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Abstract 
The Analysis of Variance technique estimates variance components by comparing their mean 

squares to their expected values. Nevertheless, this method could give variance component 

estimates that are found outside the parameter space, i.e. negative estimates. In a bid to 

overcome this deficiency, alternate approaches are essential, and likelihood-based approaches 

have become common over time. Bayesian techniques have also been proposed and Bayes 

factors developed for examining various models. We applied the Bayes factor proposed by 

Faulkenberry (2018) to a Balanced Two Way ANOVA under three (3) cases, namely Case 1: 

the levels of the two factors are fixed; Case 2: the levels of the two factors are random; and 

Case 3: the levels of one factor are considered as fixed, while the levels of the other factor are 

considered as random. We realized that when the levels of the two factors are fixed, the 

Bayesian conclusion about the variability in the effects is in line with that of a frequentist. But 

when the same data set was considered to be wholly or partly as sample observations drawn 

randomly from a given population of interest, the Bayesian conclusion differed slightly from 

that of the frequentist.  
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Introduction 

An extensive range of techniques has been 

established over time for variance 

components estimations; some of these 

techniques are: Analysis of Variance 

(ANOVA), Restricted Maximum Likelihood 

(REML), Maximum Likelihood (ML) and the 

Bayesian techniques. The ANOVA technique 

estimates variance components by comparing 

their mean squares to their expected values. 

However, this method could give variance 

component estimates that are found beyond 

the parameter space, i.e. negative estimates. 

In a bid to overcome this deficiency, alternate 

approaches are essential and likelihood-based 

approaches have become commonly used 

(Searle et al. 1992, Theobald et al. 1997, 

Basar and Firat 2016). The Maximum 

Likelihood technique for estimating 

components of the variance does not give 

account for the loss of various degrees of 

freedom instigated by estimating the fixed 

effects in the model. The REML technique 

remains more advantageous than the ML 

technique in that; “it permits for several 

random factors in the model” and “often with 

regards to the variance, maximizes the part of 

the function of the likelihood that does not 

depend on fixed effects (Basar and Firat 

2016).   

Bayesian technique for estimating the 

variance components is an alternate approach 

to the likelihood based techniques stated 

above. Bayesian methods were viewed 

https://dx.doi.org/10.4314/tjs.v47i5.20
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unfavourably by many statisticians due to 

philosophical and practical considerations. 

Several Bayesian methodologies required a 

lot of computation to complete. However, 

with the advent of some powerful computers 

and newer algorithms like Markov Chain 

Monte Carlo (MCMC), Bayesian methods 

have seen increasing uses within statistics in 

the 21
st
 century.  

The Bayesian technique for hypothesis 

testing about variance component(s) is 

obtained by the means of the Bayes factor 

which is given by 

𝐵𝐹01 = 
𝑝(𝒚|𝑀0)

𝑝(𝒚|𝑀1)
                           (1) 

The Bayes factor equates the marginal 

densities of the data 𝒚 under the models, 

𝑀0and 𝑀1. 𝑀0 is the hypothesis that one or 

more of the components of the variance 

equals to zero, whereas 𝑀1 is the hypothesis 

that the variance is unrestricted (Egburonu 

and Abidoye 2018b).  

Carrying out Bayesian analysis requires a 

prior distribution. Faulkenberry (2018) 

developed a Bayesian Information Criterion 

(BIC)-based Bayes factor that can be obtained 

from table of ANOVA summaries. The 

computation of the Bayes factor requires a 

specification of prior. The Faulkenberry 

(2018) Bayes factor assumes an implicit 

choice of prior, one which is called the “Unit 

Information Prior” (Masson 2011). The Unit 

Information Prior (UIP) is a data-dependent 

prior, (typically multivariate Normal) with 

mean at the MLE, and precision equal to the 

information provided by one observation. A 

different choice of prior will result in a 

different value for the Bayes factor. However, 

it has been previously shown through 

simulations that this difference is marginal, 

and the result of the formula tends to be fairly 

consistent with other choices of prior 

(Faulkenberry 2017). 

This paper illustrated an alternative 

Bayesian methodology by applying the 

Faulkenberry (2018) Bayes Factor to a 

balanced Two Way ANOVA with Random 

Effects under three (3) cases, namely: Case 1: 

the levels of the two factors are fixed; Case 2: 

the levels of the two factors are random; and 

Case 3: the levels of one factor (i.e. Factor A) 

are considered as fixed while the levels of the 

other factor (i.e. Factor B) are considered as 

random. 

 

Materials and Methods 

The two ways ANOVA model is given by: 

𝑦𝑖𝑗𝑘
= 𝜇 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗

+ 𝜀𝑖𝑗𝑘    {

 𝑖 = 1, 2, … ,𝑚
𝑗 = 1, 2, … , 𝑛
𝑘 = 1, 2, … , 𝑝

                (2) 

Where 

 𝑦𝑖𝑗𝑘  is the kth observation in the ith row and 

the jth column, 

𝜇 is the grand mean, 
𝛼𝑖  is the i

th effect of factor A, 
𝛽𝑗  is the j

th effect of factor B, 

(𝛼𝛽)𝑖𝑗  is the interaction effect of ith factor A 

and jth factor B, and, and  
𝜀𝑖𝑗𝑘 is error term associated with 𝑦𝑖𝑗  

(residual) effects.  
 

Considering a balanced variance 

components model indicated by Equation (2) 

above, the interests of Bayesians centre 

around assessing the random effects in order 

to ascertain whether it ought to be 

incorporated; this is comparable to testing the 

following null hypotheses: 

1. Is there variability in the effects of the 

various levels of factor A?   

2. Is there variability in the effects of the 

various levels of factor B? 

3.  Is there variability in the interaction 

effects between the various levels of 

Factors A and B? 

Symbolically written as: 

𝐻01  ∶   𝜎𝛼
2 = 0 𝑣𝑒𝑟𝑠𝑒𝑠 𝐻11:  𝜎𝛼

2  ≠  0      (3) 
𝐻02  ∶   𝜎𝛼

2 = 0 𝑣𝑒𝑟𝑠𝑒𝑠 𝐻12:  𝜎𝛽
2  ≠  0      (4) 

𝐻03  ∶   𝜎𝛼
2 = 0 𝑣𝑒𝑟𝑠𝑒𝑠 𝐻13:  𝜎𝛼𝛽

2  ≠  0      (5) 

When the model in Equation 2 includes 

random effect(s), the Expected Mean Squares 

(EMS) will most often differ from the same 

model having fixed effect(s). Consequently, 

this will affect the manner in which the F-

statistics are computed, its distribution and 

degrees of freedom. 

