

© College of Natural and Applied Sciences, University of Dar es Salaam, 2025

Analytical Hierarchy Process (AHP) based Safety Climate Maturity Model for building construction projects in Tanzania

Kamugisha J Kajumulo^a*, Juma M Matindana^b and Fatma K Mohammed^c

 ^{a*}Department of Structural and Construction Engineering, University of Dar es Salaam, P.O.Box 35091, Dar es Salaam, Tanzania; <u>kamugisha.kajumulo@must.ac.tz</u>
 ^b Department of Mechanical and Industrial Engineering, University of Dar es Salaam, P.O.Box 35091, Dar es Salaam, Tanzania; <u>matindana@udsm.ac.tz</u>

^cDepartment of Structural and Construction Engineering, University of Dar es Salaam,

P.O.Box 35091 , Dar es Salaam, Tanzania; <u>fatmamo@udsm.ac.tz</u>

*Corresponding author

Received 18 May 2024; Reviewed 7 Jan 2025; Accepted 23 March 25; Publ. 14 April 2025 https://dx.doi.org/10.4314/tjs.v51i1.3

Abstract

Tanzania's construction boom, while promising, casts a long shadow with its persistent safety challenges. Addressing these concerns requires not just reactive measures, but a proactive approach to cultivating a safety-mature construction environment. This research delves into this crucial aspect, proposing an Analytical Hierarchy Process (AHP)-based safety maturity model specifically tailored to Tanzanian building projects. MS Excel was used to create an Analytical Hierarchy Process by eight Safety and Health experts who tested the approach after the Smart PLS was used to identify important variables using factor reduction. Out of the 143 variables in the questionnaire, 19 factors were identified as essential factors to be used in this study using the Exploratory Factor Analysis (EFA). The general safety climate index (SCI) of 2.60 of the construction projects is in a compliant level because the range of SCI is within 2-3 (Level 3) indicating the safety climate processes and procedures are formal and defined. This research aspires to be a roadmap and guiding stakeholders towards safer construction sites, a thriving industry, and a brighter future where human well-being and project success go hand in hand.

Keywords: Analytical Hierarchy Process; construction safety; maturity model; safety climate; safety performance.

Introduction

Tanzania's construction industry is experiencing a period of rapid growth, yet concerns about safety remain a persistent shadow (Kikwasi and Escalante, 2020; Mwemezi, Kikwasi and Phoya, 2023). Beyond statistics and reactive measures, fostering a culture of safety maturity is crucial for sustainable progress. This research embarks on this critical journey, proposing an innovative Analytical Hierarchy Process (AHP)-based safety maturity model specifically tailored to Tanzanian building projects (Gunduz and Almuajebh, 2020).

Imagine a comprehensive framework that dissects the intricate web of factors influencing safety in construction. AHP framework is a well-known technique for organizing and analysing group complex decisions (Jankovic and Popovic, 2019). The AHP model goes beyond simple checklists which leveraging the power of the AHP (Goepel, 2013). Through expert judgment and stakeholder perspectives, the AHP assigns weighted priorities to various safety elements, creating a nuanced understanding of their relative importance (Lee et al. 2021).

Critical leverage points/areas where focused actions can result in the greatest increases in safety maturity are found by analysing the model's output. This study is a future where safety maturity becomes a cornerstone of the Tanzanian construction industry. It aspires to be a roadmap, guiding stakeholders towards safer sites, a thriving industry, and a brighter future where human well-being and project success go hand in hand. This research paper consists of several sections include the introduction which highlights the Tanzania construction industry and the safety climate categories, materials and methods section which has established the research sample size and the analytical Hierarch Process (AHP) methodology, results and discussion section and conclusion section of the research.

Construction industry

The construction industry in Tanzania faces challenges in ensuring worker safety, with a high rate of accidents and fatalities. Research suggests that the safety climate and the perception of safety within a project, play a crucial role. Analytical Hierarchy Process (AHP) offers a structured approach to evaluating this climate. Various studies have explored the use of AHP to assess safety climate factors in construction projects. For instance, a study by Shen et al. (1998) aimed to develop a maintenance plan which is based on a rational assessment of priorities and upto-date knowledge of the condition of the property stock which will help to ensure the best use of available resource using AHP

(Shen et al. (1998)).

Another study by Wakchaure and Jha (2012) applied AHP to determine the bridge health index and for the allocation of resources. Their framework, based on the AHP be applied easily by different stakeholders for ranking a number of bridges in a bridge stock for maintenance actions, thereby optimizing resources (Wakchaure and Jha 2012). These studies showcase the potential of AHP in understanding and improving safety climate in construction industry. By identifying the most critical influencing factors safety perceptions. stakeholders develop targeted can interventions to create a safer work environment for construction workers in Tanzania.

The analytic hierarchy process (AHP) was used in different research to determine the weights of the most important factors to develop a model to assess safety performance (Başaran et al. 2023) or a multi-criteria decision-making (Das et al. 2010) or others (Vaidya and Kumar 2006, Başaran et al. 2023).

