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Abstract 

Tropical montane forests harbour exceptionally high biodiversity yet face severe threats from 

human activities. Assessing forest biodiversity over large areas is crucial yet extremely 

challenging. Remote sensing provides an efficient monitoring solution, but few studies have 

focused on Tanzania's diverse, montane forests. We collected field data on tree species 

composition within 159 plots across montane forests in Tanzania's West Usambara region. We 

calculated species richness, evenness, and Shannon diversity index as indicators of tree 

diversity. Using Sentinel-2 and PlanetScope satellite imagery, we derived spectral, textural, 

and vegetation index predictors to model these indices via generalized additive models and 

extreme gradient boosting. PlanetScope-based XGBoost models performed best, explaining 

19.7% of variation in Shannon diversity. Incorporating textural predictors further improved 

model accuracy. Despite inherent challenges in modelling complex tropical forests, our 

findings demonstrate promising potential of Sentinel-2 and PlanetScope for regional 

biodiversity monitoring where field surveys are limited. Further research could enhance these 

initial results by leveraging higher resolution data and increasing field sampling for effective 

monitoring of tropical biodiversity. 
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Introduction 

Tropical montane forests including the 

West Usambara Mountains of Tanzania offer 

various ecosystem services while harbouring 

exceptionally high biodiversity. They face 

severe threats from human activities like 

agricultural expansion and illegal logging 

(Arroyo‐Rodríguez et al., 2020). In many 

jurisdictions, public forest authorities are 

requested to monitor biodiversity and report 

their management efforts to maintain or 

improve biodiversity to various bodies 

(Storch et al. 2023). Such bodies include the 

Division for Sustainable Development Goals 

(DSDG), the IUCN’s Post-2020 Global 

Biodiversity Framework (Strategic Plan for 

Biodiversity 2011–2020), and the United 

Nations Convention on Biological Diversity 

(Storch et al. 2023).  

Reaching the conservation and protection 

targets require accurate information on the 

state of the indicators of forest biodiversity 

such as species richness, evenness, and 

diversity at different geographical scales. 

This is challenging in most tropical montane 

forest environments, given the large coverage 

associated with many tree species and dense 

forests located in less accessible and difficult 

terrain areas (Beyene et al. 2020). Due to the 

difficulties, field based assessments are rather 
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difficult, cover limited areas (Mauya et al. 

2015)  and expensive (Corte et al. 2020, 

Goodbody et al. 2019) which calls the need 

for integrating them with remote sensing 

approaches. 

Freely available Sentinel-2 and recently 

released high-resolution PlanetScope satellite 

data provide valuable opportunities for forest 

biodiversity monitoring. Sentinel-2 offers 

open-access optical imagery with enhanced 

spectral, spatial, and temporal resolution 

compared to past sensors (Drusch et al., 

2012). PlanetScope likewise captures key 

spectral bands at very high 4.77 m resolution 

and monthly revisit rate (Poortinga et al., 

2021). Combined capabilities enable 

modelling ecosystem processes and mapping 

indicators like tree diversity for conservation 

support (Potapov et al. 2008, Wang and 

Gamon 2019).  

Extreme gradient boosting (XGBoost) and 

generalized additive models (GAMs) are two 

common modelling techniques for leveraging 

satellite remote sensing data to assess 

biodiversity. XGBoost is an ensemble 

method combining multiple decision trees 

with gradient boosting for high performance 

prediction. It can handle sparse, complex 

ecological data and scale efficiently to 

massive datasets (Schratz et al. 2021). GAMs 

provide flexible nonlinear regression using 

data-driven smoothing splines, easily 

incorporating nonlinear relationships 

common in ecological systems (Wang and 

Gamon 2019). When derived vegetation 

indices, spatial textures, and spectral data 

serve as predictor variables, these methods 

show utility for modelling patterns in tree 

diversity, species composition, habitat 

heterogeneity and other indicators relevant to 

conservation planning.  

