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ABSTRACT

Nickel mineralization in the Kabanga sulfide ores is found associated with (1) peripheral veins in

the country-rock metapelites, (2) contact type massive sulfide mineralization, and (3) disseminated

and vein mineralization. This work, apart from giving general highlight of the Ni mineralization

(and other associated elements) in the Kabanga and Luhuma, intends to assess the PGE content in

both areas. Cores (mafic-ultramafic and metasedimentary rocks as well as ore sections) from both

Kabanga and Luhuma areas were sampled, cut, crushed, pulverized and analyzed for both major

and trace elements. Results show that all the Iridium Platimum Group Elements (IPGEs) have

very low normalized ratios in each rock and gossan samples as compared to the Paladium

Platinum Group Elements (PPGEs). This can be explained by a number of contrasting reasons:

(1) the effect of compatibility and incompatibility of IPGEs and PPGEs during mantle melting and

fractionation,  (2) the IPGEs are often associated with chromites as alloys or sulfides in dunites

whilst the PPGEs are often associated with the sulfides of Fe, Ni and Cu and are found in norites,

gabbros and dunites. Results also show that, in the Luhuma area lithophiles are 1.5 to 3 times

more than in the Kabanga area whereas the Chalcophiles are 1.5 to 6 times more in the Kabanga

than in the Luhuma. While three of the PPGE (Pt, Pd and Au) have higer concentrations in both

Kabanga and Luhuma areas, they are relatively more in Kabanga than in Luhuma. The IPGE and

Rh, have negligible concentrations in both areas. TiO2 versus Fe2O3T, Al2O3 versus SiO2, PGE

versus MgO, as well as Cu/Pd have been compared. They all indicate potentiality of the Kabanga

over the Luhuma in terms of PGE. Similar positions of ores from both Luhuma and Kabanga on

their TiO2 versus Fe2O3T plots indicate that the Luhuma is also potential for Ni-Cu sulfide

deposits particularly on drill holes LUH05 and LUH13 where these samples were taken. In other

words, if TiO2 increases then Ni-Cu sulfide increases and hence the potential for Ni-Cu

mineralization.
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INTRODUCTION

Nickel, a siderophile element (Faure 1991)

is also hosted in sulfides (e.g. Naldrett,

1998). In the Kabanga Ni-Cu sulfide ores,

Ni is found associated with (1) peripheral

veins in the country-rock metapelites, (2)

contact type massive sulfide mineralization,

and (3) disseminated and vein mineralization

associated with the layered silicate rocks of

the central zone of the intrusion (Evans

2000, Macheyeki 2011).

The published work so far in the Kabanga

ore deposits has highlighted for the

possibility of having Platinum group

elements (PGE) as well (e.g. Duchesne,

2004) but to date, no details have been

given. This work, apart from giving general

highlight of the Ni mineralization in the



Macheyeki - Ni Mineralization and PGE Characterization …

2

Kabanga and Luhuma, intends to assess the

PGE content in both areas.

The platinum group elements (PGEs) consist

of Osmium (Os), Iridium (Ir), Ruthenium

(Ru), Rhodium (Rh), Platinum (Pt),

Palladium (Pd) and gold (Au). The first

three elements are called Ir-group (IPGE)

and the other four elements, the Pd-group

(PPGE). The IPGE tend to be compatible

during mantle melting whereas the PPGE

group are incompatible (Rollinson 1993;

Peach & Mathez 1996).

The distribution of PGE and most other

chalcophile elements in mafic and ultramafic

rocks is controlled predominantly by

sulfides. Most of the world’s PGE are

produced from two types of deposits: PGE-

dominated deposits, where PGEs are the

main product and Ni-Cu sulfide deposits,

where PGE are the by-product. Both types

of deposits are closely associated with

layered intrusions (Pichard et al. 1995,

Peach & Mathez 1996, Maier et al. 1998).

Whereas layering is the function of both

time and space, it is expected that, wherever

economic PGE deposits are found, evidence

for layering is important (e.g. Maier et al.

1998). Extensive studies however, have

revealed that economically important

magmatic Ni-Cu-(PGE) sulfide deposits

tend to occur in magma conduit systems,

rather than in large layered intrusions (Li et

al. 2001, Maier et al. 2001). Several factors

affect the Ni, Cu and PGE grades of the

sulfides of the magmatic sulfide deposits,

the most important of which include:

concentration of these elements in the

parental silicate magma, degree of sulfide

segregation and immiscibility, reaction

between the sulfide droplets and new pulses

of mafic magma, and fractionation of the

sulfide liquids (Song et al. 2011).

