
 

Tanzania Journal of Science 48(1): 99-108, 2022 

 ISSN 0856-1761, e-ISSN 2507-7961 

© College of Natural and Applied Sciences, University of Dar es Salaam, 2022 

 

99 

          http://tjs.udsm.ac.tz/index.php/tjs                 www.ajol.info/index.php/tjs/ 
 

Suitability of Flood Hazard Assessment Methods for Tanzania: A Case of 

Little Ruaha and Upper Ngerengere Catchment 
 

Kashimbi J. Kihara
1, 3*

, Patrick Valimba
2
 and Joel Nobert

2, 3
 

1
Department of Geography and Environmental Studies, University of Dodoma, Tanzania 
2
Department of Water Resources Engineering, University of Dar es Salaam, Tanzania 

3
Institute of Resources Assessment, University of Dar es Salaam, Tanzania 

*Corresponding author: email unikashy@yahoo.com, unikashy3@gmail.com 

Received 28 Aug 2021, Revised 18 Mar 2022, Accepted 20 Mar 2022, Published Mar 2022 

DOI: https://dx.doi.org/10.4314/tjs.v48i1.9 
 

Abstract 
Understanding the applicability of flood quantile estimation methods in flood hazard 

assessment is fundamental for planning, prevention, and management of flood risks. Therefore, 

this study evaluates and compares three hydrological methods, namely Hydrologiska Byråns 

Vattenbalansavdelning (HBV), Soil Conservation Service-Curve Number (SCS-CN), and 

regional regression equation (RRE), to estimate flood quantiles embedded in the existing flood 

damage assessment framework by applying them to two different river catchments, Little 

Ruaha (LR) and Upper Ngerengere (UN), Tanzania. The evaluation of method performance 

was carried out using three standard statistical measures for data from 1954 to 2010 and the 

1971–1988 period in LR and UN catchments (LRC and UNC). The findings indicated that no 

single approach could fit all catchments and return periods for these case studies. Overall 

performance indicated that the RRE method provides more accurate and consistent quantile 

estimates than other approaches. These findings indicate that spatial scale, model structure, 

parameters, and hydro-climatic data condition are the most important elements influencing the 

suitability of the supplied methods for flood risk assessments, which serve as the foundation 

for developing an improved flood damage assessment framework. 

 

Keywords: Flood Quantiles; Estimate Methods; Flood Risk Management; Little Ruaha; 

Ngerengere 

 

Introduction 

Riverine floods have posed persistent 

risks to people who live in low-lying areas 

and floodplains (Valimba and Mahé 2020). 

Floods of different magnitudes have 

repeatedly occurred in various flood prone 

areas as well as the usually none flooding 

areas. Typical overflows during flooding 

events have characterized the floodplains 

although instream (within the channel) 

flooding has been observed in highland and 

lowland rivers. Historical overflows and 

instream flooding have caused a number of 

fatalities, damages to properties and 

infrastructures where they had occurred, 

mainly in floodplains. Such occurrences in 

highland and lowland areas indicated 

imminent risks of humans and ecosystems to 

impacts of flooding in different landscapes. 

As such, the management of flood risks and 

associated damages is vital to protect people's 

lives and properties, and infrastructures. 

Assessment of flood risks for managing 

flood damage has traditionally involved the 

use of flood risk assessment frameworks 

consisting of flood hazard and vulnerability 

assessments. Flood hazard assessment 

quantifies flood magnitudes (flood quantiles) 

and their spatial spreads (inundation 

mapping) with different return periods useful 

https://dx.doi.org/10.4314/tjs.v48i1.8
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for planning, prevention, and management of 

flood risks (Winter et al. 2019). Linking flood 

magnitudes (Q) to their return periods (T) has 

used flood frequency analysis (FFA) methods 

on sequences of indices of flood flows 

(annual maximum, peaks over threshold) 

extracted from long historical observed 

streamflow records to produce flood quantiles 

(QT) (Kidson and Richards 2005). The 

challenge of the lack of long streamflow 

records has necessitated the reconstruction of 

long records by i) hydrological models 

relating river discharges to climatic (and land 

characteristics) inputs, or ii) estimation of 

flood quantiles from rainfall quantiles using 

long rainfall records. 