While remote sensing has demonstrated 

potential for assessing biodiversity in tropical 

forests globally (Abbas et al. 2020), few 

studies have focused specifically on the 

diverse, montane forests of Tanzania. In this 

study, we demonstrate the applicability of 

Sentinel-2's spectral resolution and 

PlanetScope's high revisit frequency for 

mapping key biodiversity indicators like tree 

species diversity and habitat heterogeneity 

across extensive, challenging terrain in the 

West Usambara Mountains. Therefore, this 

study specifically aimed to (i) quantify the 

indicators of forest biodiversity (i.e., species 

richness, evenness, and Shannon diversity) of 

the study site, (ii) model and predict the 

biodiversity indicators using semi-parametric 

and non-parametric models for Sentinel-2 and 

PlanetScope data, (iii) create a spatial map 

for each forest biodiversity indicator, and (iv) 

assess the gain in precision of each remote 

sensing data (relative efficiency) compared to 

that of the field-based inventory alone. 

 

Materials and Methods 

Study area 

Two forests, Shagayu Forest Reserve 

(SFR) and Magamba Nature Forest Reserve 

(MNFR) were selected from the West 

Usambara Montane forest block. This block 

is part of a collection of isolated mountains 

known as the Eastern Arc Mountains 

(EAMs), which span from south-eastern 

Kenya to south-central Tanzania (Figure 1). 

There are many protected forests within these 

blocks, including nature and forest reserves, 

which are recognized as having extreme 

global biological importance (Burgess et al. 

2007). The SFR is positioned at 4° 31' 0" S 

and 38° 16' 59" E and has an estimated 

elevation between 1340 and 2150m above sea 

level. In comparison, the MNFR is positioned 

at 4°40' S and 38°15' E, and its altitude varies 

between 1650 and 2300 m above sea level. 

West Usambara mountain forests are 

acknowledged for their copious amounts of 

precipitation that foster a diverse range of 

flora and fauna. This area exhibits a bimodal 

rainfall distribution pattern consisting of two 

annual rainy seasons. The long rainy season 

typically starts in March and lasts until May, 

whereas the short rainy season occurs 

between October and December (Lovett 

1996). 
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Figure 1: Location of the study forests, in the Eastern Arc Mountains of Tanzania. 

 

Sampling design and data collection 

A two-phase, systematic sampling design 

was used in this study. Grids (225 × 450 m in 

the MNFR and 350 × 700 m in the SFR) were 

established during the first phase, with each 

intersection being a sampling plot. During 

field expedition, second-phase plots were 

selected for accessibility.  

 

Field data measurement 

A total of 159 circular field sampling 

plots (radius = 15 m) were established across 

both forests (MNFR = 55; SFR = 104). In 

each plot, individual trees with a diameter at 

breast height (DBH)  5 cm were recorded 

and identified to the species level. The 

geographical location and elevation were also 

recorded using a handheld GPS (Garmin 78). 

Finally, three diversity indices that 

considered the total number of species and 

their abundances were computed from the 

tree species information using the following 

equations: 

(i) Species richness (S), was determined 

as the total number of unique tree 

species recorded per sampling plot; 

(ii) Pileou’s evenness (J), also known as 

the equitability index, measures the 

evenness of individual tree species 

distribution among taxa and was 

calculated as the ratio between the 

Shannon diversity index and the 

logarithm of the species richness (eqn. 

1). 

𝐽 = 𝐻
log(𝑆)⁄  (1) 

(iii) The Shannon index (H), which 

considers the number of individuals 

and the number of taxa (eqn. 2). 

Where pi is the proportion of 

abundance of each species relative to 

the total abundance per sampling plot. 

𝐻 = −∑ 𝑝𝑖 ⋅ ln(𝑝𝑖)
𝑛
𝑖=1  (2) 

 

 

Remote sensing data 

Two Level 1C Sentinel-2 image tiles 

(acquired on March 12, 2019, and April 16, 

2019) were downloaded from the Copernicus 
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Open Access Hub 

(https://scihub.copernicus.eu/dhus/#/home). 

