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Abstract 

In this paper, we propose the inversion free iterative method to find symmetric solution of the 

nonlinear matrix equation 𝑿 − 𝑨∗𝑿𝒒𝑨 = 𝑰 (𝒒 ≥ 𝟐), where 𝑋 is an unknown symmetric solution, 

𝐴 is a given Hermitian matrix and 𝑞 is a positive integer. The convergence of the proposed 

method is derived. Numerical examples demonstrate that the proposed iterative method is quite 

efficient and converges well when the initial guess is sufficiently close to the approximate solution.  
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Introduction 

The nonlinear matrix equation 

 𝑋 − 𝐴∗𝑋𝑞𝐴 = 𝐼(𝑞 ≥ 2)    (1) 

is considered, where 𝐴  is the given square 

matrix, 𝐼 is an identity matrix and 𝑋  is an 

unknown Symmetric Solution (SS) to be 

determined. Different approaches and solutions 

of the generic nonlinear matrix equation of the 

form 

𝑋 + 𝐴∗𝔉(𝑋)𝐴 = 𝑄(𝑄 > 0)              (2) 

has been widely explored for 

different 𝔉(𝑋) (see, Zhang et al. 2011, Huang 

and Ma 2015, Gao 2016, Chacha and Naqvi 

2018 and Chacha and Kim 2019a). Equation (1) 

arises in modelling of physical processes in 

statistics, control theory, stochastic filtering, 

Kalman filtering, quasi-birth-death processes 

among others. 

 Symmetric solution has piqued the interest 

of numerous authors because of its practical 

importance. It has been extensively studied for 

different matrix equations (Peng et al. 2006, 

Sheng and Chen 2010, Huan 2011, Dehghan 

and Hajarian 2011, Chacha and Kim 2019b and 

the references therein).  

There are numerous renowned iterative 

methods for solving Equation (1) such as 

variants of fixed point method and Newton’s 

method. Newton’s method is the best when 

exploring Elementwise Minimal Nonnegative 

Solution (EMNS), while fixed point method 

fits best when exploring positive definite 

solution. Recently, Chacha and Kim (2019a) 

explored the EMNS of the nonlinear matrix 

equation 𝑋 − 𝐴∗𝑋𝑞𝐴 = 𝐼 (𝑞 ≥ 2) , which is 

Equation (1) for 𝑞 = 2  by employing pure 

Newton’s method. However, Pure Newton’s 

method does not guarantee the existence of 

symmetric solution.  

To the best of our knowledge, the inversion 

free iterative method has not been exploited in 

finding SS of Equation (1). Many authors have 

applied fixed point method and its variants to 

find Hermitian positive definite solution of 

Equation (1) for 𝑞 = −1 (Erfanifar et al. 2020 

and the references therein).  

In this paper, we are interested in 

investigating SS of Equation (1). An inversion 

free iterative method which guarantees the 

mailto:chchstephen@muce.ac.tz
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151580/#EEq1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151580/#EEq1


Tanz. J. Sci. Vol. 47(4) 2021 

1393 

existence of SS for Equation (1) is proposed. 

The only big advantage regarding this method 

is that there is no computation of inverse of 

Kronecker Fréchet derivative and ensures the 

existence of SS. 

The following notations and definitions will 

be used throughout this paper: 𝜌(∎) stands 

for spectral radius; 

𝑣𝑒𝑐 (𝐴) = [𝑎1
𝑇 , 𝑎2

𝑇 . ⋯ , 𝑎𝑛
𝑇]𝑇 is the column-

wise vector representation of matrix 𝐴  and 

𝑣𝑒𝑐(𝐴𝑋𝐵 )=(𝐵𝑇⨂𝐴)𝑣𝑒𝑐(𝑋) ; 𝐶 ⊗𝐷 = [𝑐𝑖𝑗]𝐵 

is the tensor or Kronecker product of the 

matrices 𝐶  and 𝐷 ; 𝐵𝜖(𝑋0)̅̅ ̅̅ ̅̅ ̅̅ ̅  stands for a 

closed ball with a radius 𝜖 and centre𝑋0; 𝐴𝑇 

stands for transpose of matrix 𝐴; 0 represents 

square null matrix;  ⨁  stands for Kronecker 

sum; ‖∎‖ ≔ ‖∎‖2  is the spectral norm; 

‖∎‖𝐹 stands for Frobenius norm and for any 

matrices 

𝐶, 𝐷 ∈ ℝ𝑚×𝑛, 𝐶 ≥ 𝐷(𝐶 > 𝐷) if [𝑐𝑖𝑗] ≥

[𝑑𝑖𝑗]([𝑐𝑖𝑗] > [𝑑𝑖𝑗]) for all 𝑖, 𝑗. 