Various flood quantile estimation 

methods are embedded in different flood risk 

assessment frameworks. Each framework, 

however, uses a specific flood quantile 

estimation method. The widely used methods 

in flood risk assessment frameworks are the 

rational method used in the SUFRI 

framework (Bueno et al. 2011), HBV 

rainfall-runoff model and FFA in Damage 

Scanner framework (Klijn  2009), regional 

regression equations in HAZUS-MH 

framework (FEMA 2009), curve number 

method in Fragility curves framework (de 

Risi et al. 2013) and integrated hydrological 

and hydraulic modelling approach in KKU-

SJNK framework (Kobayashi et al. 2016). 

The performance of different flood quantile 

estimation methods depends on spatial-

temporal variations of climate and catchment 

characteristics (i.e. rainfall, 

evapotranspiration, soils, land surface cover, 

geology, surface storages, etc) (Baroni et al. 

2019, Iacobellis et al. 2013, Siderius et al. 

2018).  

The availability of long and reliable 

streamflow or climate data affects selection 

among existing flood quantile estimation 

methods in such a way that FFA is used when 

long, continuous streamflow records are 

available. FFA/hydrological modelling (for 

record extension) is applicable for short or 

long-gapped streamflow records, while 

rainfall quantiles extracted from intensity-

duration-frequency (IDF) curves are used in 

cases with missing streamflow records. The 

use of specific flood quantile estimation 

methods embedded in the existing flood risk 

assessment framework for highly variable 

Tanzanian climate and physiography might 

result in under- or over-estimation of flood 

magnitudes leading to under- or over-

estimates of flood damages. This study, 

therefore, aimed at testing the suitability of 

the embedded HBV model/FFA, Curve 

number (CN) method and Regional 

Regression Equation (RRE) for estimating 

flood quantiles in gauged medium-sized 

Little Ruaha catchment and small Upper 

Ngerengere catchment. 

 

Materials and Methods 

Description of study catchments 

Since the need is to assess the suitability 

of the three methods (HBV model/FFA, 

curve number SCS-CN and Regional 

Regression Equation-RRE) against FFA on 

observed streamflow, the selection of study 

catchments considered the availability of 

long, continuous daily river discharges. 

Additionally, the selected catchments are 

small and moderate sizes, located in different 

physiographic conditions, and have different 

flow regimes. 

 

Upper Ngerengere catchment 

The small mountain upper Ngerengere 

sub-catchment (18.33 km
2
) is part of the 

Ngerengere River catchment in the 

Wami/Ruvu Basin and is located between 

latitudes 6°54 and 6°58 South and longitudes 

37°36ʹ0 and 37°39ʹEast (Figure 1). The sub-

catchment has a rugged topography, with 

elevations ranging from 2,260 m at the 

Uluguru Mountains' summit to 600 m at 

Konga's outlet. The catchment is drained by 

River Ngerengere as a confluent river of its 

Kinungwe and Lumambwe tributaries with its 

headwaters in the north-western part of the 

Uluguru Mountains. Such an altitudinal drop 

corresponds to an average river slope of 0.4 

m/m making it a steep sloping river. The 

climate within the catchment is characterised 

by a bimodal rainfall regime whereby the 

early short rains (vuli) occur in November-

January and long rains (masika) are received 

in March-May. The average annual rainfall 
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amounts range between 1,000 mm and 2,300 

mm. The mean annual temperature is 25 °C, 

while the maximum daily temperature can 

reach 34–36 °C in December-February, and 

the minimum daily temperatures can drop to 

11 °C. Acrisols soil types dominate the area 

with land use cover of forest, cropland and 

bushland. The rural landscape is dominant 

with small rural centres at Konga and Mondo. 

 

 

 
Figure 1: Overview map of Upper Ngerengere and Little Ruaha study catchments including 

available precipitation, temperature and discharge stations. 

 

Little Ruaha catchment 

The Little Ruaha catchment is a medium-

sized (area: 5,193 km
2
) upstream tributary of 

the Great Ruaha River (GRR) within the 

Rufiji River Basin. It lies within longitudes 

35°2' and 35°36'East and latitudes 7°11' and 

8°36'South (Figure 1). The large catchment is 

sub-divided into two study sub-catchments 

with outlets at Mawande (entire catchment 

area: 5,193 km
2
). The area's topography 

varies from the flat area with an altitude of 

approximately 650 m to high mountainous 

ranges above 2,300 m. The river originates 

from Poroto and Kipengere Mountains in the 

southern highlands at an elevation of 3000 m. 