Level 1C top of the atmosphere (TOA) 

reflectance data were subsequently processed 

to Level-2A via the European Space 

Agency’s (ESA) Sen2Cor algorithm (Louis et 

al. 2016) to obtain bottom of the atmosphere 

(BOA) reflectance images using the “sen2r” 

package (Ranghetti et al. 2020). Only the 10 

m and 20 m spatial resolution bands were 

used in this study, and the 20 m bands were 

resampled to a 10 m resolution using bilinear 

interpolation (Li et al. 2020) to ensure spatial 

coherence. Image mosaicking was also 

performed, because two tiles were required to 

cover the study sites. PlanetScope imagery 

were downloaded from 

https://www.planet.com/basemaps. The 

imagery did not require pre-processing as it 

was provided in an analysis-ready form. 

Therefore, the data were only required to be 

re-projected to Arc 1960 UTM 37/S along 

with the pre-processed Sentinel-2 data. 

The atmospherically corrected images 

from each sensor were used to compute the 

selected vegetation indices (Appendix 1) 

using the “RStoolbox” package (Hamzehpour 

et al. 2019) implemented in the R statistical 

software. We included five broadband optical 

vegetation indices and three narrowband 

indices specific to Sentinel-2 data. Sentinel-2 

narrowband indices were utilized to assess 

the tree diversity modelling capability. 

Furthermore, the grey level co-occurrence 

matrix (GLCM) textural metrics ‘mean’, 

‘variance’ and ‘dissimilarity’ (Haralick 

1979), were also computed for all the spectral 

bands and indices, using the “glcm” package  

(Zvoleff 2020) in R (Appendix 2). Texture 

metrics were computed using a 3 × 3 window 

for each sensor band and vegetation index. 

 

Statistical analysis 

Variable selection 

To identify key predictors for modelling 

forest biodiversity indicators, we utilized the 

variable selection package VSURF (Genuer 

et al. 2015) in R. This approach leverages the 

machine learning algorithm random forests to 

rank predictor importance through an 

iterative process of creating multiple random 

models and assessing mean decrease in 

accuracy when a given variable is excluded. 

We grouped the top 30 predictors selected by 

VSURF into four categories: 1) original 

Sentinel-2 and PlanetScope spectral bands, 

providing surface reflectance information; 2) 

derived vegetation indices like NDVI, 

sensitive to canopy properties; 3) image 

textures capturing spatial patterns; and 4) all 

variables (bands, textures and vegetation 

indices) combined. This allowed comparison 

of different predictor sets for modelling tree 

species diversity and other indicators relevant 

to tropical montane forest conservation. The 

VSURF selection process identified key 

spectral bands, indices, and textures related to 

vegetation characteristics in these complex 

forest environments.  

 

Model development 

Semi-parametric and non-parametric 

statistical modelling approaches were used to 

estimate tree diversity. Details of each 

approach are provided below. 

Extreme gradient boosting (XGBoost) is a 

boosting algorithm based on gradient-

boosting decision trees and random forest 

methods. In very large-scale data training, it 

is a versatile and highly scalable tree-

structure enhancement model that can handle 

sparse data, significantly increase algorithm 

performance, and reduce computational 

memory. The R package “xgboost” (Chen 

and Guestrin 2016) was used to implement 

the XGBoost.  

The GAMs were fitted for each satellite 

sensor using a Gaussian error distribution and 

logarithmic link function to relate plot-level 

diversity with remote sensing data. This 

model form is preferred because it offers 

acceptable estimates when true zeros are 

present in the tree diversity estimate, which 

has continuous positive values. The R 

package “mgcv” (Wood and Wood 2015) 

was used to perform the GAM regression. 

Each predictor variable that entered the 

model received a smoothing spline with a 

smoothing parameter, k, of 3. 

𝑙𝑛(𝑦𝑖) = 𝑏0 − ∑ 𝑓𝑖(𝑥𝑖)
𝑛
𝑖=1  (3) 

where 𝑦𝑖  is the ground reference diversity 

index value, 𝑏0 is a constant term (intercept), 
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and𝑓𝑖(𝑥𝑖) (i= 1, 2,…, n) is the smoothing 

function for each independent variable. 