Safety climate categories

There are three categories of factors used in determining the safety climate at the construction sites in Tanzania. These factors are safety leading factors, safety management process factors and safety lagging factors (safety performance). Safety leading factors are the factors that influence the safety climate of a construction site. These factors can be grouped into four categories.

Figure 1: Conceptual framework

Project management factors are established as crucial factors influencing safety. Effective construction project management involves planning, organizing, staffing, leading, and controlling safety aspects. This implies that meticulously planning safety procedures, assigning roles accordingly, and supervising adherence to these plans are essential for a safe work environment (Gunduz and Almuaiebh 2020). However, research has shown how attitudes, abilities, practices, and personalities that every worker brings to the workplace might have an impact on safety results (Dennerlein et al. 2022).Site-related factors have demonstrated that have the potential to either favourably or unfavourably affect worker safety and productivity. For example, a safe work environment is enhanced by appropriate scaffolding, well-maintained equipment, and clear walkways; on the other hand, unsafe conditions are created by disorganized workspaces and faulty machinery (AparnaShruthi and Venkatasubramanian, 2017).Conversely, external factors have also had an impact on overall safety performance. The project's subcontractors' safety cultures, governing body standards, and weather conditions are a few examples of exterior factors (Rivera et al. 2021).

Nevertheless, the safety management process factors are the safety processes that organizations undertake to create a safe work environment. As far as this research paper is concerned, the Plan-Do-Check-Act (PDCA) will be used to measure the whole safety climate management process of the model. Plan-Do-Check-Act (PDCA) is a four-step process for continuous improvement. It is a cyclical process that can be used to improve any process or system. The 'Plan' phase (safety process design) identifies the project's safety goals and establishes a plan to achieve 'Do' phase (safety process them. The implementation) focuses on how effective communication. resource allocation. and adherence safety protocols during to construction influence overall safety outcomes (Carvalho et al. 2015).In the case of the 'Check' phase (safety process evaluation), it involves evaluating the implemented plan using data collection through learning from experience and adapting safety plans for future projects (Bridges et al., 2017). While the 'Act' phase (safety process improvement) uses evaluation results to refine the project's safety plan, potentially involving adjustments to procedures or protocols, the 'Check' phase can inform best practices for future construction endeavors (Johnson et al. 2010). The PDCA cycle is repeated until the goal is achieved or until it is determined that the goal is not achievable.

Safety lagging factors (safety performance) are the factors that measure how well an organization is managing its safety risks in a project. It is typically not only measured by many measures, such as the number of incidents, accidents, and injuries that occur, but also by other factors, such as the number of near misses, fatalities, damages to property, financial loss, compensation due to accidents, overtime associated with slow operation, production time lost, slowdown in operation, decrease in morale, loss of client, and equipment breakdown due to unsafe practice (Chan et al. 2023).

Materials and methods *Sample size*

In this study, a series of methods are used in the research design. The first step was to collect and analyse literature studies to gather factors that affect safety on construction sites. After that, a questionnaire survey was conducted to determine the most important factors among the collected factors from the literature that affect the safety climate at construction sites in Tanzania. Interviews, mail, and email messages were used to conduct the questionnaire survey. The population samples collected from the Contractors Registration Board (CRB) registry show a total of 757 registered building projects within classes 1-4. The sample size formula for the small and finite population is provided by (Kothari, 2004) and is given as;

n =	$1.96^2 \times 757 \times 0.5^2$	Where; Z is z value from
$\frac{Z^2 \times N \times pq}{Z^2 \times N \times pq}$ (1)	$= \frac{1}{\sqrt{757 - 1} > 0.05^2 + 1.96^2 \times 0.5^2}$	a table of confidence
$< N-1 > e^2 + Z^2 \times pq$		interval (CI=95%=1.96)
	$n = \frac{727.0228}{2} = 255$	N=Population size=757
	2.854	respondents; p is sample
		proportion=0.5, $q=1-p =$
		0.5 ; e^2 =Margin error
		(5%=0.05)

The sample size of this research was 255 respondents whereby clients were 26 were Class 1, 50 were Class II, 74 were Class III and 105 were Class IV. Construction workplace safety is complex, with numerous factors influencing it. To identify the factors that affect the safety climate at construction sites, an in-depth literature review was carried out. As such, 143 factors that affect the safety climate at construction sites were compiled and reviewed. Then, these factors were examined by preparing a survey questionnaire which various construction in safety professionals (including owners, managers, engineers, supervisors, etc.) participated. The purpose of this questionnaire is to identify the most important factors that affect the safety climate of construction projects in Tanzania. Using SPSS, EFA was performed with all the 143 factors for the several iterations, and nineteen factors were identified which are; ERF1, ERF2, MRF6, SMP1.3, SMP1.4, SMP2.2, SMP2.3, SMP3.2, SMP3.3, SMP4.1, SMP4.2, SPC10, SPC9, SPE14, SPF3, SPF4, SRF16, WRF7 and WRF8. The final factors are shown in Tables 2, 3 & 4 due to the best factor loadings.