 

Definition 1 

For a general function 𝐹: 𝐶𝑛×𝑛 → 𝐶𝑛×𝑛, 
Newton’s method for the solution of  ℱ(𝑋) = 0 

is specified by an initial approximation 𝑋0 

and the recurrence 

𝑋𝑘+1 = 𝑋𝑘 − 𝐹
′(𝑋𝑘)

−1𝐹(𝑋𝑘) , for all 𝑘 =
0, 1, 2 ,⋯ , where 𝐹′  denotes the Fr é chet 

derivative. 

 

Definition 2 

Let matrix  𝐴 be 𝑚 ×𝑚 square matrix, A is 

a 𝑍 – matrix if all its off-diagonal elements are 

non-positive. 

 

Definition 3 

A matrix  𝐴 ∈ ℝ𝑚×𝑚  is an M-matrix if 

𝐴 = 𝑠𝐼 − 𝐵  for some nonnegative  𝐵  and  𝑠 
with s> 𝜌(𝐵). 
 

Lemma 1 (Chacha and Kim 2019a) 

For a Z-matrix, the following are equivalent: 

i. 𝐴 is non-singular M-matrix. 

ii. 𝐴−1 is nonnegative. 

iii. 𝐴𝑣 > 0 (≥ 0) for some vector  𝑣 > 0 (≥
0). 

iv. All eigenvalues of 𝐴 have positive real 

parts. 

 

Materials and Methods 

Newton’s method 

Let Equation (1) be represented by the map  
ℱ(𝑋) = 𝑋 − 𝐴∗𝑋𝑞𝐴 − 𝐼 = 0       (3)                           

 

From Equation (3), we see the that Fréchet 

derivative ℱ𝑋
′  is a linear operator  

ℱ𝑋
′ [𝐸]: ℂ𝑛×𝑛 → ℂ𝑛×𝑛, defined by 

 

ℱ𝑋
′ [𝐸] = 𝐸 − ∑ 𝐴∗

𝑞
𝜇=1 𝑋𝑞−𝜇𝐸𝑋𝜇−1𝐴.      (4) 

 

From Equation (4) we have  

vec(ℱ𝑋
′ [𝐸]) = 𝒟𝑋vec(𝐸), where 

 𝒟𝑋 = 𝐼𝑛2 −∑ (𝑋𝜇−1𝐴)𝑇⨂(𝐴∗𝑋𝑞−𝜇)
𝑞
𝜇=1 . 

 

Lemma 2  

Suppose that 

0 ≤ ∑ (𝑋𝜇−1𝐴)𝑇⨂(𝐴∗𝑋𝑞−𝜇)
𝑞
𝜇=1 < 𝐼𝑛2,, then 

𝒟𝑋 is a nonsingular 𝑀-matrix. 

 

Proof: The proof is straight forward from 

Definitions 2, 3 and Lemma 1. Thus, the proof 

is omitted here. 

Since 𝒟𝑋 is invertible. It implies that ℱ𝑋
′  

regular. Thus, Newton’s step 𝐸 is calculated in 

𝐸 − ∑ 𝐴∗
𝑞
𝜇=1 𝑋𝑞−𝜇𝐸𝑋𝜇−1𝐴 = −ℱ(𝑋)    (5) 

 

Algorithm 1 (Newton’s method for Equation 

(1)) 

Step 1: Given symmetric matrix 𝐴 and initial 

guess 𝑋0 

Step 2: Solve Newton’s step in  

𝐸 −∑𝐴∗

𝑞

𝜇=1

𝑋𝑞−𝜇𝐸𝑋𝜇−1𝐴 = −ℱ(𝑋). 

Step 3:𝑋𝑖+1 = 𝑋𝑖 + 𝐸𝑖 , for all 𝑖 = 0, 1, 2,⋯ 

Step 4: Check if ‖ℱ(𝑋𝑘)‖F ≤ 𝑛. eps, where 𝑛 

is the size of matrix 𝐴 and eps = 2.22 × 10-16
,
 

otherwise go to Step 2. 

Step 5: Display the approximate solution 𝑋. 
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Remark 1 

We see that Newton’s method for Equation (1) 

is applicable if 𝒟𝑋  is nonsingular. Now 

suppose that  

∑ (𝑋𝜇−1𝐴)𝑇⨂(𝐴∗𝑋𝑞−𝜇)
𝑞
𝜇=1 = 𝐼𝑛2,. In this case, 

Newton’s method will not work. Moreover, 

Algorithm 1 does not guarantee the existence 

of SS. Now we provide an inversion free 

iterative method to calculate the Newton’s step. 