The catchment is drained by the little Ruaha 

River as a principal tributary with its 

headquarter on the western sides of southern 

highlands. As a result, the altitude decrease 

corresponds to an average river slope of 

0.004 m/m. The river flows vary 

correspondingly with the rainy season. The 

rainfall regime is mainly unimodal with the 

rainy season that extends between late 

November/early December and late 

April/Early May. Mean annual rainfall varies 

from 500 mm in lowlands to 700 mm in the 

highlands, while mean annual temperature 

ranges from 18 °C at higher altitudes to 28 °C 

in the lowland. The dominant land cover in 

the sub-catchment is cultivated land (~60%), 

the built-up area is less than 1%, while the 

remaining area comprises savannah, forests, 

grasslands and shrubs. Cambisols, fluvisols, 

leptosols, acrisols, lixisols, nitisols, and 

solonetz are among the soil types found 

within the catchment. 
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Materials 

Discharge data 

Records of observed daily discharges at 

the outlet of the Little Ruaha catchment 

(1KA31) and for the Upper Ngerengere 

catchment (1HA9A) were selected for this 

study. FFA requires long, most continuous 

discharge data available for 32-42 years 

within the 1952-1994 period at the selected 

catchments (Table 1). Available discharge 

data indicates a preference occurrence of 

annual maximum daily discharges in March 

and April. Consequently, annual maximum 

flow series were extracted for all years with 

continuous data in March and May or 

otherwise, the value was considered missing. 

 

 

Table 1 Available discharge, rainfall and temperature data in study catchments 

Catchment Discharge Catchment rain Temperature 

1HA9A 
25/3/1954–

31/12/1988 
1/1/1966–31/12/2009 1/1/1971–31/12/2016 

1KA31 1/1/1957–31/3/2010 4/1/1950–31/10/2010 1/1/2009–28/2/2020 

 

Rainfall and evapotranspiration data 

HBV modelling requires concurrent 

availability of daily discharge, average 

temperature and evapotranspiration (also 

represented by long-term available monthly 

values). Rainfall data were available at 2 and 

10 rain gauges in UNC and LRC, 

respectively. However, with different data 

availability periods and lengths within the 

1950–2007 grand period, were used to 

construct catchment rainfall series in the 

1950–2010 (LRC) and 1966–2009 (UNC) 

periods (Table 1) by the arithmetic mean 

method. Maximum daily rainfall quantiles 

were obtained by frequency analysis similar 

to FFA using EasyFit software. The rainfall 

quantiles were obtained for each record and 

for the catchment series. The low catchment 

rainfall quantiles were corrected by a factor 

computed as the ratio between interstation 

average quantiles and catchment quantiles. 

Daily minimum and maximum 

temperature records collected span 1 January 

2009–28 February 2020 period at Iringa Met 

station (LRC) and 1 January 1971–31 

December 2016 at Morogoro Met (UNC) 

(Table 1). Since these records do not extend 

in the earlier periods, they were extended to 1 

January 1957 (LRC) and 1 January 1966 

(UNC) by the Fourier method (e.g. Iwok 

2016). Daily evapotranspiration data were not 

available and were computed from daily 

temperatures by the Hargreave-Samani model 

(Samani 2000). 

 

Land use/cover data 

The land use/cover data for Little Ruaha 

and Upper Ngerengere catchments were 

derived from Africa Land Cover 

Characteristics Data Base Version 2 from 

1992 with a resolution of 1000 m (Loveland 

et al. 2000) and Landsat 1-5 MSS C1 level 1 

from 1975, respectively. The maps gave 

seven land use classes of barren (or sparsely 

vegetated), cultivated cropland, forest, 

grassland, savanna, shrubland and urban 

(built-up) land in LRC and UNC. 

 

Catchment physiographic characteristics 

Soils data 

The soils data downloaded from 

Harmonized World soil database 

(FAO/IIASA/ISRIC/ISS-CAS/JRC 2009) 

FAO website 

(www.fao.org/AG/agl/agll/dsmw.htm) were 

used to determine soil types and hydrological 

soil group of the study catchments. The 

NRCS.TR-LookUp table (USDA-NRCS 

1986) gave six soil types: cambisols, 

fluvisols, leptosols, lixisols, nitisols and 

solonetz in LRC and only acrisols and 

ferrasoilsin Ngerengere. LRC is dominated 

by acrisols (34%) and nitisols (33%). 