Table 1. Safety leading fac	lors variable	68	
Factors	Denotes	Variables	Factor loadings
Project Management Related Factors (MRF)	MRF6	Management takes corrective actions promptly about safety	1
Worker's Related Factors (WRF)	WRF7	Workers feel comfortable reporting safety concerns and unsafe conditions	
	WRF8	Workers participate in safety activities, such as safety meetings, training, and inspections	
Site environment Related	SRF16	The safety practices are adequate to	1

Table 1: Safety leading factors variables

factors (SRF)		prevent slips, trips, and falls				
External Related Factors	ERF1	The project safety practices are in 0.888				
ERF		compliance with all applicable industry safety regulations				
	ERF2	The project has been inspected by 0.837 government safety agencies				

Table 2:	Safety management process variables

Factors	Denotes	Variables	Factor	
			loadings	
Safety process design	SMP1.3	The project has a process for risks	0.998	
-SMP1		assessment		
	SMP1.4	There is a Risk management plan for	0.998	
		handling safety issues		
Safety Process	SMP2.2	Safety inspections are conducted	0.779	
implementation		regularly		
-SMP2	SMP2.3	Workers feel comfortable reporting	0.914	
		safety concerns		
Safety process evaluation	SMP3.2	The project conducts regular safety	0.892	
-SMP3		audits to assess the effectiveness of its		
		safety processes and systems		
	SMP3.3	Workers feel comfortable providing	0.897	
		feedback on safety processes and		
		systems		
Safety process	SMP4.1	The project makes changes to its safety	0.87	
improvement		processes and systems based on the		
SMP4		results of its safety process reviews		
	SMP4.2	The project communicates changes to its	0.849	
		safety processes and systems to workers		
		in a timely and effective manner		

Table 3: Safety performance variables

FactorsDenotes		Variables	Factor
			loadings
Safety performance Extent		Extent of equipment breakdown due to	1
(SPE)	SPE14	unsafe practice	
Safety performance	SPF3	Frequent of accidents	0.977
Frequency (SPF)	SPF4	Frequent of near misses	0.985
Safety performance Costs	SPC9	Costs of Overtime associated with slow	0.721
(SPC)		in operation	
	SPC10	Costs of Production time loss	0.785

Procedures for developing AHP

First, the target, main criteria, sub criteria, and alternatives were established. Eight experts examined the sub-criteria, and the major criteria was determined using the AHP scale for combinations. The alternatives were the different criteria that solutions must be evaluated against. Once the hierarchy was built, a numerical scale was assigned to each pair of alternatives. The selection of experts was conducted through recommendations from the research participants from the construction industry.

Scale	Definition
1	Equally important
3	Variable A is slightly more important than variable B
5	Variable A is important than variable B
7	Variable A is more important than variable B
9	Variable A is absolutely more important than variable B
2,4,6 and 8	Value between the two closest numbers

Table 4: Nine AHP numerical scale (Saaty, 2008)

The next step was to model the problem. According to the AHP methodology, a problem is a related set of sub-problems. The AHP method therefore relies on breaking the problem into a hierarchy of smaller problems. In the process of breaking down the subproblem, criteria to evaluate the solutions emerge. Using MS Excel, the process of assigning priority among criteria using pairwise comparison was conducted. The AHP method uses pairwise comparison to create a matrix. In this case, the experts were asked to weigh the relative importance of different criteria established by SEM in their safety categories.

Figure 2: Research process

Then the consistency ratio and index were determined in order to understand if each size of matrix measures the degree of departure

 $CR = \frac{CI}{RI}$(2) Where; CR=Consistency ratio CI=Consistency Index RI=Random index

The relative importance scale between two alternatives as suggested by Saaty (Saaty,

from pure inconsistency (Saaty, 1990). Their formula are determined below;

Where;
$$CI = \frac{\sum_{max} -1}{n-1}$$
.....(3)
 $CI = Consistency Index$
 $\sum = Product of weight$
 $n=number of criteria$

2005) was used, whereby they scaled the attributing values that vary from 1 to 9. The

scale determines the relative importance of an alternative when compared. The Random index between n alternatives is shown in Table 6 (Franek and Kresta, 2014).The best **Table 5:** Scale Random Index (RI)

consistency ratio (CR) for n alternatives should be less than 0.1.

Labic	Table 5. Beale Randolli Index (RI)												
n	3	4	5	6	7	8	9	10	11	12	13	14	15
RI	0.52	0.89	1.11	1.25	1.35	1.4	1.45	1.49	1.51	1.54	1.56	1.57	1.58

To determine the relative weights, the mathematical calculation was then created in MS Excel based on the data and relative weights were assigned to the criteria. Experts prepared the pairwise comparison matrix from several alternatives of the safety leading factors, safety process factors and safety lagging factors (Safety performance) of the construction sites obtained from EFA. The best alternative was used to determine the safety climate maturity in this study. Finally, the mean value of each indicator was multiplied by the weight value to determine the SCM value of each safety factor. The project's SCM is determined by determining the average of each safety climate factor.