The proposed iterative method ensures the 

existence of SS. We also derive necessary 

condition for existence of SS. 

 

Algorithm 2: Inversion free iterative method for solving Newton’s step 

1. Let 𝐴 ∈ ℝ𝑛×𝑛  and symmetric 𝑋𝑝 ∈ ℝ
𝑛×𝑛  , choose initial symmetric Newton’s step 

𝐸𝑝𝑘 ∈ ℝ
𝑛×𝑛 

2. For 𝑘 = 0, evaluate 

i. ℛ0 = −ℱ(𝑋𝑝) − [𝐸𝑝0 − ∑ 𝐴∗
𝑞
𝜇=1 𝑋𝑝

𝑞−𝜇𝐸𝑝0𝑋𝑝
𝜇−1𝐴] 

ii. 𝑌0 = ℛ0 − ∑ (𝐴∗𝑋𝑝
𝑞−𝜇)

𝑇𝑞
𝜇=1 ℛ0(𝑋𝑝

𝜇−1𝐴)
𝑇

 

iii. 𝑄0 =
1

2
(𝑌0 + 𝑌0

𝑇) 

3. While ℛ𝑘 ≠ 0, evaluate 

i. 𝛼𝑘 =
‖ℛ𝑘‖

2

‖𝑄𝑘‖
2 

ii. 𝐸𝑝𝑘+1 = 𝐸𝑝𝑘 + 𝛼𝑘𝑄𝑘  

iii. ℛ𝑘+1 = −ℱ(𝑋𝑝) − [𝐸𝑝𝑘+1 − ∑ 𝐴∗
𝑞
𝜇=1 𝑋𝑝

𝑞−𝜇𝐸𝑝𝑘+1𝑋𝑝
𝜇−1𝐴] 

iv. 𝑌𝑘+1 = ℛ𝑘+1 − ∑ (𝐴∗𝑋𝑝
𝑞−𝜇)

𝑇𝑞
𝜇=1 ℛ𝑘+1(𝑋𝑝

𝜇−1𝐴)
𝑇
 

v. 𝛽𝑘 =
‖ℛ𝑘+1‖

2

‖ℛ𝑘‖
2  

vi. 𝑄𝑘+1 =
1

2
(𝑌𝑘+1 + 𝑌𝑘+1

𝑇) + 𝛽𝑘𝑄𝑘  

4. end 

 

Lemma 3 (Chacha and Kim 2019b)  

For any symmetric solution 𝑋, it holds that 

 tr[1 2⁄ (𝑀 +𝑀𝑇)𝑇𝑋] =tr(𝑀𝑇𝑋), where 𝑀 is any arbitrary 𝑛 × 𝑛 real matrix. 

 

Remark 2 

In Algorithm 2, the sequence of matrices 𝑄𝑘 and 𝐸𝑝𝑘 are symmetric for all 𝑘 = 0,1,⋯. 

Based on Algorithm 2, we derive the following results. 

 

Lemma 4 

Let 𝐸𝑝 be a symmetric solution of the 𝑝th
 Newton’s iteration (5), and the sequences {𝑌𝑘}, {ℛ𝑘}, 

and {𝐸𝑝𝑘} be generated by Algorithm 2. Then,  

tr[𝑌𝑘
𝑇(𝐸𝑝 − 𝐸𝑝𝑘)] = ‖ℛ𝑘‖

2, for all 𝑘 = 0, 1,⋯. 
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Proof: From Algorithm 2, it follows that 

tr[𝑌𝑘
𝑇(𝐸𝑝 − 𝐸𝑝𝑘)] = tr{[ℛ𝑘 −∑ (𝐴∗𝑋𝑝

𝑞−𝜇)
𝑇𝑞

𝜇=1 ℛ𝑘(𝑋𝑝
𝜇−1𝐴)

𝑇
]
𝑇

((𝐸𝑝 − 𝐸𝑝𝑘))} 

= tr{ℛ𝑘
𝑇[𝐸𝑝 − 𝐸𝑝𝑘 − ∑ (𝐴∗𝑋𝑝

𝑞−𝜇)(𝐸𝑝 − 𝐸𝑝𝑘)
𝑞
𝜇=1 (𝑋𝑝

𝜇−1𝐴)]} 

= tr{ℛ𝑘
𝑇[−ℱ(𝑋𝑝) − [𝐸𝑝𝑘 −∑ 𝐴∗

𝑞
𝜇=1 𝑋𝑝

𝑞−𝜇𝐸𝑝𝑘𝑋𝑝
𝜇−1𝐴]]} 

= tr{ℛ𝑘
𝑇ℛ𝑘} = ‖ℛ𝑘‖

2. 

This marks the end of the proof.  