When the model in Equation 2 includes fixed 

and random effects, 

For the fixed factor A, 
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∑𝛼𝑖

𝑚

𝑖=1

= 0                          (6) 

For the random factor B, 

𝛽𝑗    ~   𝑖𝑖𝑑 𝑁(0, 𝜎𝛽
2) 

For the interaction effect, 

(𝛼𝛽)𝑖𝑗    ~   𝑖𝑖𝑑    𝑁 (   0,    
𝑚 − 1

𝑚
𝜎𝛼𝛽
2 )  

Subject to the restriction: 

{
 
 

 
 ∑ (𝛼𝛽)𝑖𝑗 

𝑚
𝑖=1 = 0

 

 𝐶𝑜𝑣 ((𝛼𝛽)𝑖𝑗 , (𝛼𝛽)𝑖𝐼𝑗 ) = −
1

𝑚
𝜎𝛼𝛽
2       ∀ 𝑖 ≠  𝑖𝐼

                                                                  (7)

    

And 

𝜀𝑖𝑗𝑘 ,

𝛽𝑗  and (𝛼𝛽)𝑖𝑗  are pairwise independent 

1. 𝐸(𝑦𝑖𝑗𝑘) = 𝜇 + 𝛼𝑖                                 (8) 

2. 𝑉𝑎𝑟(𝑦𝑖𝑗𝑘) = 𝜎
2 + 𝜎𝛽

2 +
𝑚−1

𝑚
𝜎𝛼𝛽
2      (9) 

 

BIC-Based Bayes Factors Proposed By 

Faulkenberry (2018) 

Based on work by Raftery (1995) and 

Wagenmakers (2007), Faulkenberry (2018) 

demonstrated a technique for estimating 

Bayes factors by means of the Bayesian 

Information Criterion (BIC).  

For a given model 𝐻𝑖 , the BIC is defined as, 

𝐵𝐼𝐶 (𝐻𝑖) = − 2 𝐿𝑜𝑔 𝐿𝑖 + 𝑘𝑖  𝐿𝑜𝑔 𝑧       (10) 
Where,  

𝑧 is the number of observations,  

𝑘𝑖 is the number of free parameters of model 

𝐻𝑖 ,  
𝐿𝑖 is the maximum likelihood for model 𝐻𝑖   

(i.e. 𝐿𝑖 = 𝑐 Pr (𝐷|�̂�, 𝐻𝑖)           (11) 

𝑐 is an arbitrary constant (Edwards 1992).  

 

Wagenmakers (2007) showed that in the case 

of two models, 𝐻0 and 𝐻1, the Bayes factor is 

defined as the ratio of the prior predictive 

probabilities; hence, the BIC approximation 

of the Bayes factor is given by: 

𝐵𝐹01 =
𝑃𝑟𝐵𝐼𝐶(𝐷|𝐻0)

𝑃𝑟𝐵𝐼𝐶(𝐷|𝐻1)

= 𝑒𝑥𝑝
∆𝐵𝐼𝐶10
2

         (12) 

Where  

∆𝐵𝐼𝐶10 = 𝐵𝐼𝐶(𝐻1) − 𝐵𝐼𝐶(𝐻0)              (13) 

∆𝐵𝐼𝐶10 = 𝑧 log (
𝑆𝑆𝐸1
𝑆𝑆𝐸0

)

+ (𝑘1 − 𝑘0) log 𝑧 (14) 
 

In the Equation (14) above, 𝑆𝑆𝐸0 and 𝑆𝑆𝐸1 

represent the sum of squares for the error 

terms in models 𝐻0 and 𝐻1, respectively.  

Both Wagenmakers (2007) and Masson 

(2011) gave examples of how to use this 

approximation to compute Bayes factors, 

assuming one is given information about, 

𝑆𝑆𝐸0 and 𝑆𝑆𝐸1, as is the case with most 

statistical software. However, if one is only 

given the ANOVA summary 

(e.g. , 𝐹(1, 23)  =  4.35), the computation is 

nontrivial. 

To begin, suppose we wish to examine an 

effect of some independent variable with 

associated 𝐹 − 𝑟𝑎𝑡𝑖𝑜 𝐹(𝑑𝑓1, 𝑑𝑓2), where 𝑑𝑓1 

represents the degrees of freedom associated 

with the manipulation, and 𝑑𝑓2 represents the 

degrees of freedom associated with the error 

term. Then, 

𝐹 =

𝑆𝑆1
𝑑𝑓1
𝑆𝑆2
𝑑𝑓2

                                (15) 

 

=     
𝑆𝑆1
𝑆𝑆2

×
𝑑𝑓1
𝑑𝑓2

                          (16) 

where 𝑆𝑆1 and 𝑆𝑆2 are the sum of squared 

errors associated with the manipulation and 

the error term, respectively. From Equation 

(14), we see that 

∆𝐵𝐼𝐶10 = 𝑧 log (
𝑆𝑆𝐸1
𝑆𝑆𝐸0

) + (𝑘1 − 𝑘0) log 𝑧  

= 𝑧 log (
𝑆𝑆2

𝑆𝑆1 + 𝑆𝑆2
) + (𝑘1 − 𝑘0) log 𝑧   (17) 

This equality holds because 𝑆𝑆𝐸1 represents 

the sum of squares that is not explained by 

𝐻1, which is simply 𝑆𝑆2 (the error term). 

Similarly, 𝑆𝑆𝐸0 is the sum of squares not 

explained by 𝐻0, which is the sum of 𝑆𝑆1 and 

𝑆𝑆2 (Wagenmaker 2007). Finally, in the 

context of comparing 𝐻0 and 𝐻1 in an 

ANOVA design, we have (𝑘1 − 𝑘0) = 𝑑𝑓1. 