Results and Discussion

The Analytical Hierarchy Process (AHP) was utilized to find the weights of the 19 factors affecting the safety climate.

Table 6:	Matrix	for	safety	leading	factors

Developing the hierarchy of the problem at hand was the initial step in applying the AHP (Cheung et al., 2001). Each expert is asked to rank each component on a scale of importance in relation to others (pairwise comparisons) in light of the objective after each factor was given weight by comparing it to another factor (Fong and Choi, 2000). In this study, the opinions of 8 safety experts whose experience ranges from 5 to 20 years, were solicited. A scale of one to nine was used for these pairwise comparisons, one means that both factors are equally preferred, while nine indicates that one factor is greatly preferred over the other. The Table 6 presents both pairwise comparison matrix, normalised pairwise comparison matrix and criteria weight percentage matrix for the SLF's six components calibrated using MS excel.

Pair-wise Comparison Matrix										
	MRF6	WRF7	WRF8	SRF16	ERF1	ERF2				
MRF6	1	2	5	3	3	3				
WRF7	0.5	1	1	2	1	3				
WRF8	0.2	1	1	2	2	2				
SRF16	0.333333	0.5	1	1	3	2				
ERF1	0.333333	1	0.5	0.333333	1	2				
ERF2	0.333333	0.333333	0.5	0.5	0.5	1				
SUM	2.7	5.833333	8.5	8.833333	10.5	13				
		Normalised j	pair-wise com	parison matrix						
					0.28571	0.23076				
MRF6	0.37037	0.342857	0.588235	0.339623	4	9				
					0.09523	0.23076				
WRF7	0.185185	0.171429	0.117647	0.226415	8	9				
					0.19047	0.15384				
WRF8	0.074074	0.171429	0.117647	0.226415	6	6				
					0.28571	0.15384				
SRF16	0.123457	0.085714	0.058824	0.113208	4	6				
					0.09523	0.15384				
ERF1	0.123457	0.171429	0.058824	0.037736	8	6				

					0.04761	0.07692						
ERF2	0.123457	0.057143	0.058824	0.056604	9	3						
	Criteria weight percentage matrix											
CW	0.359595	0.171114	0.155648	0.136794	0.10675	0.07009						
					5	5						
CW (%)	35.95948	17.11139	15.56479	13.67938	10.6754	7.00948						
					8	5						
SUM	2.7	5.833333	8.5	8.833333	10.5	13						
CA	0.970906	0.998164	1.323007	1.208345	1.12092	0.91123						
					6	3						

The consistency index (CI) is then calculated using the value of λ max shown below for each category. The consistency ratio (CR) is then calculated, where the RI changes depending on the number of evaluation criteria used and is 1.25 for six criteria. The consistency of the judgments is satisfactory as the CR is 0.085 (Table 9), i.e. less than 0.1. However, the weights of all six factors in this construct were calculated as presented in Table 6. The MRF6 factor was ranked as the

most important factor affecting safety performance with the highest weight of 0.35 (35%).

Safety climate management process factors which were retrieved SPSS were also provided to experts to develop the pairwise comparison matrix, normalised pair-wise comparison matrix and criteria weight percentage matrix. The results are presented in Table 7.

Table 7: 1	Table 7: Matrix for safety climate management process									
Pair-wise Comparison Matrix										
	SMP1.3	SMP1.4	SMP2.2	SMP2.3	SMP3.2	SMP3.3	SMP4.1	SMP4.2		
SMP1.3	1	1	2	2	3	2	3	3		
SMP1.4	1	1	1	3	2	1	4	1		
SMP2.2	0.5	1	1	2	3	3	2	5		
SMP2.3	0.5	0.3333	1	1	1	2	2	3		
SMP3.2	0.3333	0.5	0.3333	1	1	1	5	2		
SMP3.3	0.5	1	0.3333	0.5	1	1	3	1		
SMP4.1	0.3333	0.25	0.5	0.5	0.2	0.33333	1	2		
SMP4.2	0.3333	1	0.2	0.3333	0.5	1	0.5	1		
SUM	4.5	6.0833	5.8666	10.333	11.7	11.3333	20.5	88		
		No	rmalized	l pair-wise	e compari	son matrix				
SMP1.3	0.222	0.1643	0.340	0.193	0.256	0.176	0.146	0.1667		
SMP1.4	0.2222	0.1644	0.1705	0.290323	0.17094	0.088235	0.1951	0.055556		
SMP2.2	0.1111	0.1644	0.1705	0.193548	0.25641	0.264706	0.0976	0.277778		
SMP2.3	0.1111	0.0548	0.0852	0.096774	0.08547	0.176471	0.0976	0.166667		
SMP3.2	0.0740	0.0822	0.0568	0.096774	0.08547	0.088235	0.2439	0.111111		
SMP3.3	0.1111	0.1644	0.0567	0.048387	0.08547	0.088235	0.1463	0.055556		
SMP4.1	0.0740	0.0411	0.0852	0.048387	0.01709	0.029412	0.0488	0.111111		
SMP4.2	0.0740	0.1644	0.0340	0.032258	0.04273	0.088235	0.0244	0.055556		
Criteria weight percentage matrix										
CW	0.2084	0.1697	0.192	0.10926	0.10482	0.09454	0.0567	0.064465		
CW (%)	20.834	16.965	19.199	10.92594	10.4822	9.453779	5.68977	6.446534		
SUM	66.695	53.595	35.724	-12.5925	-16.142	-24.3698	-48.427	-54.4818		
CA	4.5	6.0833	5.8667	10.33333	11.7	11.33333	20.5	18		
C W	0.9376	1.0320	1.1263	1.129014	1.2264	1.071428	1.1664	1.160376		