 

Lemma 5  

Let 𝐸𝑝 be a symmetric solution of the 𝑝th
 Newton’s iteration (5). Then,  

tr[𝑄𝑘
𝑇(𝐸𝑝 − 𝐸𝑝𝑘)] = ‖ℛ𝑘‖

2, for all 𝑘 = 0, 1,⋯. 

 

Proof: We prove via mathematical induction.  

When 𝑘 = 0, from Algorithm 2, Lemmas 3 and 4, we have 

tr[𝑄𝑘
𝑇(𝐸𝑝 − 𝐸𝑝𝑘)] =tr[

1

2
(𝑌0 + 𝑌0)

𝑇(𝐸𝑝 − 𝐸𝑝𝑘)] 

= tr[(𝑌0)
𝑇(𝐸𝑝 − 𝐸𝑝𝑘)] = ‖ℛ𝑘‖

2.                                          (6) 

Now, suppose statement (6) holds for  ℎ = 𝑘, it follows that 

tr[𝑄ℎ+1
𝑇(𝐸𝑝 − 𝐸𝑝ℎ+1)] =tr[[

1

2
(𝑌ℎ+1 + 𝑌ℎ+1)

𝑇 + 𝛽ℎ𝑄ℎ]
𝑇

(𝐸𝑝 − 𝐸𝑝ℎ+1)] 

= tr[𝑌ℎ+1
𝑇(𝐸𝑝 − 𝐸𝑝ℎ+1)] + 𝛽ℎtr[𝑄ℎ(𝐸𝑝 − 𝐸𝑝ℎ+1)] 

= ‖ℛℎ+1‖
2 + 𝛽ℎtr[𝑄ℎ

𝑇(𝐸𝑝 − 𝐸𝑝ℎ − 𝛼ℎ𝑄ℎ)] 

= ‖ℛℎ+1‖
2 + 𝛽ℎtr[𝑄ℎ

𝑇(𝐸𝑝 − 𝐸𝑝ℎ)] + 𝛽ℎ𝛼ℎ‖𝑄ℎ‖
2 

= ‖ℛℎ+1‖
2 + 𝛽ℎ‖ℛℎ‖

2 − 𝛽ℎ‖ℛℎ‖
2 = ‖ℛℎ+1‖

2∎ 

This marks the end of Lemma 5. 

 

Remark 3 

From Lemma 5, for Newton iteration (5) to have symmetric solution, the sequences {ℛ𝑘},  and 
{𝑄𝑘} generated by Algorithm 2 should non-zero. 

 

Lemma 6 

For the sequences {ℛ𝑘} and {𝑄𝑘} generated by Algorithm 2, we have tr(ℛ𝑘
𝑇ℛ𝑘) = 0 for all 

𝑘 > 𝑗 = 0, 1,⋯ 𝑙,    𝑙 ≥ 1.                                                            (7) 

 

Proof: We prove via mathematical induction. Case I: When 𝑙 = 1, it follows that 

tr(ℛ1
𝑇ℛ0) = {[−ℱ(𝑋𝑝) − [𝐸𝑝1 − ∑ 𝐴∗

𝑞
𝜇=1 𝑋𝑝

𝑞−𝜇𝐸𝑝1𝑋𝑝
𝜇−1𝐴]]

𝑇
ℛ0} 
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=        tr {[−ℱ(𝑋𝑝) − [𝐸0 −∑𝐴∗

𝑞

𝜇=1

𝑋𝑝
𝑞−𝜇𝐸𝑝1𝑋𝑝

𝜇−1𝐴

+       𝛼0 (𝑄0 −∑𝐴∗

𝑞

𝜇=1

𝑋𝑝
𝑞−𝜇𝑄0𝑋𝑝

𝜇−1𝐴)]]

𝑇

ℛ0} 

= tr {[ℛ0 −  𝛼0 (𝑄0 −∑𝐴∗

𝑞

𝜇=1

𝑋𝑝
𝑞−𝜇𝑄0𝑋𝑝

𝜇−1𝐴)]

𝑇

ℛ0} 

= ‖ℛ0‖
2 − tr { 𝛼0 (𝑄0

𝑇 [ℛ0 −∑(𝐴∗𝑋𝑝
𝑞−𝜇)

𝑇

𝑞

𝜇=1

ℛ0(𝑋𝑝
𝜇−1𝐴)

𝑇
])} 

= ‖ℛ0‖
2 −  𝛼0tr[𝑄0

𝑇𝑌0]=‖ℛ0‖
2 −  𝛼0tr[𝑄0

𝑇 1
2⁄ (𝑌0 + 𝑌0

𝑇)]  