 

Topographical data, catchment boundaries 

and hydrographic network 

The digitally available georeferenced 

topographic 1:50,000 maps were obtained 

from the GI Lab database of the Institute of 

Resources Assessment (IRA) of the 

http://www.fao.org/AG/agl/agll/dsmw.htm
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University of Dar es Salaam and used to 

extract catchment boundary, locations 

(latitude, longitude, and altitude), river 

network, slope, catchment outlets and river 

flow lengths. 

 

Methods 

Flood frequency analysis 

Flood frequency analysis (FFA) was 

carried out on annual maximum series by 

fitting probability density function (pdf) 

using EasyFit software, which included 61 

pdf. The best fitting pdf were selected based 

on the three goodness of fit test 

(Kolmogorov-Smirnov (K-S), Anderson 

Darling (A-D) and Chi-Squared (
2
)) 

(http://www.mathwave.com) and quantile-

quantile (Q-Q) plots. The best four ranked 

pdf were initially selected using average 

ranks (the average of the ranks for each 

goodness-of-fit criterion). Thereafter, Q-Q 

plots were examined to identify the ranges 

where each pdf provided the best quantile 

estimates (plots close to the 45
o
 line). Flood 

quantiles were computed for return periods of 

2, 5, 10, 25 and 100-yearsusing StatAssist of 

EasyFit software. FFA was used on observed 

and reconstructed (by HBV modelling) long 

discharge and rainfall series. 

 

Hydrologiska Byråns 

Vattenbalansavdelning (HBV) modelling 

The HBV modelling is usually used in 

record reconstruction (filling and/or 

extending) short and/or gapped discharge 

records using available long continuous 

climate records (Huang and Bardossy 2020). 

Its description is provided in Seibert (2005) 

and Seibert and Vis (2012). However, for the 

purpose of this study, available long 

continuous records at selected gauging 

stations were deliberately shortened (to 

extend in the 1 October 1955–30 September 

1980) and gaps introduced within this period. 

Used periods in Little Ruaha and Ngerengere 

catchments for calibration were 1990–1999 

and 1972–1981, respectively, with available 

continuous climate and discharge records, 

which were considered sufficient (Li et al. 

2010, Razavi and Tolson 2013). HBV models 

were validated for 2003–2007 and used to fill 

and extend discharge records to 30 

September 2010. Calibration of HBV 

involves automatic calibration using the 

embedded Genetic Algorithm and Powell 

(GAP) optimisation procedure and manual 

calibration of parameters to reflect catchment 

characteristics. Model performance was 

evaluated visually by observing hydrograph 

plots for the efficacy of reproducing flow 

peaks and statistically by the Nash-Sutcliffe 

coefficient of efficiency (NSE). The 

reconstructed (filled and extended) discharge 

series were then used in FFA. 

 

Soil Conservation Service- Curve Number 

(SCS-CN) method 

The SCS- CN method is a physically-

based and spatial distributed method in which 

the discharge is estimated by rainfall and 

water catchment coefficient represented by 

the curve number. The curve number 

coefficient is a function of land use/cover and 

hydrological soil group of the catchment. 

ArcGIS HEC-GEO HMS was used to extract 

land use/cover and hydrologic soil groups 

data within the study catchments, and the 

look-up table was defined based on the 

standard SCS curve number table. The area-

weighted CN was determined for each grid 

cell considering the three classes of 

antecedent moisture conditions (AMC). The 

antecedent moisture conditions are AMC I 

for practically dry (wilting point) catchment 

conditions, AMC II for average conditions, 

and AMC III for practically saturated (wet) 

catchment conditions. The potential 

maximum retentions (S) from each CN were 

computed from 

𝑆 =
25400

𝐶𝑁
− 254             (𝑚𝑚) (1) 

 

Consequently, CN II was computed as the 

curve number CN from the above equation as 

𝐶𝑁 =
25400

𝑆+254
 (2) 

 

CN values for AMC I and AMC III were 

calculated from (Chow et al. 1988) 

𝐶𝑁(𝐼) =
4.2𝐶𝑁(𝐼𝐼)

10−0.0588×𝐶𝑁(𝐼𝐼)
 (3) 

𝐶𝑁(𝐼𝐼𝐼) =
23𝐶𝑁(𝐼𝐼)