Furthermore, the weights of all eight factors in this construct were calculated as

presented in Table 7. The SMP1.3 factor was ranked as the most important factor affecting

safety performance with the highest weight of 0.21(21%). Finally, the weights of all five factors for safety performance factor were calculated as presented in Table 8. The SPE14 **Table 8:** Matrix for Safety Performance Factors

factor was ranked as the most important factor affecting safety performance with the highest weight of 0.36 (36%).

Pair-wise Comparison Matrix								
	SPE14	SPF3	SPF4	SPC9	SPC10			
SPE14	1	2	2	5	2			
Z								
SPF3	0.5	1	3	2	3			
SPF4	0.5	0	1	3	2			
SPC9	0.2	0.5	0.333333	1	1			
SPC10	0.5	0.33333	0.5	1	1			
SUM	2.7	4.16667	6.833333	12	9			

Normalized pair-wise comparison matrix

SPE14	0.3704	0.48	0.2927	0.4166	0.2222			
SPF3	0.1852	0.24	0.4391	0.16667	0.33333			
SPF4	0.1852	0.08	0.1463	0.25	0.22222			
SPC9	0.0741	0.12	0.0489	0.083333	0.11111			
SPC10	0.1852	0.08	0.0732	0.083333	0.11111			
Criteria weight percentage matrix								
Criteria	0.356388	0.272842	0.17675	0.08746	0.10656			
Weights								
Criteria	35.63884	27.28419	17.67498	8.74598	10.6560			
weight (%)								
SUM	2.7	4.166667	6.833333	12	9			
CA	0.962249	1.136841	1.20779	1.049518	0.95904			

The consistency ratio (CR) is calculated by Eq. (2), where the RI changes depending on how many evaluation criteria are used and equals 1.4 for eight criteria. The consistency of judgments is satisfactory because the CR is 0.07 (Table 9), which is less than 0.1.

Table 9: Consistency ratio

	SLF	SMPF	SPF
Lambda Max	6.532581	8.8497	5.315438482
Consistency Index (CI)	0.106516	0.1213	0.078859621
Random Index (RI)	1.25	1.4	1.11
Consistency ratio (CR)	0.085213	0.0867	0.0710

To clearly demonstrate the proposed methodology, Table 10 presents the SCM Safety Climate Maturity Level for this study. The table establishes the index in which the safety climate maturity will be assessed. Score value will be determined by calculating the total safety climate maturity of the project using the equation 4.

 Table 10: Safety Climate Maturity Level

М	Name	Descriptions	Safety Climate outputs	Score value

1	Inattentive	No need for attention on given processes and procedures in place.	Performance on improving SCM is consistently poor. Near miss, accident and injury are very high	$0 < y \le 1$
2	Reactive	Project processes and procedures may exist but unstructured and not defined.	Performance on improving SC Maturity is fair.	$1 \le y \le 2$
3	Compliant	Project processes and procedures are formal and defined.	Performance on improving SC Maturity is mostly good.	2 <y td="" ≤3<=""></y>
4	Proactive	Procedures and processes are planned, well-defined and conform to best practices.	Performance on improving SC Maturity is very good and consistently repeated	3 < y ≤4
5	Exemplary	Processes and procedures are standardized, fully integrated	Performance is best in the industry. Near miss, accident and injury are very low	4< y ≤ 5

To clearly demonstrate the methodology proposed, Table 11 presents the SCM score calculation in different maturity levels. In

$$SCI = \frac{\mu 1 * W1 + \mu 2 * W2 + \mu 3 * W3}{3} \dots \dots (4)$$

order to determine the Safety Climate Maturity Index, the score value will be determined by the equation 4 below;

Where; μ =Average mean value of a factor
 W =Total weight of the factor
 SCI=Safety climate index

According to this, all safety climate measures must be transformed to be more harmonized and simpler. Note that the equation can calculate the total safety climate **Table 11:** Safety climate maturity score

scores that is the average of the individual safety climate score of each SCM factor.