When sulfide immiscibility and segregation

(a result of crustal contamination) occur

relatively earlier than the crystallization of

the silicates, the sulfide droplets could be

concentrated at the base of the magma

chamber to form massive or semi-massive

ores. In contrast, if sulfide segregation and

silicate crystallization occur at the same

time, they would settle down together and

form disseminated sulfide ores (Song et al.

2011). This study was conceived in order to

study the relationship between Ni and PGE

in the Kabanga and Luhuma areas both of

which are considered to be potential for Ni-

sulfide mineralization and not for PGE even

though, evidence for magmatic layering is

reported particularly in the Kabanga Main

(Macheyeki 2011).

Geological setting

The Kabanga Ni–Cu sulfide deposits and the

Luhuma prospect (Fig. 1) are located within

the Meso-Proterozoic Karagwe-Ankolean

tectonic domain (1.6–1.28 Ga) which is part

of the Kibaran metasedimentary belt

comprising arenites and pelites with

subordinate greywakes and carbonates (Grey

1967, Evans et al. 2000).

The Karagwe-Ankolean tectonic domain is

characterized by basal sequence of

conglomerates and sandstones, with some

amygdaloidal basaltic rocks, passing into

several cycles of arenite and shale (Stockley

and Williams 1938, Grey 1967, Klerkx et al.

1987, Tack et al. 1994). The shales are

interbanded with thin siltstones, and also

contain significant amounts of Fe-sulfide

and graphite as irregular lenses (Evans et al.

2000). Details of the geological setting of

both areas is given in Evans et al. (2000)

and Macheyeki (2011).



Tanz. J. Sci. Vol 38 (2) 2012

3

Figure 1: Lithologies of southern domain of Karagwe-Ankolean tectonic domain in relation to the

position of the Kabanga area (Ikingura et al. (1992)).

Note: KM and KN stand for out lines of Kabanga Main ultramafic body and Kabanga

North ultramafic body respectively (Macheyki 2011).
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METHODOLOGY

Drill cores from Kabanga North (KN9848

and KN9708) Kabanga Main (KN9873 and

KN9869) Ni–Cu sulfide ores sampled (Fig.

2). Three core samples were taken within the

massive sulfide based on size of ore zone

and frequency of occurrence. Lithologic

units (ultramafic/metasedimentary rocks)

within hole were also sampled and equally

represented. Drill holes LUHD02, LUHD05,

LUHD06 and LUHD15 Luhuma prospect

were also sampled.

All core samples were cut into two equal

halves, washed and dried. One half of every

sample was crushed and pulverized using an

agate mill, into powder below 75 lm. Then,

pellets weighing between 8 and 10 g each

were pressed. For each sample, two pellets

were pressed prior to trace element analysis.

Other laboratory routine procedures

including preparation of fusion disks in

order to homogenize the samples to avoid

the problem of matrix effect during major

element analysis were followed. The

samples were then analyzed for major and

trace elements by XRF technique at the

University of Stellenbosch. About 50 g of

selected pulverized samples were

decomposed by Fire-Assay Spectroscopy

(AAS) technique, as described in Hall and

Bonham-Carter (1988) and Chao and

Sanzolone (1992). The sample solutions

were then submitted for PGE analysis by

ICP–MS at the University of Cape Town.

Other details on sample collections,

preparations and analysis are given in

Macheyeki (2003, 2011).

Figure 2: (A) - The sketch of Kabanga Main Ni–Cu sulfide deposit in cross-section and the

approximate locations of the drill holes KN9869 and KN9873. (B)-Kabanga North

Ni–Cu sulfide deposit in plan-view and the approximate locations of drill holes

KN9708 and KN9848.

Note: Olivine cumulates here represent peridotites, whereas mela-gabbronorite

represents pyroxenites and other relatively differentiated mafic–ultramafic rocks

(modified after Evans et al. 2000, after Macheyeki 2011).
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Petrographic studies and mineralization

Detailed petrographic studies as well as

mineralization for the Kabanga Ni-Cu

sulfideare given in Evans et al. (1994, 2000;

Macheyeki 2011) and for both the Kabanga

and Luhuma by Macheyeki (2011).