= ‖ℛ0‖
2 −  𝛼0tr[𝑄0

𝑇𝑄0]=0,     and 

tr(𝑄1
𝑇𝑄0)    = tr [[

1
2⁄ (𝑌0 + 𝑌0

𝑇) + 𝛽0𝑄0]
𝑇
𝑄0] 

= tr[𝑌1
𝑇𝑄0] + 𝛽0tr[𝑄0

𝑇𝑄0] 

  = tr[[ℛ1 − ∑ 𝐴∗
𝑞
𝜇=1 𝑋𝑝

𝑞−𝜇ℛ1𝑋𝑝
𝜇−1𝐴]

𝑇
𝑄0] + 𝛽0‖𝑄0‖

2 

  = tr[ℛ1
𝑇[𝑄0 − ∑ (𝐴∗𝑋𝑝

𝑞−𝜇)
𝑞
𝜇=1 𝑄0(𝑋𝑝

𝜇−1𝐴)]] +
‖ℛ1‖

2

‖ℛ0‖
2
‖𝑄0‖

2 

  = tr[ℛ1
𝑇[1 𝛼0⁄ (𝐸𝑝1 − 𝐸𝑝0) −

1
𝛼0⁄ ∑ (𝐴∗𝑋𝑝

𝑞−𝜇)
𝑞
𝜇=1 (𝐸𝑝1 − 𝐸𝑝0)(𝑋𝑝

𝜇−1𝐴)]] 

+
‖ℛ1‖

2

‖ℛ0‖
2
‖𝑄0‖

2 

= 1 𝛼0⁄ tr[ℛ1
𝑇[(𝐸𝑝1 − 𝐸𝑝0) − ∑ (𝐴∗𝑋𝑝

𝑞−𝜇)
𝑞
𝜇=1 (𝐸𝑝1 − 𝐸𝑝0)(𝑋𝑝

𝜇−1𝐴)]] +
‖ℛ1‖

2

‖ℛ0‖
2
‖𝑄0‖

2 

= 1 𝛼0⁄ tr[ℛ1
𝑇[(ℛ0 −ℛ1)]]  +

‖ℛ1‖
2

‖ℛ0‖
2
‖𝑄0‖

2 

= 1 𝛼0⁄ (tr[ℛ1
𝑇ℛ0] − tr[ℛ1

𝑇ℛ1])  +
‖ℛ1‖

2

‖ℛ0‖
2
‖𝑄0‖

2 

=−1 𝛼0⁄ (tr[ℛ1
𝑇ℛ1])  +

‖ℛ1‖
2

‖ℛ0‖
2
‖𝑄0‖

2 = −
‖ℛ1‖

2

‖ℛ0‖
2
‖𝑄0‖

2 +
‖ℛ1‖

2

‖ℛ0‖
2
‖𝑄0‖

2 = 0. 

Now assume that Equation (7) holds for 𝑙 = 𝑠. It follows that 

tr(ℛ𝑠+1
𝑇ℛ𝑠) = {[[ℛ𝑠 − 𝛼𝑠(𝑄𝑠 − ∑ 𝐴∗

𝑞
𝜇=1 𝑋𝑝

𝑞−𝜇𝑄𝑠𝑋𝑝
𝜇−1𝐴)]]

𝑇
ℛ𝑠} 

= tr(ℛ𝑠
𝑇ℛ𝑠) − 𝛼𝑠tr [[(𝑄𝑠 − ∑ 𝐴∗

𝑞
𝜇=1 𝑋𝑝

𝑞−𝜇𝑄𝑠𝑋𝑝
𝜇−1𝐴)]]

𝑇
ℛ𝑠] 
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           = ‖ℛ𝑠‖
2 − 𝛼𝑠tr [𝑄𝑠

𝑇 (∑ (𝐴∗𝑋𝑝
𝑞−𝜇)

𝑇𝑞
𝜇=1 ℛ𝑠(𝑋𝑝

𝜇−1𝐴)
𝑇
)] 

= ‖ℛ𝑠‖
2 − 𝛼𝑠tr[𝑄𝑠

𝑇𝑌𝑠] 

= ‖ℛ𝑠‖
2 − 𝛼𝑠tr[𝑄𝑠

𝑇 1
2⁄ (𝑌𝑠 + 𝑌𝑠

𝑇)] 

= ‖ℛ𝑠‖
2 − 𝛼𝑠‖𝑄𝑠‖

2 + 𝛼𝑠𝛽𝑠−1tr[𝑄𝑠
𝑇𝑄𝑠−1] = 0.  