			L1	L 2	L3	L4	L 5	
	Mean	μ1	1	2	3	4	5	2.55192
SLF	Weight	W1	1	1	1	1	1	1
	T1	µ1*W1	1	2	3	4	5	2.55192
	Mean	μ2	1	2	3	4	5	2.46862
SMPF	Weight	W2	1	1	1	1	1	1
	T2	μ2*W2	1	2	3	4	5	2.46862
	Mean	μ3	1	2	3	4	5	2.79966
SP	Weight	W3	1	1	1	1	1	1
	T3	µ3*W3	1	2	3	4	5	2.79966
SCI	Average	(T1+T2+T3)/3	1	2	3	4	5	2.60673
SCI	Range		0-1	1-2	2-3	3-4	4-5	
	SCI	Level 2		2.60				

The SCIM score of safety climate indicators was found to be 2.55192 that of

safety climate management process to be 2.46862 and that of safety performance factors

to be 2.60673 as shown in details in Table 12.

Factor	Mean score	•	Weight	ISCMI	SCI
MRF6	2.0776		0.3595948		
WRF7	2.14424		0.1711139		
WRF8	2.41864		0.1556479		
SRF16	2.21872		0.1367938		
ERF1	3.40256		0.1067548		
ERF2	3.04976		0.0700948		
μ1	2.55192	W1	1	2.55192	
SMP1.3	2.22264		0.208369		
SMP1.4	2.21872		0.1696545		
SMP2.2	2.14032		0.1919941		
SMP2.3	2.4108		0.1092594		2.60673
SMP3.2	2.08152		0.1048221		
SMP3.3	2.22264		0.0945378		
SMP4.1	3.40256		0.0568977		
SMP4.2	3.04976		0.0644653		
μ2	2.46862	W2	1	2.46862	
SPE14	3.59464		0.3563884		
SPF3	2.05408		0.2728419		
SPF4	2.1168		0.1767498		
SPC9	3.21048		0.0874598		
SPC10	3.02232		0.1065601		
_µ3	2.799664	W3	1	2.79966	

Table 12: General safety climate maturity (SCM) score

From Table 12, it is argued that since the obtained SCI from calculation is 2.60 and is within the range of level 3 then it is argued that the safety climate maturity of the construction projects is in an Compliant level because the range is within 2-3 scores (Level 3) which indicates that the whole of the building construction project safety climate processes

and procedures are formal and defined and performance on improving SC maturity is mostly good. The Figure 3 present a SCMM of the research using AHP which consists of all stages of assessing the building construction projects and their Safety Climate Indices (SCI).

Figure 2: Safety climate maturity model (SCMM)

On the other hand, four projects, namely Alterations and vertical extension to office block, Cables (Factory) and office, erection of pastoral complex on plot No 1&2 Uzunguni area and proposed construction of lecture theatre A and B were randomly selected to measure their safety climate maturity. It has been observed that the projects in Classes I had a higher safety climate maturity than the **Table 13:** Project Safety Climate Maturity projects in the lower classes. Because of the management influence on the workers to participate in safety activities, most of the workers prioritized safety in their workplaces which enabled their projects to have a higher safety climate maturity. The maturity levels of the safety climate in the projects are indicated in Table 13.

Table 13: Project Safety Climate Maturity									
Class	Factor	Mear	a score	Weig	ht	ISCMI	SCI		
	Alterations	Alterations and Vertical Extension to Office Block							
C-I	Laxson Construction Co Ltd								
	Dar es Salaam								
	SLF	μ1	2.827	W1	1	2.827	2.74		
	SMP	μ2	2.615	W2	1	2.615			
	SP	μ3	2.785	W3	1	2.785			
	Cables (Fa	ctory) & O	ffice						
C- II	Simba Developers Limited								
	Golani, Kii	Golani, Kimbiji, Kigamboni Dar es Salaam							
	SLF	µ1	2.663	W1	1	2.663	•		

	SMP	μ2	2.52	W2	1	2.52		
	SP	μ3	2.752	W3	1	2.752		
	Erection of	of Pastoral (Complex	on Plot	No 18	2 Uzunguni		
	Area							
	PEK Brother's (T) Limited							
C-III	Mwanza						2.62	
	SLF	μ1	2.642	W1	1	2.642		
	SMP	μ2	2.471	W2	1	2.471		
	SP	μ3	2.741	W3	1	2.741		
	Proposed	Constructio	on of Le	cture 7	Fheater	A And B		
	Т	ender No:Ae	/085/2021	/2022/H	[q/W/0]	1		
	Li Jun Development Construction Company LimitedC-IVLita Tengeru Campus-Arusha2.59							
C-IV								
	SLF	μ1	2.5032	W1	1	2.5032		
	SMP	μ2	2.408	W2	1	2.408		
	SP	μ3	2.870	W3	1	2.870		

Therefore, in order to validate the model, the analysis of the responses obtained from construction projects participants was conducted so as to understand the suitability and usefulness of the proposed SCMM and its assessment matrix using twelve (12) validation criteria indicated in Table 14. The model documentation variable has a higher mean value than the other variables, indicating the validity of the survey instrument for recording participants responses. The overall summary is presented in Table 14, and it shows that all criteria for validating the model have means ranging between 3 and 4.