0.13×𝐶𝑁(𝐼𝐼)
 (4) 

http://www.mathwave.com/
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Runoff (Q) and peak discharges (qp) 

estimates were determined from each grid 

cell using the following equation: 

𝑄 =
(𝑃𝑇−0.2𝑆)²

(𝑃𝑇+0.8𝑆)
 (5) 

𝑞𝑝 = 0.208
𝐴𝑄

𝑇𝑝
 (6) 

where Q is and design daily rainfall quantile 

(PT) are in mm, qp in m
3
/s, catchment area in 

km
2
) and Tp is time to peak obtained as 0.7 

of time of concentration (tc), which was 

computed from Kirpich method. 

 

Regional regression equation (RRE) method 

The regional regression equations 

developed by Mkhandi et al. (2000) were 

adopted. The equations are based on flood 

discharge and catchment characteristics such 

as maximum annual flow (MAF). The 

equations are of the form 

QT = TT × MAF (7) 

where QT is the estimated flood quantile 

(m
3
/s), TT is the regional statistical growth 

factor for T years and MAF is the mean 

annual flood (m
3
/s). 

The homogenous region map for 

Tanzania by Mkhandi et al. (2000) was used 

to determine the case study region. Little 

Ruaha and Upper Ngerengere catchment 

boundaries were superimposed on Tanzania's 

homogenous flood region map to identify the 

regions falling within the study catchment 

regions: Tan 12 and Tan 5. Maximum annual 

floods (MAF) were computed from annual 

maxima for the periods 1954–2010 (Little 

Ruaha) and 1971–1981 (Ngerengere). The TT 

value was approximately extracted from the 

regional frequency curves (Mkhandi et al. 

2000). 

 

Suitability assessment of flood quantile 

methods 

The suitability of performance of each 

quantile estimation method was evaluated 

against the FFA quantiles estimated from the 

observed series. This study employed 

percentage bias (PBIAS), Nash–Sutcliffe 

coefficient of efficiency (NSE) and the ratio 

between root mean square error and root 

squared deviation of observed data (RSR) 

statistical criteria. The three criteria were 

calculated as 

𝑃𝐵𝐼𝐴𝑆 =
∑(𝑄𝑠𝑖𝑚−𝑄𝑜𝑏𝑠)

∑ 𝑄𝑜𝑏𝑠
× 100 (8) 

 

𝑁𝑆𝐸 = 1 − ⌊
∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑠𝑖𝑚,𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ̅̅ )

2
𝑛
𝑖=1

⌋ (9) 

 

𝑅𝑆𝑅 = ⌊
√∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑠𝑖𝑚,𝑖)

2𝑛
𝑖=1

√∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ̅̅ )

2
𝑛
𝑖=1

⌋ (10) 

where Qobs,I is i
th

 flood quantile from 

observed discharges, Qsim is i
th

 flood quantile 

from estimation method, while 𝑄𝑜𝑏𝑠 
̅̅ ̅̅ ̅̅  is the 

mean of observed data being evaluated and n 

is the total number of observed data used in 

the analysis.  

According to Nonki et al. (2021), PBIAS 

is related to soil and evaporation components 

of the water balance, while NSE is important 

for high flows part of the hydrograph 

representing fast runoff. RSR on the other 

hand is important for low and high flows and 

affects all hydrological components. The 

selection of the three criteria was based on 

their ability to represent high flow part of the 

hydrograph and roles of soils in generating 

high flows. The magnitudes of these criteria 

were described by Moriasi et al. (2007) 

(Table 2). 

 

Table 2: Criteria for describing classes of differences (Moriasi et al. 2007) 

Performance rating PBIAS NSE RSR 

Very good < ±10% 0.75–1.00 0–0.5 

Good ±10%–±15% 0.65–0.75 0.5–0.6 

Satisfactory ±15%–±25% 0.50–0.65 0.6–0.7 

Unsatisfactory > ±25% < 0.50 ≥ 0.7 
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Results and Discussion 

Results of FFA on observed flows 

Observed annual maximum flows were 

27–230 m
3
/s in LRC and 2–26.45 m

3
/s in 

UNC. Based on KS, AD and Chi-squared 

statistical goodness-of-fit criteria, the best 

four pdfs were Rice, Nakagami, Weibull and 

Gamma distributions (LRC) and Log-logistic, 

General Extreme Value (GEV), General 

Logistic and Dagum (UNC). However, the Q-

Q plots of the 4 distributions for LRC 

indicated the Rice pdf as the best for 

estimating flood quantiles up to 180 m
3
/s and 

Gamma for quantiles exceeding 180 m
3
/s. 