Now, we can use algebra to re-express 

∆𝐵𝐼𝐶10 in terms of 𝐹: 

∆𝐵𝐼𝐶10 = 𝑧 log (
𝑆𝑆2

𝑆𝑆1 + 𝑆𝑆2
) + 𝑑𝑓1 log 𝑧                       (18) 
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= 𝑧 log(
1

𝑆𝑆1
𝑆𝑆2

+ 1
) + 𝑑𝑓1 log 𝑧                    

  = 𝑧 log(

𝑑𝑓2
𝑑𝑓1

𝑆𝑆1
𝑆𝑆2

×
𝑑𝑓2
𝑑𝑓1

+
𝑑𝑓2
𝑑𝑓1

)+ 𝑑𝑓1 log 𝑧   = 𝑧 log(

𝑑𝑓2
𝑑𝑓1

𝐹 +
𝑑𝑓2
𝑑𝑓1

)+ 𝑑𝑓1 log 𝑧                 

= 𝑧 log (
𝑑𝑓2

𝐹𝑑𝑓1 + 𝑑𝑓2
) + 𝑑𝑓1 log 𝑧                                                           (19) 

 

Substituting Equation (19) into Equation (12), 

we can compute: 

           𝐵𝐹01 = 𝑒𝑥𝑝
∆𝐵𝐼𝐶10
2

                                    

= 𝑒𝑥𝑝 [
1

2
 [𝑧𝐿𝑜𝑔𝑒 (

𝑑𝑓2
𝐹𝑑𝑓1 + 𝑑𝑓2

)

+ 𝑑𝑓1 𝐿𝑜𝑔𝑒 𝑧]]           

= 𝑒𝑥𝑝 [
𝑧

2
 𝐿𝑜𝑔𝑒 (

𝑑𝑓2
𝐹𝑑𝑓1 + 𝑑𝑓2

)

+
𝑑𝑓1
2
𝐿𝑜𝑔𝑒 𝑧]         

= (
𝑑𝑓2

𝐹𝑑𝑓1 + 𝑑𝑓2
)

𝑧
2

× 𝑧
𝑑𝑓1
2                          

= (
(𝑑𝑓2)

𝑧 × 𝑧𝑑𝑓1

(𝐹𝑑𝑓1 + 𝑑𝑓2)
𝑧
)

1
2

                              

= (
𝑧𝑑𝑓1

(
𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
𝑧)

1
2

                                

=
√

𝑧𝑑𝑓1

(
𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
𝑧                                     

=       √𝑧𝑑𝑓1 (
𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

          (20) 

The Bayes factor in Equation (20) compares 

favourably to Bayes factors computed using 

existing software solutions with raw data.  

Note that, 

         𝐵𝐹10  =   
1

𝐵𝐹01
                      (21) 

 The formula can be used flexibly to measure 

evidence for either the null hypothesis or its 

corresponding alternative hypothesis, subject 

to the researcher’s needs and interests. 

Conclusions on the Bayes factor values are 

drawn from the table (Table 1) provided by 

Raftery (1995). 

 

Table 1: Decision Table for interpretation of 

computed Bayes factor 

Bayes Factor 

(𝐵𝐹01) 

Evidence for the null 

hypothesis (𝐻0) 
1 − 3 Not worth more than just 

a mere mention 

3 –  10 Substantial 

10 − 100 Strong 

>   100 Decisive  

Source: Raftery (1995). 

 

The study was carried out in the following 

steps: 

Steps: 

1. For each case (1, 2 and 3), data was 

simulated for the sets m, n and p 

combination. 

2. The frequentist Two Way ANOVA table 

summary was computed using the 

simulated data for each case. 

3. The Faulkenberry (2018) BIC-based 

Bayes factor was computed using results 

in step 2 above. 

4. The results were discussed. 

 

 

Results and Discussion 

Data were simulated with the aid of the R 

statistical computing software (version 3.5.2) 

from a standard normal population with 

𝑚𝑒𝑎𝑛 =  0 and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  1 i.e. 𝑁(𝜇 =
 0, 𝜎 =  1). The simulation was carried out 

using random seed sets to enable easy 

replication. The random sample generated 

contains 125 random numbers clustered in 25 

cells (5 rows and 5 columns). Each cell 
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contains 5 random numbers. This design is 

similar to a setup of the regular two way 

ANOVA with five replicates per cell. Table 2 

was generated from the process illustrated 

above. As a matter of choice, we decided to 

use a two way design with 5 by 5 categories 

and 5 replicates per cell although other 

designs may be applicable provided the F-

statistics and degree of freedom can be 

obtained through the frequentist technique 

(Faulkenberry 2018, Egburonu 2018, 

Egburonu and Abidoye 2018a, Egburonu and 

Abidoye 2018b). The choice of this design is 

to replicate experimental conditions that are 

common across many applications in the 

biological and behavioural sciences. 

 

Table 2: Simulated data` 
 Factor B 

F
a

c
to

r 
A

 

 Level 1 Level 2 Level 3 Level 4 Level 5 

Level 1 
-0.90, 0.18, 1.59, 

-1.13, -0.08 

0.13, 0.71, -
0.24, 1.98, -

0.14 

0.42, 0.98, -0.39, -

1.04, 1.78 

-2.31, 0.88, 0.04, 

1.01, 0.43 

2.09, -1.20, 1.59, 

1.95, 0.00 

Level 2 
-2.45, 0.48, -0.60, 

0.79, 0.29 
0.74, 0.32, 1.08, 

-0.28, -0.78 
-0.60, -1.73, -0.90, 

-0.56, -0.25 
-0.38, -1.96, -

0.84, 1.90, 0.62 
1.99, -0.31, -0.09, -

0.18, -1.20 

Level 3 
-0.84, 2.07, -0.56, 

1.28, -1.05 

-1.97, -0.32, 

0.94, 1.14, 1.67 

-1.79, 2.03, -0.70, 

0.16, 0.51 

-0.82, -2.00, -

0.48, 0.08, -0.90 

-0.92, 0.33, -0.14, 

0.43, -0.05 

Level 4 
-0.91, 1.30, 0.77, 

1.05, -1.41 

1.00, -1.70, -

0.53, -1.37, -

2.21 

1.82, -0.65, -0.28,  
-0.39, 0.39 

1.60, 1.68, -1.18, 
-1.36,  -1.51 

-1.25,  1.96,  0.01,  -
0.84,  -0.86 

Level 5 

1.07,  0.26,  -

0.31,  -0.75,  -
0.35 

2.05, 0.94, 2.01, 
-0.42, 0.56 

-1.03,  -0.25,  0.47,  
1.36,  -0.78 

0.46,  1.23,  

1.15,  0.11,  -
1.04 

1.24, 0.14,  1.71,  -
0.43,  -0.86 

Source: Simulation results. 

 

From Table 2, 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 (𝑚) = 5 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 (𝑛) = 5 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙 (𝑝) = 5 

𝑆𝑆𝑇 =∑∑ ∑(𝑦𝑖𝑗𝑘 − �̅�.  .  .)
2

𝑝

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

=∑∑ ∑(𝑦𝑖𝑗𝑘 − �̅�.  .  .)
2

5

𝑘=1

5

𝑗=1

5

𝑖=1

= 158.0611 

𝑆𝑆𝐴 = 𝑛𝑝∑ (�̅�𝑖  .  . − �̅�.  .  .)
2

𝑚

𝑖=1
= 5(5)∑ (�̅�𝑖  .  . − �̅�.  .  .)

2
5

𝑖=1
= 7.4092 

𝑆𝑆𝐵 = 𝑚𝑝∑ (�̅�.  𝑗  . − �̅�.  .  .)
2

𝑛

𝑗=1
= 5(5)∑ (�̅�.  𝑗  . − �̅�.  .  .)