 Table 14: Criteria for validating the adequacy and suitability of the SCMM and its assessment matrix

Variables	Denotes	Mean	SD	Variance
Attributes Relevance	SCMMA1	4.29	0.629	0.396
Attributes Coverage	SCMMA2	4.07	0.660	0.436
Attributes Correctness	SCMMA3	3.48	0.869	0.754
Attributes Clarity	SCMMA4	4.21	0.577	0.333
Levels Sufficiency	SCML1	3.93	0.706	0.499
Non-overlapping of Levels	SCML2	4.34	0.637	0.405
Model Understanding	EOUND1	4.07	0.626	0.392
Model Documentation	EOUND2	4.39	0.629	0.396
Score appropriateness	EOU1	4.22	0.601	0.361
Use Convenience	EOU2	4.35	0.525	0.275
Usefulness of Model	UAP1	4.10	0.635	0.404
Model Practicality	UAP2	4.07	0.560	0.313

The practical implications of the AHPbased safety climate maturity model for building construction projects in Tanzania are significant. By providing a structured approach to assess safety performance, the model enables organizations to identify strengths and weaknesses in their safety management systems. This information can be used to develop targeted improvement plans, allocate resources effectively, and prioritize safety initiatives. Additionally, the model can help organizations benchmark their safety performance against industry standards and best practices, fostering continuous improvement. Ultimately, the adoption of this model can contribute to a safer and more sustainable construction industry in Tanzania, reducing accidents, injuries, and fatalities.

The AHP model proposed in this research presents several limitations. Firstly, the

model's accuracy and reliability depend heavily on the consistency and objectivity of expert judgments. Inconsistent or biased expert assessments can significantly impact the final results. Secondly, the AHP methodology assumes a hierarchical structure of decision criteria, which may not always be applicable to complex real-world scenarios. Additionally, the model's generalizability may be limited to the specific context of building construction projects in Tanzania, as cultural, social, and economic factors can influence safety climate perceptions and behaviors. Finally, the AHP model does not explicitly account for the dynamic nature of safety climate, which can be influenced by various factors such as organizational changes, technological advancements, and regulatory updates.

Conclusion

To assess the building construction project's safety climate maturity, a safety climate index was created. The AHP determined the relative weights of the indicators established under EFA based on a questionnaire survey of Tanzanian experts in safety and health. "Management provides opportunities for feedback and reporting on safety issues to workers" or MRF6 received the maximum importance (35%) in first group, "The project has a process for risks assessment" or SMP1.3 received (21%) for the second group, while "Extent of equipment break-down due to unsafe practice" or SPE14 received (36%) of the safety climate priority in the third group.

The weights from variables obtained were used for the determination of SCI index, as well as for deciding the safety climate priority.19 safety climate indicators were selected for the preparation of comprehensive definitions: excellent, good, fair, poor and critical. A range of values has also been assigned to indicators by using personal judgment and discussions with the experts. The developed safety climate index equation takes into consideration the weights of the indicators established by the experts and the mean values obtained from the survey. The calculated Safety Climate Index (SCI) of 2.60 falls within the range of Level 3, indicating a compliant level of safety climate maturity. This suggests that the building construction project has formalized safety processes and procedures, and is actively working to improve its safety climate.

The proposed model would contribute by bringing objectivity and transparency to the determination of safety climate maturity for different building construction projects in Tanzania.

Based on the findings and limitations of the AHP model, several recommendations can be proposed to enhance its application in assessing safety climate maturity in building construction projects in Tanzania. First, it is crucial to carefully select and train experts to ensure the consistency and reliability of judgments. Second, sensitivity analysis can be conducted to assess the impact of variations in expert judgments on the final results. Third, further research should focus on developing models to evaluate SCM in areas such as road construction, industrial construction, etc. Fourth, the digitization of the already developed model for evaluating SCM should be conducted to facilitate the development of a computer-based system that is easy to work with.

The AHP-based safety climate maturity model offers a robust framework for assessing and improving safety performance in building construction projects in Tanzania. By systematically evaluating critical safety factors and prioritizing areas for improvement, stakeholders can enhance climate, reduce accidents, and ultimately create safer work environments. Adopting this model empowers organizations to take proactive steps towards a more mature safety climate, aligning with industry best practices and regulatory requirements.

Acknowledgment

The authors are grateful to the anonymous referee of the journal for their extremely useful suggestions to improve the quality of the article.