Modelling was carried out on the pre-

identified predictor variables from both 

sensors to determine the best model to 

explain the prediction accuracy of H, S, and J 

in the study area. 

 

Accuracy assessment 

To assess the accuracy and 

generalizability of the models, k-fold cross-

validation (k=10) was implemented to 

facilitate a comprehensive evaluation of 

model performance and enhance the 

reliability of the estimated tree diversity 

indices. Three criteria for model validation 

and selection were chosen and computed to 

identify the best models: adjusted coefficient 

of determination (R2), mean absolute error 

(MAE), and relative root-mean-square error 

(rRMSE). A model was considered to be the 

best if it had a relatively high R2 and lower 

MAE and rRMSE values computed from the 

predictions of the 10-fold cross-validation, as 

presented below: 

𝑅2 =
(𝑛−1)∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

(𝑛−2)∑ (𝑦𝑖−�̅�)
2𝑛

𝑖=1

 (4) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|
𝑛
𝑖=1  (5) 

𝑟𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖−𝑦𝑖)

2𝑛
𝑖=1

𝑛−2
 (6) 

where 𝑦�̂�  and 𝑦𝑖 are the predicted and 

observed values for each biodiversity 

indicator for the ith plot respectively, n is the 

number of observations, and �̅�  is observed 

mean of the respective biodiversity indicator. 

 

Relative efficiency 

To quantify potential improvements in 

precision from incorporating remote sensing 

data, we calculated relative efficiency (RE) as 

the ratio of variances between estimates with 

and without satellite data (Eqn 7). 

Specifically, RE compares the variance of 

biodiversity indicators estimated using 

remote sensing data (VARRS) to the variance 

using field plot data alone (VARFD). An RE 

value greater than 1 indicates the variance is 

lower (precision is higher) when integrating 

remote sensing versus using field plots alone. 

For example, an RE of 2 suggests the 

satellite-enhanced estimate could achieve the 

same level of precision as doubling the 

number of field plots sampled. This metric 

demonstrates the potential of remote sensing 

predictors from Sentinel-2 and PlanetScope 

to reduce uncertainty in biodiversity indicator 

estimates across landscapes compared to field 

surveys alone. Higher RE values highlight 

situations where integrating satellite data can 

strengthen precision for informing 

conservation and management decisions in 

tropical montane forests. 

𝑅𝐸 = 𝑉𝐴𝑅𝑅𝑆 𝑉𝐴𝑅𝐹𝐷⁄  (7) 

 

Diversity mapping 

To map biodiversity indicators across the 

study area, we used the raster package 

(Hijmans et al. 2013) in R to apply the 

optimal models to predict each indicator's 

values for all pixels from the remote sensing 

data. Specifically, we performed spatial 

prediction using the highest performing 

model for each indicator - either linear 

regression or random forest regression based 

on accuracy assessment. This generated 

continuous raster maps representing predicted 

tree species richness, diversity, and evenness 

across the landscape. We optimized spatial 

prediction by leveraging the full coverage 

and resolution of the Sentinel-2 and 

PlanetScope datasets through the fitted 

models. The resulting maps provide 

visualizations of spatial variability, patterns, 

and estimated values for key forest 

biodiversity indicators across inaccessible 

montane terrain. These high-resolution 

biodiversity distributions can support 

conservation planning and monitoring in the 

region. 

 

Results 

Tree species diversity  

Descriptive statistics of the diversity 

indices are presented in Table 1. Species 

richness exhibited an average value of 14 per 

plot, indicating a relatively diverse species 

composition within the study area. Evenness, 

with an average value of 0.84, suggested a 

balanced distribution of tree species 

abundance, highlighting a more equitable 

representation of different taxa. The 

calculated Shannon diversity index averaged 
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2.14 per plot, signifying a moderate to high 

level of overall tree diversity. Overall, 

Shagayu FR is faring better across all three 

assessed diversity indices as it has higher 

species richness, slightly higher evenness, 

and notably higher Shannon diversity 

compared to the Magamba NFR. This 

indicates the tree communities in the Shagayu 

FR are more diverse and evenly distributed. 