Moreover, 

Tr(𝑄𝑠+1
𝑇𝑄𝑠)   = tr [[

1
2⁄ (𝑌𝑠+1 + 𝑌𝑠+1

𝑇) + 𝛽𝑠𝑄𝑠]
𝑇
𝑄𝑠] = tr[𝑌𝑠+1

𝑇𝑄𝑠] + 𝛽𝑠tr[𝑄𝑠
𝑇𝑄𝑠] 

        = tr[[ℛ𝑠+1 − ∑ 𝐴∗
𝑞
𝜇=1 𝑋𝑝

𝑞−𝜇ℛ𝑠+1𝑋𝑝
𝜇−1𝐴]

𝑇
𝑄𝑠] + 𝛽𝑠‖𝑄𝑠‖

2 

        = tr[ℛ𝑠+1
𝑇[𝑄𝑠 − ∑ (𝐴∗𝑋𝑝

𝑞−𝜇)
𝑞
𝜇=1 𝑄𝑠(𝑋𝑝

𝜇−1𝐴)]] + 𝛽𝑠‖𝑄𝑠‖
2 

= tr[ℛ𝑠+1
𝑇[1 𝛼0⁄ (ℛ𝑠 −ℛ𝑠+1)]] + 𝛽𝑠‖𝑄𝑠‖

2 

= 1 𝛼0⁄ tr[ℛ𝑠+1
𝑇[(ℛ𝑠 − ℛ𝑠+1)]]  +

‖ℛ𝑠+1‖
2

‖ℛ𝑠‖
2
‖𝑄𝑠‖

2 

= 1 𝛼0⁄ (tr[ℛ𝑠+1
𝑇ℛ𝑠] − tr[ℛ𝑠+1

𝑇ℛ𝑠+1])  +
‖ℛ𝑠+1‖

2

‖ℛ𝑠‖
2
‖𝑄𝑠‖

2 

        =−1 𝛼0⁄ (tr[ℛ𝑠+1
𝑇ℛ𝑠+1])  +

‖ℛ𝑠+1‖
2

‖ℛ𝑠‖
2
‖𝑄𝑠‖

2 

= −
‖ℛ𝑠+1‖

2

‖ℛ𝑠‖
2
‖𝑄𝑠‖

2 +
‖ℛ𝑠+1‖

2

‖ℛ𝑠‖
2
‖𝑄𝑠‖

2 = 0. 

Thus, we have tr[ℛ𝑘
𝑇ℛ𝑘−1] = 0 and tr[𝑄𝑘

𝑇𝑄𝑘−1] = 0, for all 𝑘 = 0, 1,⋯ , 𝑙. 

We now assume that tr[ℛ𝑠
𝑇ℛ𝑗] = 0 and tr[𝑄𝑠

𝑇𝑄𝑗] = 0, for all 𝑗 = 0, 1,⋯ , 𝑙 − 1. 

By Algorithm 2 and Lemma 3, in line with assumptions made herein, it follows that 

tr(ℛ𝑠+1
𝑇ℛ𝑗) = {[[ℛ𝑠 − 𝛼𝑠(𝑄𝑠 − ∑ 𝐴∗

𝑞
𝜇=1 𝑋𝑝

𝑞−𝜇𝑄𝑠𝑋𝑝
𝜇−1𝐴)]]

𝑇
ℛ𝑗} 

= tr(ℛ𝑠
𝑇ℛ𝑗) − 𝛼𝑠tr [𝑄𝑠

𝑇 (ℛ𝑗 −∑ (𝐴∗𝑋𝑝
𝑞−𝜇)

𝑇𝑞
𝜇=1 ℛ𝑗(𝑋𝑝

𝜇−1𝐴)
𝑇
)] 

= tr(ℛ𝑠
𝑇ℛ𝑗) − 𝛼𝑠tr[𝑄𝑠

𝑇𝑌𝑗] 

  = 0 − 𝛼𝑠tr[𝑄𝑠
𝑇 1

2⁄ (𝑌𝑗 + 𝑌𝑗
𝑇)] 

  = 0 − 𝛼𝑠tr[𝑄𝑠
𝑇(𝑄𝑠 − 𝛽𝑗−1𝑄𝑗−1)] = 0. 

Finally, we prove that tr(𝑄𝑠+1
𝑇𝑄𝑗) =0. 

tr(𝑄𝑠+1
𝑇𝑄𝑗)  = tr [[

1
2⁄ (𝑌𝑠+1 + 𝑌𝑠+1

𝑇) + 𝛽𝑠𝑄𝑠]
𝑇
𝑄𝑗] 

  = tr[𝑌𝑠+1
𝑇𝑄𝑗] 

           = tr[[ℛ𝑠+1 − ∑ 𝐴∗
𝑞
𝜇=1 𝑋𝑝

𝑞−𝜇ℛ𝑠+1𝑋𝑝
𝜇−1𝐴]

𝑇
𝑄𝑗] 

        = tr[ℛ𝑠+1
𝑇[𝑄𝑗 − ∑ (𝐴∗𝑋𝑝

𝑞−𝜇)
𝑞
𝜇=1 𝑄𝑗(𝑋𝑝

𝜇−1𝐴)]] 
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= tr[ℛ𝑠+1
𝑇[1 𝛼𝑠⁄ (ℛ𝑗 −ℛ𝑗+1)]] = 0 for all 𝑗 = 0,1,⋯ , 𝑠 − 1. 