2
5

𝑗=1
= 2.0779 

𝑆𝑆𝐴𝐵 = 𝑝∑∑ (�̅�𝑖 𝑗  . − �̅�𝑖  .  . − �̅�.  𝑗  . + �̅�.  .  .)
𝑛

𝑗=1

𝑚

𝑖=1

= 5∑∑ (�̅�𝑖 𝑗  . − �̅�𝑖  .  . − �̅�.  𝑗  . + �̅�.  .  .)
5

𝑗=1

5

𝑖=1

= 14.5775 

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 − 𝑆𝑆𝐴𝐵 = 158.0611 − 7.4092 − 2.0779 − 14.5775 = 133.9965 

𝑀𝑆𝐴 =
𝑆𝑆𝐴

𝑚 − 1
= 1.8523 

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑛 − 1
= 0.5195 

𝑀𝑆𝐴𝐵 =
𝑆𝑆𝐵

(𝑚 − 1)(𝑛 − 1)
= 0.9111 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑚𝑛(𝑝 − 1)
= 1.3400 

 

 

 

Analysis of data 

Case 1: Levels of the Factor A and Levels 

of the Factor B are fixed 

In this subsection (Case 1), we carried out a 

two way ANOVA with levels of both factors 

considered as fixed. The F-statistics obtained 

from the procedure were applied to the 

Faulkenberry (2018) Bayes factor and the 

results discussed. 
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Hypothesis testing for Case 1: Levels of the 

Factor A and Levels of the Factor B are 

fixed 

The Faulkenberry (2018) Bayes factor is 

obtained using the F-statistics already 

computed in the Table 3: 

𝐻01  ∶   𝜎𝛼
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻11:  𝜎𝛼

2  
≠  0      (22) 

The Faulkenberry (2018) Bayes factor is 

given by: 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

   

= √1254 (
1.3823 × 4

100
+ 1)

− 125

= 540.725           
 

The Bayes factor 𝐵𝐹01 = 540.725, signifies 

that the data have a decisive evidence in 

favour of the stated null hypothesis of zero 

variation in the levels of factor A as indicated 

by Equation (22).  

To test the hypothesis below, 

𝐻02  ∶   𝜎𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻12:  𝜎𝛽

2  ≠  0     (23) 

 

The Faulkenberry (2018) Bayes factor is 

given by: 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

   

= √1254 (
0.3877 × 4

100
+ 1)

− 125

= 5972.2009           

The Bayes factor 𝐵𝐹01 = 5972.2009, 

signifies that the data have a decisive 

evidence in favour of the stated null 

hypothesis of zero variation in the levels of 

factor B indicated by Equation (23). To test 

the hypothesis below 

𝐻03  ∶   𝜎𝛼𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻13:  𝜎𝛼𝛽

2  

≠  0  (24) 
 

The Faulkenberry (2018) Bayes factor is 

given by: 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

   

= √12516 (
0.6799 × 16

100
+ 1)

− 125

= 9.3799 × 10 13           
 

The Bayes factor 𝐵𝐹01 = 9.3799 × 10
 13, 

signifies that the data have a decisive 

evidence in favour of the stated null 

hypothesis of zero variation in the interaction 

effects of the levels of factors A and B 

indicated by Equation (24).  

 

Table 3: ANOVA summary Table for Case 1  
Source of 

variation 

Degree of 

freedom (DF) 

Sum of squares 

(SS) 
Mean squares (MS) F-Ratio 

Factor A 5 − 1 = 4 𝑆𝑆𝐴 = 7.4092 𝑀𝑆𝐴 =
𝑆𝑆𝐴

𝑚 − 1
= 1.8523 

 

𝐹1 =
𝑀𝑆𝐴

𝑀𝑆𝐸
= 1.3823 

Factor B 5 − 1 = 4 𝑆𝑆𝐵 = 2.0779 𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑛 − 1
= 0.5195 𝐹2 =

𝑀𝑆𝐵

𝑀𝑆𝐸
= 0.3877 

Interaction 

AB 

(5 − 1)(5 −
1) = 16 

𝑆𝑆𝐴𝐵
= 14.5775 

𝑀𝑆𝐴𝐵 =
𝑆𝑆𝐴𝐵

(𝑚 − 1)(𝑛 − 1)
= 0.9111 

𝐹3 =
𝑀𝑆𝐴𝐵

𝑀𝑆𝐸
= 0.6799 

Error 
5(5)(5 − 1)
= 100 

𝑆𝑆𝐸
= 133.9965 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑚𝑛(𝑝 − 1)
= 1.3400 

 

Total 
5(5)(5) − 1
= 124 

𝑆𝑆𝑇
= 158.0611 
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Discussion for Case 1 (Levels of factors A 

and B are fixed) 

As summarized in Table 4, we can see that 

the entire hypothesis examined under Case 1, 

showed decisive evidences in favour of the 

null hypothesis of no variability in the effects 

of the levels of the factors as well as in their 

interactions. A side examination of a 

frequentist conclusion from the F-statistic 

table at a 5% level of significance, 𝐹4,16 =

3.01 and 𝐹16,100 = 1.75 indicates that the 

stated null hypothesis of zero treatment effect 

is not rejected. This shows that for a two way 

balanced ANOVA model with fixed effects, 

the Bayesian as well as the frequentist 

conclusions are not differing. Although, 

contrary to the frequentist’ procedure, the 

Bayes factor indexes the extent to which the 

observed data supports one hypothesis over 

another; this we can see in the computations 

of the respective  𝐵𝐹10 =
1

𝐵𝐹01
. In this 

instance,  

For hypothesis 𝐻01,  𝐵𝐹10 =
1

540.725
= 1.85 ×

10−3 indicating very negligible support of the 

data for the alternative hypothesis. 

For hypothesis 𝐻02,  𝐵𝐹10 =
1

5972.2009
=

1.67 × 10−4 indicating very negligible 

support of the data for the alternative 

hypothesis. 

For hypothesis 𝐻03, 𝐵𝐹10 =
1

9.3799×1013
=

1.07 × 10−14 indicating very negligible 

support of the data for the alternative 

hypothesis. 

The frequentist’ procedure is less informative 

with respect to how the data supports the 

alternative hypothesis. The Bayesian 

inference can be thought of as a data-driven 

process for updating our belief in a 

hypothesis. The Bayes factor allows us a 

relative plausibility of comparing the 

competing hypothesis. 