The lower indices for the Magamba NFR 

may suggest higher disturbance or threats to 

biodiversity in that reserve. 

 

 

Table 1: Descriptive statistics of forest biodiversity indicators across the study forests. 

Indicator Forest n Minimum Maximum Mean  CI 

Shannon Magamba NFR 55 0.86 2.94 1.94  0.10a 

 Shagayu FR 104 0.00 3.11 2.24  0.09b 

 Overall 159 0.00 3.11 2.14  0.04bc 

Evenness Magamba NFR 55 0.41 0.97 0.83  0.02a 

 Shagayu FR 104 0.10 0.97 0.84  0.02a 

 Overall 159 0.10 0.97 0.84  0.01a 

Richness Magamba NFR 55 3 22 11  0.91a 

 Shagayu FR 104 1 33 15  0.98b 

 Overall 159 1 33 14  0.67bc 

Different lowercase letters in rows indicate significantly different means (independent sample 

t-test, p < 0.05). n = number of plots, CI = Confidence interval (95%). 

 

Model performance 

Twenty-four (24) models were developed 

to predict tree species diversity indices using 

Sentinel-2 and PlanetScope predictor 

variables. The best model fit for predicting 

Shannon’s diversity index was obtained using 

the XGBoost statistical approach with 

PlanetScope texture variables. The model had 

an R2 of 0.2, MAE of 18%, and rRMSE of 

23.52%. The best model for predicting tree 

species richness was obtained using the GAM 

statistical approach with PlanetScope texture 

variables (R2 = 0.193, MAE = 30.72%, 

rRMSE = 38.91%).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tree species evenness was best predicted 

using the XGBoost model with combined 

PlanetScope variables (R2 = 0.115, MAE = 

9.2%, rRMSE = 13.8%). Generally, 

combining all predictor variables (bands, 

textures, and vegetation indices) for each 

sensor (i.e., Sentinel-2 and PlanetScope) 

improved the predictive power of all the 

models (Figure 2). The selected predictor 

variables and performance criteria for each 

model are listed in Table 2. 
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Table 2: Performance of the GAM and XGBoost diversity models fitted with predictors from two satellite sensors. Bold values indicate the best 