 

From Lemma 6, it is easy to see that if 𝑘 > 0, 
and ℛ𝑖 ≠ 0  for all 𝑖 = 0,1,⋯ , 𝑘. Then, 

sequences  ℛ𝑖  and ℛ𝑗  generated by 

Algorithm 2 are orthogonal for 𝑖 ≠ 𝑗. 
 

Remark 4 

If there exists a positive number 𝑘 > 0 such 

that  ℛ𝑖 ≠ 0  for all 𝑖 = 0,1,⋯ , 𝑘  in 

Algorithm 2, then, the matrices ℛ𝑖  and ℛ𝑗 

are perpendicular for 𝑖 ≠ 𝑗 from Lemma 6. 

 

Theorem 1 

Presume that the 𝑝th Newton’s iteration (5) 

has symmetric solution. Then, for any initial 

matrix 𝐸𝑝0  its symmetric solution can be 

obtained within at most 𝑛2 iterative steps. 

 

Proof: From Lemma 6, suppose that  ℛ𝑘 ≠ 0 

for 𝑘 = 0,1,⋯ , 𝑛2 − 1.  We see that the set 
{ℛ0,   ℛ1, ⋯ , ℛ𝑛2−1}  forms an orthogonal 

basis of the finite dimension matrix space 

ℝ𝑛×𝑛. Since the 𝑝th
 Newton’s iteration (5) has 

SS, then from Remark 4, it is certain that there 

exist a positive integer 𝑘 such that 𝑄𝑘 ≠ 0. 

𝐸𝑃𝑛2 and ℛ𝑛2   can be evaluated in Algorithm 

2, and from Lemma 6 we  know that 

tr [ℛ𝑛2
𝑇ℛ𝑘] = 0 . However, we know that 

[ℛ𝑛2
𝑇ℛ𝑘] = 0  is valid if ℛ𝑛2 = 0,  this 

implies that 𝐸𝑃𝑛2 is the solution of iteration 

(5). 

It is now high time to prove the convergence of 

Algorithm 2 to SS based on the established 

results. 

 

Theorem 2 

Assume that Equation (1) has SS and each 

Newton’s iteration is consistent for symmetric 

initial guess 𝑋0 . The sequence {𝑋𝑘}  is 

generated by Algorithm 1 with 𝑋0 such that 

lim𝑘→∞ 𝑋𝑘 = 𝑋𝑝 , and 𝑋𝑝  satisfies ℱ(𝑋𝑝) =

0, then, 𝑋𝑝 is the SS of Equation (1). 

Proof: Let 𝐸0 be the initial SS of Algorithm 2, 

then, it follows that 𝐸1 = 𝐸0 + 𝛼0𝑄0.  We 

know that matrix sequence generated by 𝑄𝑘 is 

symmetric for 𝑘 = 0,1,⋯  and 𝛼𝑘  is a 

positive number. Thus, From Algorithm 1 and 

Theorem 1, we have 𝑋𝑘+1 = 𝑋𝑘 + 𝐸𝑘 . 
Since 𝐸𝑘′s  and 𝑋𝑘+1′ s are symmetric 

matrices, then the sequence {𝑋𝑘} converges to 

symmetric matrix 𝑋𝑝  satisfying ℱ(𝑋𝑝) = 0. 

Then, 𝑋𝑝 is the SS of Equation (1). 

 

Results and Discussion 

In this section, we use numerical tests to 

illustrate the effectiveness of the algorithm 

developed to find SS of Equation (1). Our 

experiments were done in MATLAB R2015a 

and the loops were terminated whenever the 

error, ‖𝐹(𝑋𝑘)‖𝐹 ≤ 10
−06.  Summaries of 

results are presented in Table 1, Table 2 and 

Table 3. 
 