 

Table 4: Summary Table for Case 1 

Summary Table for Case 1 

Hypothesis 

F-

Statistic

s 

Faulkenberry 

(2018) Bayes 

factor (𝐵𝐹01) 

Bayes factor in support of 

the alternative hypothesis 

(𝐵𝐹10) 

𝐻01  ∶   𝜎𝛼
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻11:  𝜎𝛼

2  ≠  0 1.3823 540.725 1.85 × 10−3 

𝐻02  ∶   𝜎𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻12:  𝜎𝛽

2  ≠  0 0.3877 5972.2009 1.67 × 10−4 

𝐻03  ∶   𝜎𝛼𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻13:  𝜎𝛼𝛽

2  ≠  0 0.6799 9.3799 × 10 13 1.07 × 10−14 

 

Case 2: Levels of the Factor A and Levels 

of the Factor B are random. 

In this subsection (Case 2), we carried out 

a two way ANOVA with levels of both 

factors considered as random. The F-statistics 

obtained from the procedure were applied to 

the Faulkenberry (2018) Bayes factor and the 

results discussed. 

 

Hypothesis testing for Case 2: Levels of the 

Factor A and Levels of the Factor B are 

random 

To test the hypothesis of interest, we 

obtain the Faulkenberry (2018) Bayes factor 

for each of the hypothesis using the F-

statistics already computed in the Table 5: 

𝐻01  ∶   𝜎𝛼
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻11:  𝜎𝛼

2  ≠  0     (25) 
 

The Faulkenberry (2018) Bayes factor is 

given by: 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

   

= √1254 (
2.0330 × 4

16
+ 1)

− 125

= 1.0946 × 10−7           
The Bayes factor 𝐵𝐹01 = 1.0946 × 10

−7, 

signifies that the data has a very negligible 

evidence in favour of the stated null 

hypothesis of zero variations in the effects of 

the levels of factor A indicated by Equation 

(25). This implies that the data strongly 

favours the alternative hypothesis.  

 

 



Tanz. J. Sci. Vol. 47(5) 2021 

1735 

To test the hypothesis below, 

𝐻02  ∶   𝜎𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻12:  𝜎𝛽

2  ≠  0     (26) 

 

The Faulkenberry (2018) Bayes factor is 

given by: 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

   

= √1254 (
0.5702 × 4

16
+ 1)

− 125

= 3.7721           

The Bayes factor 𝐵𝐹01 = 3.7721, signifies 

that the data has a substantial (considerable) 

evidence in favour of the stated null 

hypothesis of zero variation in the effects of 

the levels of factor B indicated by Equation 

(26).  

 

Table 5: ANOVA Summary Table for Case 2 

Source of 

Variation 
DF SS MS F-Ratio 

Factor A 5 − 1 = 4 𝑆𝑆𝐴 = 7.4092 
𝑀𝑆𝐴 =

𝑆𝑆𝐴

𝑚 − 1
= 1.8523 

 

𝐹1 =
𝑀𝑆𝐴

𝑀𝑆𝐴𝐵
= 2.0330 

Factor B 5 − 1 = 4 𝑆𝑆𝐵 = 2.0779 
𝑀𝑆𝐵 =

𝑆𝑆𝐵

𝑛 − 1
= 0.5195 

𝐹2 =
𝑀𝑆𝐵

𝑀𝑆𝐴𝐵
= 0.5702 

Interactio

n AB 
(5 − 1)(5 − 1) = 16 

𝑆𝑆𝐴𝐵
= 14.5775 

𝑀𝑆𝐴𝐵

=
𝑆𝑆𝐴𝐵

(𝑚 − 1)(𝑛 − 1)
= 0.9111 

𝐹3 =
𝑀𝑆𝐴𝐵

𝑀𝑆𝐸
= 0.6799 

Error 5(5)(5 − 1) = 100 
𝑆𝑆𝐸
= 133.9965 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑚𝑛(𝑝 − 1)
= 1.3400 

 

Total 5(5)(5) − 1 = 124 
𝑆𝑆𝑇
= 158.0611 

  

 

To test the hypothesis below 

𝐻03  ∶   𝜎𝛼𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻13:  𝜎𝛼𝛽

2  

≠  0  (27) 
The Faulkenberry (2018) Bayes factor is 

given by: 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

   

= √12516 (
0.6799 × 16

100
+ 1)

− 125

= 9.3799 × 10 13           
 

The Bayes factor 𝐵𝐹01 = 9.3799 × 10
 13, 

signifies that the data have a very decisive 

evidence in favour of the null hypothesis of 

zero variation in the interaction effects of 

various levels of the factors A and B indicated 

by Equation (27). 

 

Discussion for Case 2 (Levels of factors A 

and B are random) 

In testing the hypothesis 𝐻01:  𝜎𝛼
2 =

0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻11:  𝜎𝛼
2  ≠  0 in Equation (25), we 

realized (as summarized in Table 6) that the 

data showed very negligible (not worthy of 

mentioning) evidence in favour of the stated 

null hypothesis of no variation in the effects 

of the levels of the factor A. In fact, its 

inverse, 𝐵𝐹10 =
1

1.0946×10−7,
= 9.1358 × 106 

shows that the data have a very decisive 

evidence in favour of the alternative 

hypothesis that states that “there are 

variability in the effects of the levels of factor 

A”. The test for the treatment effects in the 

levels of factor B and the interaction effects 

of the various levels of factor A and factor B 

indicated no variability. A side examination 

of a frequentist conclusion from the F-statistic 
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table at a 5% level of significance, 𝐹4,16 =

3.01 and 𝐹16,100 = 1.75 indicated that a 

stated null hypothesis of zero treatment 

effects is not rejected. However, we have seen 

from the Bayesian perspective that data 

showed very decisive evidence in favour of 

variability in effects of the levels of factor A. 

hence, a slightly differing opinion from that 

of the frequentist.  

 

Case 3: The levels of one factor (i.e. 

Factor A) are considered as fixed, while the 

levels of the other factor (i.e. Factor B) are 

considered as random.  (i.e. typical of a 

mixed effect model)  

In this subsection (Case 3), we carried out 

a two way ANOVA with levels of factor A 

considered as fixed, while the levels of factor 

B are considered as random. The F-statistics 

obtained from the procedure were applied to 

the Faulkenberry (2018) Bayes factor and the 

results discussed. 