diversity index model. 
    GAM XGB 

Satellite Index Category Predictors rRMSE R2 MAE rRMSE R2 MAE 

PlanetScope Evenness Bands B, G, NIR, R 0.14 0.05 0.10 0.15 0.06 0.10 

  VegIndices DVI, GNDVI, NDVI, RVI, EVI 0.14 0.04 0.09 0.14 0.10 0.09 

  Textures EVI.mea, NIR.mea, NIR.mea 0.14 0.07 0.10 0.14 0.11 0.08 

  Combined 
EVI, DVI.var, NDVI, EVI.mea, 

RVI 
0.14 0.05 0.09 0.14 0.11 0.09 

 Richness Bands B, G, NIR, R 0.40 0.18 0.32 0.41 0.11 0.32 

  VegIndices DVI, GNDVI, NDVI, RVI, EVI 0.40 0.17 0.31 0.42 0.09 0.34 

  Textures DVI.vaR, EVI.con 0.39 0.19 0.01 0.39 0.17 0.31 

  Combined 
DVI, NIR, DVI.var, EVI.con, 

G.con 
0.40 0.18 0.31 0.40 0.18 0.31 

 Shannon Bands B, G, NIR, R 0.25 0.09 0.19 0.25 0.14 0.19 

  VegIndices DVI, GNDVI, NDVI, RVI, EVI 0.25 0.11 0.19 0.25 0.12 0.19 

  Textures 
EVI.con, NIR.mea, NIR.var, 

RVI.var 
0.24 0.15 0.18 0.24 0.20 0.18 

  Combined 

EVI.con, NIR.var, NDVI.con, 

NIR.mea, NIR, RVI.var, 

RVI.mea, G.con 

0.25 0.14 0.19 0.24 0.17 0.18 

Sentinel-2 Evenness Bands B04, B03, B12, B11 0.15 0.10 0.10 0.16 0.07 0.10 

  VegIndices NDRE.1, GNDVI 0.13 0.06 0.09 0.14 0.07 0.10 

  Textures 
NDVI.var, B04.con, GNDVI.mea, 

B06.con, RVI.var 
0.14 0.04 0.09 0.15 0.05 0.10 

  Combined 
GNDVI, B04.con, GNDVI.mea, 

NDVI.var 
0.14 0.04 0.09 0.14 0.08 0.10 

 Richness Bands B07, B06, B05, B11, B08, B04 0.41 0.12 0.32 0.42 0.08 0.33 

  VegIndices 
NDRE.1, GNDVI, NDRE.2, 

CLRE, EVI 
0.42 0.07 0.33 0.43 0.05 0.34 

  Textures 

B06.var, B07.var, B11.mea, 

RVI.con, B8A.var, B08.mea, 

B03.con, B08.var 

0.40 0.15 0.32 0.40 0.13 0.32 

  Combined 

B06, B07, B11, B07.var, RVI.con, 

B08.mea, GNDVI, B11.con, 

B03.con 

0.42 0.14 0.33 0.40 0.16 0.31 
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 Shannon Bands B06, B07, B8A, B11 0.25 0.13 0.19 0.26 0.08 0.20 

  VegIndices NDRE.1, GNDVI 0.25 0.08 0.19 0.26 0.08 0.20 

  Textures 

B04.var, B04.con, B06.con, 

B12.var, GNDVI.mea, CLRE.con, 

DVI.con 

0.25 0.09 0.19 0.25 0.15 0.19 

  Combined 
B11.var, B06, B04.var, GNDVI, 

CLRE.con 
0.25 0.14 0.19 0.25 0.15 0.19 

Note: Sentinel-2 bands; B03 – green band, B04 – red band, B05 – red-edge band 1, B06 – red-edge band 2, B07 – red-edge band 3, B08 – near 

infrared band, B8A – narrow near infrared band, B11 – shortwave infrared band 1, B12 – shortwave infrared band 2. PlanetScope bands: B – blue 

band, G – green band, R – red band, NIR – near infrared band. Vegetation indices: DVI – difference vegetation index, GNDVI – green normalized 

difference vegetation index, NDVI – normalized difference vegetation index, RVI – ratio vegetation index, EVI – enhanced vegetation index, 

NDRE.1 – normalized difference red-edge 2, NDRE.2 – normalized difference red-edge 2, CLRE – chlorophyll red edge vegetation index. Textures: 

mea – mean texture, con – contrast texture, var – variance texture. 

 

 
Figure 2: Performance (rRMSE) of GAM and XGBoost models fitted with predictors from the two satellite sensors. 
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Scatterplots were constructed to further demonstrate the relationship between the observed 

and predicted indices (Figure 3).  

 
Figure 3: Scatter plots showing the relationship between the predicted and observed species 

evenness (a-b), Shannon diversity (c-d), and richness (e-f) for Sentinel-2 and 

PlanetScope, respectively. 

 

Diversity mapping 

The best models were used to generate 

spatial prediction maps for the Shannon’s 

diversity index, tree species evenness, and 

species richness across the entire forest area 

(Figure 4-6). 
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Figure 4: Prediction maps for tree species richness PlanetScope and Sentinel-2. 

 

 
Figure 5: Prediction maps for tree species evenness from PlanetScope and Sentinel-2. 
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Figure 6: Prediction maps for Shannon’s diversity index from PlanetScope and Sentinel-2. 

 

Relative efficiency of the remote sensing 

data 

An analysis of the relative efficiency of 

predicting tree species diversity revealed 

notable differences between the PlanetScope 

and Sentinel-2 datasets in the West 

Usambaras. The results indicated that the 

PlanetScope dataset exhibited a higher 

efficiency in predicting tree species diversity 

than Sentinel-2, as evidenced by the relative 

efficiency (RE) values for tree species 

richness and Shannon's diversity index, 

which were 1.47 and 2.01, respectively. 

These findings suggest that the PlanetScope 

dataset provides accurate and reliable 

predictions of these diversity measures. 