Major and trace elements (selected)

TiO2 versus Fe2O3T in the Kabanga

The plot of TiO2 versus Fe2O3T for all rock

types (including the ore) in the Kabanga

area, reveal a graph that is synonymous to an

exponential function (Fig. 3). Looking at the

graph more closely, one reveals three

clusters that are related to (1) unmineralized

metasedimentary rocks on one end of the

graph (left), (2) mafic-ultramafic rocks at the

middle and (3) the ore on the other end

(right). More closer look on this plot also

shows that the middle cluster, though

representing mafic-ultramafic rocks that are

essentially containing disseminated ore,

metasedimentary rocks also plot there. The

latter are also containing a small quantity of

ore.  On the right-hand side cluster, massive

ore within both metasedimentary and mafic-

ultramafic rocks characterize this cluster.

Here, the ore refers to massive sulfides of

high Ni-Cu grade.

Figure 3: The plot of TiO2 versus Fe2O3T for the Kabanga deposits. The upper right cluster is

made up of metasedimentary rocks; middle cluster, mafic and ultramafic rocks and the

left cluster represents both disseminated and massive sulfide ores or their products (e.g.

gossans). C = Quartz schist, P = metapelites, X = massive sulfide, R = serpentinized

rock, T = schist, E = hornfel or metamorphosed fine-grained rock, O = gossan, S =

saprolite, Q = quartzite, PX = pyroxenite, PE = peridotite, D = diabase, Z = sheared

rock. Note however that P in the middle cluster of the plot is an anomaly.

The massive sulfide ore is defined by Ti  ! 0

to " 0.1 wt% and Fe2O3T = 80- # 87 wt%.

Separating the clusters are two gaps: one is a

horizontal gap defined by TiO2 = 0.4 to "



Macheyeki - Ni Mineralization and PGE Characterization …

6

0.5 wt%, Fe2O3T =3.0 to " 20 wt%,

meaning that the ore is highly oxidized and

highly depleted of Titaniferrous minerals.

The vertical gap is defined by Ti=0.5 to 0.35

wt%, Fe2O3T = 50 - ~ 67 wt%. What would

the gaps and the intersection of both gaps

(Ti # 0.45 wt%, Fe2O3T # 50 wt%) define?

These facts and the pattern of the graph

however, are only true if (a) we ignore two

samples that plot closer to the origin-they

are from a quartzite: the unmineralized

Rubona quartzite and (b) we consider all

samples together without separating them,

because otherwise, each sample type may

have its own pattern. It follows therefore

that, this graph can be used to predict Ni-Cu

sulfide ore position.

Figure 4: The plot of TiO2 versus Fe2O3T for the Kabanga deposits as in 3. red lines represent

approximate trend boundaries. Abbreviations as in Fig. 3.

TiO2 versus Fe2O3T in the Luhuma

The plot of TiO2 versus Fe2O3T for all rock

types and the ore in the Luhuma area (Fig.

5) is defined by negative correlation with

fairly two clusters: (a) major cluster to the

left hand side characterized by mafic-

ultramafic rocks and (b) minor cluster

characterized by weathered rocks (including

laterites and saprolites) to the right. To the

extreme end of the right-hand side, exists a

small cluster defined by ore samples of

higher values of Fe2O3T (up to 80 wt %)

same as those from the Kabanga area (See

Fig. 4B). These samples are from drill holes

LUH05 and LUH06.
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Figure 5: The plot of TiO2 versus Fe2O3T for the Luhuma deposit (s).  M = mafic rock, U =

ultramafic rock, P = metapelites, G = Gabbro/gabbroic rock, S = saprolite, X = massive

sulfide, Q = quartzite? = ultramafic rock?, H = schist?, L = laterite.

Al2O3 versus SiO2 plots

Al2O3 versus SiO2 plots have been used

based on the facts that Al2O3 is hosted in

rocks rich in feldspars, platy minerals such

as micas,  bioti te,  sericites and

metasedimentary rocks. SiO2 is hosted in

silicates (in this case, mafic-ultramafic

rocks) as well as in quartzites.

As for the TiO2 versus Fe2O3T, the Al2O3

versus SiO2 plots (Fig. 6A) show three

clusters for the Kabanga deposits area: one

cluster corresponding to the massive sulfides

and disseminated ore in mafic-ultramafic

rocks near the origin, mafic-ultamafic rocks

and fairly mineralized metasedimantary

rocks at the middle and finally

unmineralized metasedimentary rocks to the

right of the plot (Fig. 6A). The major

difference between the Al2O3 versus SiO2

plot is that while the TiO2 versus Fe2O3T

plot show a negative correlation (or

exponential function), the Al2O3 versus SiO2

plot show positive correlation meaning that

generally, Al2O3 content increases with

decrease in SiO2 content. However, zooming

in the plot, one realizes that the bottom and

middle part of the plot obey this argument

whereas the right corner cluster (related to

unmineralized metasedimentary rocks)