References

- Aparna Shruthi F and Venkatasubramanian C 2017 Factors affecting material management in construction industry *Int. J. Recent Technol. Eng.* 8(5): 869–880.
- Başaran Y, Aladağ H and Işık Z 2023 Pythagorean Fuzzy AHP Based Dynamic Subcontractor Management Framework, *Buildings* 13(5): https://doi.org/10.3390/buildings1305135 1.
- Bridges J, May C, Fuller A, Griffiths P, Wigley W, Gould L, Barker H, and Libberton P 2017 Optimising impact and sustainability: A qualitative process evaluation of a complex intervention targeted at compassionate care *BMJ Qual. Saf.* 26(12): 970–977.
- https://doi.org/10.1136/bmjqs-2017-006702.
- Chan APC, Guan J, Choi TNY, Yang Y, Wu G and Lam E 2023 Improving Safety Performance of Construction Workers through Learning from Incidents *Int. J. Environ. Res. Public Health* 20(5):
- https://doi.org/10.3390/ijerph20054570.
- Cheung SO, Lam TI and Leung MY 2001 An analytical hierarchy process-based procurement selection method. *Constr. Manag. Econ.*, 19(4), pp. 427–437.
- https://doi.org/10.1080/01446190130013240 1.
- Das S, Chew MYL and Poh KL 2010 Multicriteria decision analysis in building maintainability using analytical hierarchy process. *Constr. Manag. Econ.*28(10), pp. 1043–1056. https://doi.org/10.1080/01446193.2010.50 1806.
- Dennerlein JT, Eyllon M, Garverich S, Manjourides J, Vallas SP,Lincoln AK Dennerlein JT. 2022 Associations between work-related factors and psychological distress among construction workers. J. Occup. Environ. Med. 63, no. 12 (2021): 1052-1057.
- Fong PSW and Choi SKY 2000 Final contractor selection using the analytical hierarchy process, *Constr. Manag. Econ*, 18(5), pp. 547–557.: https://doi.org/10.1080/014461900407356

.

- Franek J and Kresta A 2014 Judgment Scales and Consistency Measure in AHP. *Procedia Econ. Financ.*, 12(March), pp. 164–173. https://doi.org/10.1016/s2212-5671(14) 00332-3.
- Goepel KD 2013 Implementing the Analytic Hierarchy Process as a Standard Method for Multi-Criteria Decision Making in Corporate Enterprises—A New AHP Excel Template with Multiple Inputs, in Proceedings of International Symposium on the Analytic Hierarch. Kuala Lumpur, pp. 1–10.
- Gunduz M and Almuajebh M 2020 Critical success factors for sustainable construction project management. Sustainability (Switzerland)12(5). https://doi.org/10.3390/su12051990.
- Jankovic A and Popovic M 2019 Methods for assigning weights to decision makers in group ahp decision-making, *Decis. Mak. Appl.* 2(1), pp. 147–165. Available at: https://doi.org/10.31181/dmame1901147j.
- Johnson DC, Miranda R, Aakre KT, Roberts CC, Patel MD and Krecke KN 2010 Process improvement: What is it, why is it important, and how is it done? *AJR Am J Roentgenol*. 194(2): 461–468. https://doi.org/10.2214/AJR.09.3213.
- Kikwasi GJ and Escalante C 2020 The Construction Sector in Tanzania. In Mining for Change; Natural Resources and Industry in Africa. https://doi.org/10.1093/oso/97801988511 72.003.0012.
- Kothari CR 2004 Research methodology: Methods and techniques. New Age International.
- Lee JS, Son S, Kim S, and Son K 2021 Correlation analysis of safety climate and construction productivity in South Korea, *Int J Occup Saf Ergon.*, 27(2), pp. 589– 596. https://doi.org/10.1080/10803548.2020.17

https://doi.org/10.1080/10803548.2020.1/ 41279.

Carvalho K, Picchi F, Camarini G and Chamon E 2015 Benefits in the Implementation of Safety, Health, Environmental and Quality Integrated System, Int. J. Eng. Sci. Technol., 7(4),pp.333–338.

https://doi.org/10.7763/ijet.2015.v7.814.

Mwemezi BR, Kikwasi GJ and Phoya S 2023 The Paradox of Health and Safety Risks: A Disclose of Handling Strategies in Informal Construction Sites in Tanzania, Ind. J.O. S.H, 12(3): 372–381. Available at:

https://doi.org/10.20473/ijosh.v12i3.2023. 372-381.

- Rivera FM La Mora-Serrano J and Oñate E 2021 Factors influencing safety on construction projects (Fscps): Types and categories. *Int. J. Environ. Res. Public Health* 18(20).
- https://doi.org/10.3390/ijerph182010884.
- Saaty TL 1990 How to Make a Decision: The Analytic Hierarchy Process *Interfaces* 24(6): 19–43.
- Saaty TL 2005 Theory and applications of the analytic network process: Decision making with benefits, opportunities, costs, and risks. Pittsburgh: RWS Publications.

- Saaty TL 2008 Decision making with the Analytic Hierarchy Process, *Scientia Iranica* 9(3): 215–229.
- https://doi.org/10.1504/ijssci.2008.017590.
- Shen Q, Lo KK and Wang Q 1998 Priority setting in maintenance management: A modified multi-attribute approach using analytic hierarchy process *Constr. Manag. Econ.* 16(6). 693–702.

https://doi.org/10.1080/014461998371980.

Vaidya OS and Kumar S 2006 Analytic hierarchy process: An overview of applications *Eur. J. Oper. Res.* 169(1): 1– 29.

https://doi.org/10.1016/j.ejor.2004.04.028

- Wakchaure SS and Jha KN 2012 Determination of bridge health index using analytical hierarchy process. *Constr. Manage. Econ.* 30(2): 133–149.
- https://doi.org/10.1080/01446193.2012.6580 75.