Conversely, the Sentinel-2 dataset 

demonstrated efficiency in predicting tree 

species evenness, as indicated by the RE 

value of 1.21, as shown in Figure 7. 

Generally, irrespective of the marginal 

differences between the sensors, the RE 

values indicate that remotely sensed data 

enhanced the precision of tree species 

diversity estimates as compared to 

conventional field-based methods. 
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Figure 7: Graph showing relative efficiency of PlanetScope and Sentinel-2 in prediction of tree 

species diversity (H), evenness (J) and richness (S). 

 

Discussion 

The aim of this study was to assess the 

utility of Sentinel-2 and PlanetScope 

remotely sensed data for large-scale 

estimation of tropical forest biodiversity 

indicators. The predictors used in the 

estimations were spatial bands, vegetation 

indices, textures, and a combination of the 

three. The combination of all the three 

predictors improved the predictive power of 

the models. Various studies (Metcalfe et al. 

2015, Rovero et al. 2014) have shown 

different contributions of predictors to 

improving the efficiency of model prediction 

power. Spatial resolution has also shown to 

affect the efficiency of model predictions as 

elaborated by Wulder et al. (2004), Potapov 

et al., (2008) and Getzin et al. (2012). The 

results of this study showed that the models 

from PlanetScope, a high-resolution sensor, 

had higher prediction power and overall 

prediction accuracy. 

Higher spatial resolution of PlanetScope 

may have enabled a better separation of tree 

species with varying canopy greenness, 

which plays a significant role in predicting 

tree species diversity (Wu et al. 2021). 

Additionally, high-resolution textures derived 

from PlanetScope imagery provide a more 

detailed representation of vegetation 

structural components, leading to greater 

model precision (Mauya and Madundo 2022). 

These findings align with those of previous 

studies (Gyamfi-Ampadu et al. 2021, Baloloy 

et al. 2018), which reported a similar 

performance of PlanetScope imagery for 

estimating tree species diversity and other 

vegetation properties. 

Compared with similar studies (Wang and 

Gamon 2019, Guisan and Zimmermann 

2000), the results of this study showed 

relatively lower R2 values. However, this 

does not indicate poor performance of the 

proposed models. Lopatin et al. (2016), using 

LiDAR technology reported R2 = 0.33 for 

predicting tree species richness using 

Random Forest model. Irrespective of the 

model choice and sensor type, the results 

align with the results from this study, 

considering LiDAR’s higher resolution. 
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Additionally, the models rRMSE and MAE 

shows that the models have relatively lower 

prediction errors, and hence, good 

performance. 

Among the three diversity measures, the 

predictive power of the models using 

PlanetScope was the best for estimating tree 

species diversity. This can mainly be 

attributed to the high spatial resolution of the 

PlanetScope sensors compared to the 

Sentinel-2 sensors, which enhances the 

identification of plant features. Sentinel-2 

only explained a small percentage of the 

variance in diversity across the study sites, 

whereas similar results were reported by Ma 

et al. (2019). PlanetScope data have shown 

ability to accurately estimate tree species 

richness and Shannon’s diversity index as 

compared to Sentinel-2 data, which have 

been shown to underestimate species richness 

and Shannon’s diversity index. However, 

Sentinel-2 variables were able to better 

estimate species evenness than PlanetScope 

variables. 

The XGBoost model has shown a higher 

utility in estimating tree species diversity 

than the GAM. Schratz et al. (2021) has 

shown that, in terms of performance, 

XGBoost outperforms GAM in many 

benchmarks, particularly when dealing with 

high-dimensional datasets (e.g. ecological 

data). In this study, the datasets can be 

regarded as highly dimensional given the 

number and types of variables used for the 

development of predictive models. 

A comparison between the produced 

diversity prediction maps and near real-time 

imagery showed that the prediction accuracy 

using data from the two sensors matched the 

tree species diversity in the study area (Figure 

4 to 6). Therefore, the developed models can 

be used to predict tree species diversity in 

tropical mountain forests. PlanetScope data 

have been shown to enhance the performance 

of the models and produce more accurate 

prediction maps than Sentinel-2 data main 

attribution being its high spatial resolution 

(4.77 m) in contrast to Sentinel-2 sensors (10 

m) (Vizzari 2022, Mauya and Madundo 

2022). 

