using ITKR, ITKRK, and ITKRP. 

 

Figure 6 presents images reconstructed by 

ITIK, ITIKS, and ITIKR. ITIKS generates 

visually appealing images for all flows. ITIKR 

produces better images for stratified compared 

to annular and bubble flows. The choice of 

initial grey vector and regularization parameter 

is important for ITIK based thresholders to 

generate better images. 

 Reference Image LAND LANDS LANDR 

 

 

Annular 

    
 

 

Bubble 

    
 

 

Stratified 

    

Figure 7: Images reconstructed using LAND, LANDS, and LANDR. 
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 Reference Image PLAND PLANDS PLANDR 

 

 

Annular 

    
 

 

Bubble 

    
 

 

Stratified 

    

Figure 8: Images reconstructed using PLAND, PLANDS, and PLANDR. 

 

Visual results generated from LAND, 

LANDS, LANDR are shown in Figure 7. The 

results show that LANDS generate visually 

appealing images which are sharper and more 

detailed compared to LANDR. For annular, 

and bubble flows. Figure 8 shows the 

reconstruction results from PLAND, PLANDS, 

and PLANDR. Results show an improvement 

in the quality of images generated using 

PLANDS compared with those of  PLANDP 

and PLAND for all three test objects. 

Qualitative visual inspection shows that 

thresholding algorithms have better resolutions 

than conventional ones. In particular, Shannon-

based methods produced better images for all 

flows. However, the quality of reconstructed 

images depends on the choice of the algorithm 

at the sampler stage. In particular, poor results 

are observed for the sampler algorithms. This is 

attributed to the nonlinear relationship between 

capacitance measurements and permittivity 

distribution and the limited number of 

independent measurements. On the contrary, 

the thresholder algorithms generate better 

images because of the careful automatic 

selection of the thresholding level. This can 

simplify decision-making when multiphase 

classifying components in multiphase flows. 

Figure 9 to Figure 16 present quantitative 

results based on DE for the algorithms 

implemented at the sampler and thresholder 

stages. Although the quantizer algorithms have 

been implemented, their qualitative results 

have not been presented, because they perform 

similar to corresponding sampler algorithms. 
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Figure 9: DE for LBP, LBPS, and LBPR for annular, bubble, and stratified flows. 

 

 
Figure 10: DE for SVD, SVDS, and SVDR for annular, bubble, and stratified flows. 

 

 
Figure 11: DE for TIK, TIKS, and TIKR for annular, bubble, and stratified flows. 
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Figure 12: DE for ITIK, ITKS, and ITIKR for annular, bubble, and stratified flows. 

 

 
Figure 13: DE for LAND, LANDS, and LANDR for annular, bubble, and stratified flows. 

 

 
Figure 14: DE for PLAND, PLANDS, and PLANDR for annular, bubble, and stratified flows. 
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Quantitatively, it is noted that algorithms 

implementing the thresholding stage are more 

accurate compared with sampler algorithms 

(See Figure 9 to Figure 14). The results 

emphasize a significant difference between the 

spatial similarity performances of the 

thresholder algorithms compared with sampler 

algorithms. In general, the above analysis 

suggests that Shannon-based thresholder 

algorithms significantly improve the quality of 

reconstructed images. 

 

Conclusions 

In this paper, image thresholding techniques 

based on the principle of maximum entropy 

have been proposed to assist the extraction of 

quantitative information from noisy 

capacitance data obtained from the ECT 

measurement system. The methods have been 

evaluated for their suitability to estimate the 

component fraction in the industrial oil-gas 

multiphase flow. Results suggest that 

thresholding improves the interpretability of 

the images. However, its performance is 

influenced by the reconstruction used. In 

particular, Shanon-based thresholders produce 

better qualitative and quantitative results than 

Renyi for most of the evaluated thresholding 

algorithms. PLAND and LAND are the most 

accurate iterative algorithms than LBP. 

However, if the speed of reconstruction is 

important LBP offer a better compromise to 

accuracy and may be considered as a step 

forward to apply ECT systems for quantitative 

analysis in industrial applications. 
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