 

Table 6: Summary Table for Case 2 

Hypothesis 
F-

Statistics 

Faulkenberry 

(2018) Bayes 

Factor (𝐵𝐹01) 

Bayes factor in support of 

the alternative hypothesis 

(𝐵𝐹10) 

𝐻01  ∶   𝜎𝛼
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻11:  𝜎𝛼

2  ≠  0 2.0330 1.0946 × 10−7 9.1358 × 106 

𝐻02  ∶   𝜎𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻12:  𝜎𝛽

2  ≠  0 0.5702 3.7721 0.2651 

𝐻03  ∶   𝜎𝛼𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻13:  𝜎𝛼𝛽

2  ≠  0 0.6799 9.3799 × 10 13 1.07 × 10−14 

 

Table 7: ANOVA Summary Table for Case 3 
Source of 

variation 
DF SS MS F-Ratio 

Factor A 5 − 1 = 4 𝑆𝑆𝐴 = 7.4092 𝑀𝑆𝐴 =
𝑆𝑆𝐴

𝑚 − 1
= 1.8523 

 

𝐹1 =
𝑀𝑆𝐴

𝑀𝑆𝐴𝐵
= 2.0330 

Factor B 5 − 1 = 4 𝑆𝑆𝐵 = 2.0779 𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑛 − 1
= 0.5195 𝐹2 =

𝑀𝑆𝐵

𝑀𝑆𝐸
= 0.3877 

Interaction 

AB 

(5 − 1)(5 − 1) =
16 

𝑆𝑆𝐴𝐵
= 14.5775 

𝑀𝑆𝐴𝐵 =
𝑆𝑆𝐴𝐵

(𝑚 − 1)(𝑛 − 1)
= 0.9111 

𝐹3 =
𝑀𝑆𝐴𝐵

𝑀𝑆𝐸
= 0.6799 

Error 
5(5)(5 − 1)
= 100 

𝑆𝑆𝐸
= 133.9965 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑚𝑛(𝑝 − 1)
= 1.3400 

 

Total 
5(5)(5) − 1
= 124 

𝑆𝑆𝑇 = 158.0611   

 

Hypothesis testing for Case 3: Levels of 

Factor A are fixed while Levels of Factor B 

are random 

To test the hypothesis of interest, we 

obtain the Faulkenberry (2018) Bayes factor 

for each of the hypothesis using the F-

statistics already computed in the Table 7: 

𝐻01  ∶   𝜎𝛼
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻11:  𝜎𝛼

2  
≠  0       (28) 

The Faulkenberry (2018) Bayes factor is 

given by: 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

   

= √1254 (
2.0330 × 4

16
+ 1)

− 125

= 1.0946 × 10−7           
 

The Bayes factor 𝐵𝐹01 = 1.0946 × 10
−7, 

signifies that the data have a very negligible 

evidence in favour of the above stated null 

hypothesis of zero variation in the effects of 

the levels of factor A indicated by Equation 

(28). This implies that the data very 



Tanz. J. Sci. Vol. 47(5) 2021 

1737 

decisively favoured the alternative 

hypothesis.  

 

To test the hypothesis below, 

𝐻02  ∶   𝜎𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻12:  𝜎𝛽

2  

≠  0      (29) 
The Faulkenberry (2018) Bayes factor is 

given by: 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

   

= √1254 (
0.3877 × 4

100
+ 1)

− 125

= 5972.2009           
 

The Bayes factor 𝐵𝐹01 = 5972.2009, 

signifies that the data have a very decisive 

evidence in favour of the above stated null 

hypothesis of zero variation in the effects of 

the levels of factor B indicated by Equation 

(29).  

To test the hypothesis below 

𝐻03  ∶   𝜎𝛼𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻13:  𝜎𝛼𝛽

2  

≠  0   (30) 
The Faulkenberry (2018) Bayes factor is 

given by: 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

   

= √12516 (
0.6799 × 16

100
+ 1)

− 125

= 9.3799 × 10 13           
 

The Bayes factor 𝐵𝐹01 = 9.3799 × 10
 13, 

signifies that the data have very decisive 

evidence in favour of the null hypothesis of 

zero variation in the interaction effects of 

levels of factors A and B indicated by 

Equation (30).  

 

Discussion for Case 3 (Levels of Factor A 

are fixed, while Levels of Factor B are 

random) 

In testing the hypothesis 𝐻01  ∶   𝜎𝛼
2 =

0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻11:  𝜎𝛼
2  ≠  0, indicated by 

Equation (28), we realized that the data 

showed a very negligible evidence in favour 

of the stated null hypothesis of zero variation 

in the effects of levels of factor A. In fact, its 

inverse, 𝐵𝐹10 =
1

1.0946×10−7,
= 9.1358 × 106 

shows that the data have very decisive 

evidence in favour of the alternative 

hypothesis that states that “there are 

variability in the effects of the levels of the 

factor A”. From Table 8, we can see also that 

the test for the treatment effects in levels of 

factor B indicated no effects variability so 

also the interaction effects AB. From the 

frequentist perspective, the F-statistic table at 

a 5% level of significance, 𝐹4,16 = 3.01 and 

𝐹16,100 = 1.75 indicates that the null 

hypothesis of zero treatment effect is not 

rejected in all the three hypothesis tested. But 

we have seen from the Bayesian perspective 

that data showed a strong favour of variability 

in the effects of the levels in factor A; hence, 

a slightly differing opinion from that of the 

frequentist. 

 

Real data illustration 

In the Appendix below, real data on the 

efficiencies of Transfer Machines collected 

over a three weeks period was used to 

demonstrate the methodology discussed in 

this paper. The results obtained corroborated 

with that discovered using the simulated data 

in all the three cases. 

 

Table 8: Summary Table for Case 3 

Summary Table for Case 3 

Hypothesis 
F-

Statistics 

Faulkenberry 

(2018) Bayes 

factor (𝐵𝐹01) 

Bayes factor in support of 

the alternative hypothesis 

(𝐵𝐹10) 

𝐻01  ∶   𝜎𝛼
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻11:  𝜎𝛼

2  ≠  0 2.0330 1.0946 × 10−7 9.1358 × 106 

𝐻02  ∶   𝜎𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻12:  𝜎𝛽

2  ≠  0 0.3877 5972.2009 1.6744 × 10−4 

𝐻03  ∶   𝜎𝛼𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻13:  𝜎𝛼𝛽

2  ≠  0 0.6799 9.3799 × 10 13 1.07 × 10−14 
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Conclusion 

In all the three cases studied in this paper 

(using both simulated and real data), it is 

evident that for the two way balanced 

ANOVA model, when the levels of the two 

factors are considered fixed, the Bayesian 

conclusions about variations in the effects of 

the levels of the factors is in line with that of 

the frequentist. But when the same data set 

was considered to be wholly or partly as a 

random sample from a population, the 

Bayesian conclusion differed slightly from 

that of a frequentist. Of a certainty we 

recommend strongly that when carrying out 

hypothesis testing, the frequentist as well as 

the Bayesian procedures should be employed 

because the Bayesian technique provides the 

researcher information on how the data 

supports the competing hypothesis. This 

information can guide the researcher in taking 

decisions. If one has raw data available, the 

options for computing Bayes factors are 

plentiful. But the Bayes factors espoused in 

this paper work even without having seen the 

raw data, which is helpful when judging 

evidential value of published results where 

contrasts are not pre-specified. It is a 

recommended methodology for a first 

introduction to Bayes factors, as it is a 

relatively simple calculation that comes 

directly from summary statistics. The Bayes 

factor demonstrated in this paper, although 

very convenient for computations, provides 

very large values for the Bayes factors in 

some instances. Further studies could focus 

on transformations of the Bayes factor so that 

it will offer smaller values. 
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APPENDIX 

 

Real-data application   

The data below were collected on the efficiencies of transfer machines over a three week 

period. 