Prediction maps for tree species richness, 

species evenness, and Shannon diversity 

index showed a general trend of lower values 

in areas located near the forest border. This 

matches the actual situation at the study sites, 

which is mainly caused by the human over-

exploitation of forest resources especially in 

borderline areas. This shows that the 

prediction models efficiency as they could 

effectively reflect the conditions present in 

the study sites. Generally, the use of remote 

sensing techniques has been shown to 

improve the estimation of forest biodiversity 

indicators, as the calculated relative 

efficiency values were all greater than one. 

This suggests that using remote sensing in 

forest inventories is more efficient than 

relying solely on field-based estimates (Puliti 

et al. 2017, Ene et al. 2017). To achieve a 

similar level of precision as a pure field-

based estimate that employs simple random 

sampling, the sample size for the field-based 

inventory must be increased by a factor 

equivalent to the value of RE (Næsset et al. 

2016). This increase in sample size would 

significantly impact the costs associated with 

field inventory. 

 

Conclusion 

The results of this study showed that the 

integration of field-based approaches and 

remote sensing techniques can facilitate 

accurate large-scale estimation of forest 

biodiversity indicators for dense tropical 

mountain forests. In addition, the results 

demonstrated the contribution of high spatial 

resolution to the accurate estimation and 

mapping of various attributes of forest 

biodiversity indicators. It has also been 

observed from the tree species diversity 

prediction maps that areas located in the 

forest peripherals have low tree species 

richness and diversity, implying a high level 

of destruction of forest ecosystems in the 

study area through various human activities. 

Therefore, to ensure that ecological systems 

within the forest and nature reserves remain 

intact, it is necessary to put in place and 

implement conservation measures that are 

more rigorous and efficient for biodiversity 

conservation. 
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Appendices 

Appendix 1: Description of vegetation indices used as predictor variables for tree species 

diversity index modelling. 

Index Name Expression Sensor Reference 

DVI Difference 

Vegetation Index 

NIR-Red S-2, PS Richardson 

and Wiegand 

(1977) 

EVI Enhanced 

Vegetation Index 

2.5[(NIR-Red)/(NIR+2.4Red 

+ 1)] 

S-2, PS Hui and Huete 

(1995) 

GNDVI Green Normalized 

Difference 

Vegetation Index 

(NIR - Green)/(NIR + 

Green) 

S-2, PS Gitelson et al. 

(1996) 

NDVI Normalized 

Difference 

Vegetation Index 

(NIR - Red)/(NIR + Red) S-2, PS Rouse et al. 

(1974) 

RVI Ratio Vegetation 

Index 

NIR/Red S-2, PS Pearson and 

Milton (1972) 

CLRE Chlorophyll Red-

Edge 

(RE3/RE1) - 1 S-2 Gitelson et al. 

(2003) 

ND-RE1 Normalized 

Difference Red Edge 

(RE2 – RE1)/(RE2 + RE1) S-2 Gitelson and 

Merzlyak 

(1994) 

ND-RE2 Normalized 

Difference Red Edge 

(RE3 – RE1)/(RE3 + RE1) S-2 Barnes et al. 

(2000) 

 

Appendix 2: General description of grey-level co-occurrence matrix (GLCM) texture metrics 

used in this study. 

Texture Expression Expression 

Mean (mea) 𝜇𝑖 = ∑ 𝑖𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

 Mean of grey level (GL) distribution of the image. 

Variance 

(var) 

∑ 𝑖𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

(𝑖

− 𝜇𝑖)
2 

GLCM variance is a measure of the dispersion of GL 

distribution 

Contrast 

(con) 

∑ 𝑖𝑃𝑖𝑗

𝑁−1

𝑖,𝑗=0

(𝑖

− 𝑗)2 

Contrast indicates the amount of local GL variation in an 

image. Large values indicate the presence of edges, noise or 

wrinkled features. 

 