Similarly, Log-logistic distribution was the 

best pdf for estimating flood quantiles up to 

17.3 m
3
/s in UNC. However, there is only a 

single flow magnitude above 17.3 m
3
/s 

(which was 26.45 m
3
/s) in the entire 49 years 

of record, making it difficult for all pdf 

examined to capture this value. 

Consequently, quantiles exceeding 17.3 m
3
/s 

were not considered for UNC. Quantiles 

estimates for LRC and UNC are given in 

(Table 3). 

 

 

Table 3: Flood quantile (m
3
/s) from FFA 

Catchment Return period (years) 

2 5 10 25 50 100 

LRC 83.3 125.77 152.69 185.16 195.88 230.53 

UNC 7.02 10.74 13.88 19.04 24.04 30.30 

 

HBV modelling and FFA 

The NSE were 0.61 (0.63) and 0.57 (0.66) 

for calibration and validation in LRC (UNC), 

respectively. Then the 2, 5, 10, 25, 50 and 

100-year floods were estimated by fitting the 

distribution to the synthetic annual maximum 

flow series of HBV simulated data. The 

fitting results indicate Pearson 5(3P) as the 

best distribution for estimating flood 

quantiles in LRC. Similarly, the Log-Logistic 

distribution was the best pdf in UNC for 

calculating the quantiles. The estimated flood 

quantiles for both catchments are listed in 

Table 4. 

 

Table 4: Flood quantiles using FFA on HBV modelled flows 

Catchment Return period (years) 

2 5 10 25 50 100 

LRC 86.13 116.22 137.7 166.79 186.21 214.52 

UNC 20.75 22.71 23.997 25.701 27.055 28.49 

 

Results of SCS-CN method 

The best pdf for annual rainfall were GEV 

and Frechet 3P in UNC and LRC, 

respectively. Rainfall quantiles range 

between 107 mm/d (T = 2 years) and 240.8 

mm/d (T = 100 years) in LRC and between 

89.9 mm/d (T = 2 years) and 288.9 mm/d (T 

= 100 years) in UNC. The estimated CN for 

AMC-I (dry), AMC-II (normal) and AMC-II 

(wet) conditions CN in LRC (UNC) were 

74.8 (29.6), 87 (82) and 93.8 (199), 

respectively. These rainfall quantiles were 

used to estimate flood quantiles were 

estimated for 2, 5, 10, 25, 50 and 100-year 

return periods (Table 5). 

 

 

Table 5: Flood quantile from SCS-CN method 

Catchment Return period (years) 

2 5 10 25 50 100 

LRC 82.07 125.19 152.170 175.210 195.33 435.240 

UNC 15.14 23.77 29.72 37.41 43.52 48.999 
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Results of regional regression equations 

(RRE) 

Based on the regional frequency curve of 

Tanzania by Mkhandi et al. (2000), the 

regional hydrostatic factor (TT) values for 

LRC and UNC at different return periods 

were calculated and presented in (Table 6). 

The results show that the two catchments 

have similar hydrostatic factors for each 

return periods since they fall in TAN 5 

region, which were used in computing flood 

quantiles (Table 6). 

 

Table 6: Flood quantile from regional regression equations 

Catchment Return period (years) 

2 5 10 25 50 100 

Hydrostatic factor 0.9 1.5 1.8 2.3 2.6 2.9 

LRC 82.8 138.03 165.64 211.65 229.66 266.86 

UNC 11.62 12.45 14.11 17.43 21.68 26.56 

 

Suitability of flood quantile estimation 

methods 

Quantiles produced by FFA on observed 

annual maxima were closely reproduced by 

HBV/FFA and SCS CN methods in Little 

Ruaha Catchment (LRC) (Figure 2a) and by 

RRE method in Upper Ngerengere 

Catchment (UNC) (Figure 2b), the method 

which is also moderately better reproducing 

FFA flood quantiles in LRC (Figure 2a). 