 

Table AP 1: Efficiencies of transfer machines over a three week period  

  Transfer machines 

W
ee

k
s  Transfer 1 Transfer 2 Transfer 3 

1 46, 37, 46 35, 40, 36 52, 50, 43 

2 46, 35, 47 63, 64, 60 52, 62, 56 

3 60, 47, 58 84, 68, 78 58, 47, 54 

 

From Table AP 1 above, 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 (𝑚) = 3 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 (𝑛) = 3 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙 (𝑝) = 3 

𝑆𝑆𝑇 =∑∑ ∑(𝑦𝑖𝑗𝑘 − �̅�.  .  .)
2

𝑝

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

=∑∑ ∑(𝑦𝑖𝑗𝑘 − �̅�.  .  .)
2

3

𝑘=1

3

𝑗=1

3

𝑖=1

= 3997.19 

𝑆𝑆𝐴 = 𝑛𝑝∑ (�̅�𝑖  .  . − �̅�.  .  .)
2

𝑚

𝑖=1
= 3(3)∑ (�̅�𝑖  .  . − �̅�.  .  .)

2
3

𝑖=1
             = 1604.52 

𝑆𝑆𝐵 = 𝑚𝑝∑ (�̅�.  𝑗  . − �̅�.  .  .)
2

𝑛

𝑗=1
= 3(3)∑ (�̅�.  𝑗  . − �̅�.  .  .)

23

𝑗=1
         = 624.30 

𝑆𝑆𝐴𝐵 = 𝑝∑∑ (�̅�𝑖 𝑗  . − �̅�𝑖  .  . − �̅�.  𝑗  . + �̅�.  .  .)
𝑛

𝑗=1

𝑚

𝑖=1

= 3∑∑ (�̅�𝑖 𝑗  . − �̅�𝑖  .  . − �̅�.  𝑗  . + �̅�.  .  .)
3

𝑗=1

3

𝑖=1

= 1217.04 

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 − 𝑆𝑆𝐴𝐵 = 551.33 

𝑀𝑆𝐴 =
𝑆𝑆𝐴

𝑚 − 1
= 802.6 

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑛 − 1
= 312.15 

𝑀𝑆𝐴𝐵 =
𝑆𝑆𝐵

(𝑚 − 1)(𝑛 − 1)
= 304.26 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑚𝑛(𝑝 − 1)
= 30.63 
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Analysis of Data 

 

Case 1: Levels of the two factors (i.e. Weeks and Transfer machines) are fixed 

Table AP 2: ANOVA summary Table for Case 1  

Source of 

variation 

Degree of 

freedom (DF) 

Sum of 

squares (SS) 
Mean squares (MS) F-Ratio 

F-

Critical 

Weeks 3 − 1 = 2 
𝑆𝑆𝐴
= 1604.52 

𝑀𝑆𝐴 =
𝑆𝑆𝐴

𝑚 − 1
= 802.26 

 

𝐹1 =
𝑀𝑆𝐴

𝑀𝑆𝐸
= 26.19 

3.56 

Transfer 

machines 
3 − 1 = 2 

𝑆𝑆𝐵
= 624.30 

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑛 − 1
= 312.15 

𝐹2 =
𝑀𝑆𝐵

𝑀𝑆𝐸
= 10.19 

3.56 

Interaction 
(3−1)(3 −
1) = 4 

𝑆𝑆𝐴𝐵
= 1217.04 

𝑀𝑆𝐴𝐵 =
𝑆𝑆𝐴𝐵

(𝑚 − 1)(𝑛 − 1)
= 304.26 

𝐹3 =
𝑀𝑆𝐴𝐵

𝑀𝑆𝐸
= 9.93 

2.93 

Error 
3(3)(3 − 1)
= 18 

𝑆𝑆𝐸
= 551.33 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑚𝑛(𝑝 − 1)
= 30.63 

  

Total 
3(3)(3) − 1
= 26 

𝑆𝑆𝑇
= 3997.19 

   

 

Hypothesis testing for Case 1: Levels of the two factors are fixed 

The Faulkenberry (2018) Bayes factor for the three hypotheses is computed as follows using the 

F-Ratio already computed in the Table AP 2 above: 

𝐻01  ∶   𝜎𝛼
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻11:  𝜎𝛼

2  ≠  0                               (1) 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1

𝑑𝑓2
+ 1)

− 𝑧

   = √272 (
26.19 × 2

18
+ 1)

− 27

= 2.74 × 10−7 

𝐻02  ∶   𝜎𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻12:  𝜎𝛽

2  ≠  0                                                                         (2) 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1

𝑑𝑓2
+ 1)

− 𝑧

   = √272 (
10.19 × 2

18
+ 1)

− 27

= 9.82 × 10−4 

𝐻03  ∶   𝜎𝛼𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻13:  𝜎𝛼𝛽

2  ≠  0                                  (3) 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1

𝑑𝑓2
+ 1)

− 𝑧

   = √274 (
9.93 × 4

18
+ 1)

− 27

= 1.07 × 10−4 

 

Discussion for Case 1 (Levels of the two 

factors are fixed) 

In all the three hypotheses examined under 

Case 1, there are very negligible evidences 

that the observed data favoured the stated null 

hypotheses. A side examination of a 

frequentist conclusion from the F-statistic 

table at a 5% level of significance indicated 

that the stated null hypothesis of zero 

treatment effect is not accepted. This shows 

that for a two way balanced ANOVA model 

with fixed effects, the Bayesian as well as the 

frequentist conclusions are not differing. This 

corroborates the conclusion from our earlier 

simulation illustrations above. 
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Case 2: Levels of the two factors are random 

Table AP 3: ANOVA summary Table for Case 2 

Source of 

variation 

Degree of 

freedom (DF) 

Sum of 

squares (SS) 
Mean squares (MS) F-Ratio 

F-

Critical 

Weeks 3 − 1 = 2 
𝑆𝑆𝐴
= 1604.52 

𝑀𝑆𝐴 =
𝑆𝑆𝐴

𝑚 − 1
= 802.26 

 