Example 1 

We now consider a matrix used in a model for 

the population of the bilby by Bean, Bright, 

Latouche, Pearce, Pollett, and Taylor (1987) 

for the quasi-stationary behaviour of quasi-

birth-death processes. The bilby is an 

endangered Australian marsupial. Define the 

5 × 5 matrix 𝐵 = 𝛽𝐴2
𝑇 , where 𝛽 = 0.5 and 

𝑑 = [0, 0.5, 0.55, 0.8, 1]  is the vector of 

probability that the population moves down a 

level given phase 𝑗  and 𝑔 = 0.2. We now 

have Equation (1) with a symmetric matrix 

given by  𝐴 = 0.5( 𝐵𝑇 + 𝐵)𝛿 , where 

𝛿 = {0.1, 0.001, 0.0001}.  
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Table 1 summarizes the findings obtained by incorporating Algorithm 2 into Algorithm 1 and 

solving Equation (1). 

 

Table 1: Results summary for Example 1 

𝛿 Iteration allowed Iteration executed Error 𝜌(𝐴) 

0.1 100 Over 100 1.0 × 10+01 0.0460 

0.01 100 Over 100 9.90 × 10+00 0.0046 

0.001 100 1 1.03 × 10−07 0.0004 

 

 

The approximate SS for Equation (1) is 

 

𝑋1 =

(

 
 
 
 
 
 
 
 
1.000000104440213  0.000000001336501    0.000000003353403  0.000000001858951    0.000000004082401

 0.000000001336501   1.000000108142929   0.000000000334125   0.000000005832005   0.000000000060749

 0.000000003353403   0.000000000334125   1.000000114087321   0.000000000534598   0.000000008620427

0.000000001858951   0.000000005832005   0.000000000534598   1.000000122078983   0.000000031201206

0. 000000004082401   0.000000000060749   0.000000008620427   0.000000031201206   1.000000193192948
)

 
 
 
 
 
 
 
 

. 

 

Example 2 

We consider matrix 𝐴 in Example 1, with 𝛿 = 0.01,𝑋0 = {0.6𝐼, 0.7𝐼, 0.8𝐼, 0.9𝐼, 𝐼},    and  𝑞 =
3. Numerical results are recorded in Table 2. 

 

Example 3 

We consider real symmetric matrix 𝐴 = 0.5(𝐵𝑇 + 𝐵), where 𝐵 = 0.01 ∗ 𝐻/𝑁; 

𝑁 = sum(𝐻(1, : )); 𝐻 = magic(𝑛) and 𝑛 = {10,20, 30,40,50,60,70,80,90,100,150}. 
with 𝑋0 = 𝐼, 𝑞 = 3 Then, a summary of results is given in Table 3. 
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Table 2: Results summary for Example 2 

𝑋0 Iterations allowed Iteration(s) executed Error 

0.6𝐼 100 Over 100 4.95 × 10+01 
0.6𝐼 100 Over 100 3.96 × 10+01 
0.7𝐼 100 Over 100 2.97 × 10+01 
0.8𝐼 100 Over 100 1.98 × 10+01 

0.9I 100 Over 100 9.90  ×  1000 

𝐼 100 1 3.02    ×  10−09 

 

 

Table 3: Results summary for Example 3 

Matrix size (𝑛) Iterations allowed Iteration(s) executed Error 

10 100 1 5.56 × 10−09 

20 100 1 4.97 × 10−09 

30 100 1 5.07 × 10−09 

40 100 1 4.79 × 10−09 

50 100 1 4.89 × 10−09 

60 100 1 4.72 × 10−09 

70 100 1 4.80 × 10−09 

80 100 1 4.69 × 10−09 

90 100 1 4.75 × 10−09 

100 100 1 4.67 × 10−09 

150 100 1 4.67 × 10−09 

 

 

Remark 5 

In Table 1, the error decreases as the 

spectral radius drops from 0.046 to 0.0004. 

This implies that the convergence of the 

developed algorithm is highly dependent on the 

spectral radius of the matrix considered. When 

the spectral radius reaches 0.0004, the 

algorithm starts to yield better results within 

the iterations permitted. 

In Table 2, the error decreases as initial 

solution is decreased. The convergence 

improves significantly as the initial solution 

gets closer to 𝐼. In fact, the solution is very 

close to 𝐼. As the initial solution is quite away 

from 𝐼,  Algorithm 2 tends to diverge. 

Algorithm 2 being Quasi-Newton, it depicts 

properties of pure Newton’s method. 

In Table 3, Algorithm 2 seems to converge 

to the solution by only a single iteration for all 

matrices considered. This is because we have 

considered a relatively good initial solution and 

a matrix with a relatively smaller spectral 

radius.  

 

Conclusion 
This work introduced inversion free method for 

obtaining symmetric solution of Equation (1). 

Basic conditions for the convergence of 

Algorithm 2 have been presented. Numerical 

results show that Algorithm 2 performs well 

when the coefficient matrix 𝐴 has a relatively 

smaller spectral radius and for initial guess 

closer to identity matrix 𝐼. 
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