However, the SCS CN and HBV/FFA 

methods could not reproduce the FFA flood 

quantiles in UNC (Figure 2b). PBIAS, NSE 

and RSR computed between FFA flood 

quantiles and those from HBV/FFA, SCS CN 

and RRE methods replicated the abilities of 

the three quantile estimation methods in 

reproducing flood quantiles computed using 

FFA on observed annual maxima. The values 

of the three criteria (PBIAS, NSE, and RSR) 

for flood quantiles from the RRE method 

were rated good to very good in both study 

catchments (Table 7). All three criteria were 

rated as consistently unsatisfactory for the 

SCS CN method in both study catchments 

(Table 7). However, except for the poorly 

estimated 100-year return flood in LRC by 

this method, all other quantiles are 

comparable to FFA quantiles (Figure 2a) and 

its exclusion resulted in very good rating. 

PBIAS, NSE and RSR for HBV/FFA method 

were rated very good in LRC and 

unsatisfactory in UNC (Table 7) where the 

method consistently overestimates flood 

quantiles for all return periods (Figure 2b). 

The very good performance of RRE in the 

two study catchments could be caused by the 

fact that RRE for Tanzania were established 

based on purely measured data of stream 

flows (Mkhandi et al. 2000). The varying 

performance of SCS CN and HBV/FFA 

could be linked to the conceptual modelling 

nature of the methods involving the use of 

lumped (spatially reduced) observed data and 

model parameters describing conceptually the 

underlying hydrological processes (Seibert 

2005). As well as the catchment response 

time parameters such as time of concentration 

(Tc ) as presented in SCS-CN method 

(Gericke and Smithers 2014). This approach 

could be constraining the performance of 

these methods in generating extreme high 

flows when the involved hydrological 

processes are not well captured by model 

structure, model parameters, catchment-scale 

and inadequate input data (Iacobellis et al. 

2013, Siderius et al. 2018, Baroni et al. 

2019). As a result, NSE and RSR, which 

assess the high flow part of the hydrograph 

and hydrological processes linked to fast 

runoff (Nonki et al. 2021) are being affected. 

This could be the effect where fast flashy 

flood flows in steep sloping UNC are not 

captured well in the SCS-CN and HBV/FFA 

methods leading to unsatisfactory NSE and 

RSR (Table 7). 
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Figure 2: Flood quantiles estimates for different methods in (a) LRC and (b) UNC. 

 

Table 7: Efficacy of flood quantile estimation methods against FFA on estimated quantiles 

Catchment Criterion HBV/FFA SCS CN RRE 

Value Rating Value Rating Value Rating 

LRC PBIAS 6.8% Very good -19.7% Satisfactory -12.5% Good 

NSE 0.928 Very good -2.006 Unsatisfactory 0.751 Very good 

RSR 0.269 Very good 1.734 Unsatisfactory 0.499 Very good 

UNC PBIAS -41.6% Unsatisfactory -89.1% Unsatisfactory 1.1% Very good 

NSE -0.300 Unsatisfactory -3.113 Unsatisfactory 0.877 Very good 

RSR 1.140 Unsatisfactory 2.028 Unsatisfactory 0.350 Very good 

 

Conclusions 
The main concerns found in estimating the 

flood quantile at these sites were the different 

patterns of flood quantile and the trend of 

quantile values from low-medium (2–25-

years) to high (>50-years) return period. All 

the methods considered in this study were 

able to capture well the peak discharge; 

however the variations in estimating flood 

quantiles differed from one method to 

another as well as from one return period 

range to another within the approach. Based 

on the findings, we discovered that the RRE 

approach had the best overall performance. 

The suitability of RRE appears to be strongly 

influenced by watershed characteristics like 

size and rainfall pattern, which are both taken 

into account in the hydro statistic factor (TT). 

The considerable difference in methods 

performance measures and between 

approaches indicated that these catchments of 

differences in size and hydro-climatic pattern 

can use any techniques. Similarly, the HBV 

model performed significantly better in LRC 

than in UNC, suggesting that the efficiency 

of the method is dependent on model 

parameters, catchment-scale and calibration 

data. Furthermore, the SCS-CN method 

performed poorly in all the study catchments, 

implying that model performance is 

dependent on catchment response, such as 

time parameters. Consequently, we conclude 

that selecting relevant approaches is heavily 

influenced by the goal they are employed, 

structure, parameters, hydro-climatic data 

conditions, and the required spatial and 

temporal scale. 
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