𝐹1 =
𝑀𝑆𝐴

𝑀𝑆𝐴𝐵
= 2.64 

6.94 

Transfer 

Machines 
3 − 1 = 2 

𝑆𝑆𝐵
= 624.30 

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑛 − 1
= 312.15 

𝐹2 =
𝑀𝑆𝐵

𝑀𝑆𝐴𝐵
= 1.03 

6.94 

Interaction 
(3−1)(3 −
1) = 4 

𝑆𝑆𝐴𝐵
= 1217.04 

𝑀𝑆𝐴𝐵

=
𝑆𝑆𝐴𝐵

(𝑚 − 1)(𝑛 − 1)
= 304.26 

𝐹3 =
𝑀𝑆𝐴𝐵

𝑀𝑆𝐸
= 9.93 

2.93 

Error 
3(3)(3 − 1)
= 18 

𝑆𝑆𝐸
= 551.33 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑚𝑛(𝑝 − 1)
= 30.63 

  

Total 
3(3)(3) − 1
= 26 

𝑆𝑆𝑇
= 3997.19 

   

 

Hypothesis testing for Case 2: Levels of the two factors are random 

The Faulkenberry (2018) Bayes factor for the three hypotheses is computed as follows using the 

F-Ratio already computed in the Table AP 3 above: 

𝐻01  ∶   𝜎𝛼
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻11:  𝜎𝛼

2  ≠  0                           (4) 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1

𝑑𝑓2
+ 1)

− 𝑧

   = √272 (
2.64 × 2

4
+ 1)

− 27

= 3.14 × 10−4 

𝐻02  ∶   𝜎𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻12:  𝜎𝛽

2  ≠  0                              (5) 

𝐵𝐹01 = √𝑧𝑑𝑓1 (
𝐹𝑑𝑓1

𝑑𝑓2
+ 1)

− 𝑧

   = √272 (
1.03 × 2

4
+ 1)

− 27

= 0.10 

𝐻03  ∶   𝜎𝛼𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻13:  𝜎𝛼𝛽

2  ≠  0                   (6) 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1

𝑑𝑓2
+ 1)

− 𝑧

   = √274 (
9.93 × 4

18
+ 1)

− 27

= 1.07 × 10−4 

 

Discussion for Case 2 (Levels of the two 

factors are random) 

In all the three hypotheses examined under 

Case 2, there are very negligible evidences 

from the Bayes factors computed that the 

observed data favoured the null hypothesis. A 

side examination of a frequentist conclusion 

from the F-statistics in Table AP 3, we could 

see difference in their conclusions. The 

frequentist did not reject the stated null 

hypothesis of zero variability in the effects of 

the levels of the Weeks and the Transfer 

machines. It only rejected that of the 

interaction effects; hence a differing 

conclusion from that of the Bayesian. 
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Case 3: Levels of the Weeks are fixed, while levels of the Machine transfers are random 

(i.e. typical of a mixed effect model)  

Table AP 4: ANOVA summary Table for Case 3 
Source of 

variation 

Degree of freedom 

(DF) 

Sum of squares 

(SS) 
Mean squares (MS) F-Ratio 

F-

Critical 

Weeks 3 − 1 = 2 𝑆𝑆𝐴 = 1604.52 𝑀𝑆𝐴 =
𝑆𝑆𝐴

𝑚 − 1
= 802.26 

 

𝐹1 = 
𝑀𝑆𝐴

𝑀𝑆𝐴𝐵
= 2.64 

6.94 

Transfer 

machines 
3 − 1 = 2 𝑆𝑆𝐵 = 624.30 𝑀𝑆𝐵 =

𝑆𝑆𝐵

𝑛 − 1
= 312.15 

𝐹2 = 
𝑀𝑆𝐵

𝑀𝑆𝐸
= 10.19 

3.56 

Interaction (3−1)(3 − 1) = 4 𝑆𝑆𝐴𝐵 = 1217.04 
𝑀𝑆𝐴𝐵 =

𝑆𝑆𝐴𝐵

(𝑚 − 1)(𝑛 − 1)
= 304.26 

𝐹3 = 
𝑀𝑆𝐴𝐵

𝑀𝑆𝐸
= 9.93 

2.93 

Error 3(3)(3 − 1) = 18 𝑆𝑆𝐸 = 551.33 
𝑀𝑆𝐸 =

𝑆𝑆𝐸

𝑚𝑛(𝑝 − 1)
= 30.63 

  

Total 3(3)(3) − 1 = 26 𝑆𝑆𝑇 = 3997.19    

 

Hypothesis testing for Case 3 (Levels of weeks are fixed while levels of machine transfers 

are random) 

The Faulkenberry (2018) Bayes factor for the three hypotheses is computed as follows using the 

F-Ratio already computed in the Table AP 4: 
𝐻01  ∶   𝜎𝛼

2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻11:  𝜎𝛼
2  ≠  0                  (7) 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

   = √272 (
2.64 × 2

4
+ 1)

− 27

= 3.14 × 10−4 

𝐻02  ∶   𝜎𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻12:  𝜎𝛽

2  ≠  0                     (8) 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

   = √272 (
10.19 × 2

18
+ 1)

− 27

= 9.82 × 10−4 

𝐻03  ∶   𝜎𝛼𝛽
2 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻13:  𝜎𝛼𝛽

2  ≠  0                  (9) 

𝐵𝐹01 = √𝑧
𝑑𝑓1 (

𝐹𝑑𝑓1
𝑑𝑓2

+ 1)
− 𝑧

   = √274 (
9.93 × 4

18
+ 1)

− 27

= 1.07 × 10−4 

 

Discussion for Case 3 (Levels of the Weeks 

are fixed, while levels of the Machine 

Transfers are random) 
In all the three hypotheses examined under 

Case 3, there are very negligible evidences 

from the Bayes factors computed that the 

observed data favoured the stated null 

hypothesis. A side examination of a 

frequentist conclusion from the F-statistics in 

Table AP 4 indicates that there is a differing 

conclusion in that only the null hypothesis of 

zero variability in the effects of the weeks is 

not rejected. 
 

 

Summary of Discussions (Real data 

application) 

In all the 3 cases studied using real data, it is 

evident that for the two way balanced 

ANOVA model, when levels of the two 

factors are fixed, the Bayesian conclusions 

about variations in effects of levels of the 

factors are in line with that of the frequentist. 

But when the same data set was considered to 

be wholly or partly as a random sample from 

a population, the Bayesian conclusion 

differed slightly from that of the frequentist. 

This corroborates our earlier deductions from 

the use of simulated data as has been 

elaborately expressed in this paper.  

 