behaves differently: it shows negative

correlation, meaning that the decrease of

Al2O3 corresponds with increase of SiO2

content

For the Luhuma area (Fig. 6B), only two (2)

clusters occur (the lower left and the middle

part) both of which are related by a positive

correlation trend. No metasedimentary data

were studied-which probably explains why

the negative correlation observed in Fig. 6A

is not evidenced in Fig. 6B.
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Figure 6 (A): The plot of Al2O3 versus SiO2 for the Kabanga ores and country rocks.

Abbreviations as in Fig. 3
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Figure 6(B): The plot of Al2O3 versus SiO2 for the Luhuma ores and country rocks. Abbreviations

as in Fig. 5.
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Al2O3 plots

The plots Al2O3 (Fig. 7) from both Kabanga

and Luhuma show different patters: from

Kabanga a two populations plot is shown

whereas, a one population plot is revealed

from the Luhuma. Each population is

thought to represent one source of Al2O3 or a

phase in which Al2O3 is hosted. It is thought

that the Al2O3 is mainly hosted by

metasementary rocks (? mica rich schists).

The presence of two populations of Al2O3 in

the Kabanga area may also indicate that one

population corresponds with Al2O3

background values (0 – 9 wt%)

corresponding with massive sulfide ore, and

another population may represent anomalous

values of Al2O3 (~ 12.5 – 21.5 wt%) from

metasedimentary rocks. The ore population

of Al2O3 from the Luhuma area imply that

Al2O3 source is essentially one; i.e. from

mafic-ultramafic rocks. No metasedimentary

rocks data are included here.

A
B

Figure 7: (A) Histograms of Al2O3 from Kabanga and (B) Luhuma

PGE versus MgO

The plots of PGE versus MgO have been

presented (Fig. 8). They indicate variable

trends; generally, PPGE increases with

increasing MgO The plots of data from

PPGE obtained from Kabanga also show

clear trends as compared to  inconsistent

trends of both PPGE and IPPGE from the

Luhuma area.

IPGE versus MgO (wt%) plots in the

Kabanga show variable trends where Au

seems to be associated with MgO poor

samples to the left and it is also associated

with MgO rich samples to the right.  For the

Luhuma area, Au is proportional to MgO

near the origin (MgO < 1 wt % and Au <

25ppb). From Au > 25 ppb, proportionality

does not exist. i.e. there is constant Au

content (# 25ppb) from MgO = 5 wt% (Fig.

8).
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Ratio Kabanga Luhuma
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Ratio Kabanga Luhuma

MgO

Vs Rh
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Ratio Kabanga Luhuma
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Ratio Kabanga Luhuma
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Figure 8: The plots of PGE versus MgO for PGE from the Kabanga and the Luhuma.
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Table 1 A: Statistical summary of the trace element concentrations in metasedimentary rocks from Kabanga, ultramafic bodies from

both Kabanga area (KULTRA) and Luhuma area (LULTRA), Kabanga Main ore (KMORE), Kabanga North ore (KNORE),

Luhuma ores (LORE). QTZ and MPEL, stand for quartzite and metapelite respectively. Numbers in brackets are average

chemical compositions of ultramafic rocks in ppm, except for Au which is in ppb  from Turekian and Wadepohl (1961) and

Vinogradov (1962) in Faure G (1991). *  = Calculated from data listed by Herrmann (1970).  Chalc = chalocophile, Lotho =

lithophile, Sidero = Siderophile. S and L (after *) stand for Siderophile and Lithophile respectively. (After Macheyeki 2011).

QTZ

(N=2)

SCHIST

(N=8)

MPEL

(N=10)

KULTRA

(N=8)

LUTRA

(N=8)

KMORE

(N=9)

KNORE

(N=8)

LORE

(N=6)

Element

type

(Faure

1991)

ELEMENT GEOMEAN GEOMEAN GEOMEAN GEOMEAN GEOMEAN GEOMEAN GEOMEAN GEOMEAN

Cr (ppm) 257 142 171
2496

(1800)

1978

(1800)
907 1108 947

Chalc*

S

Mo (ppm) 1 1 2 4 (0.3) 2 (0.3) 17 18 10
Chalc*

L

Nb (ppm) 11 10 2 (9) 3 (9) 2 2 Litho

Zr (ppm) 33 261 254 22 (38) 43 (38) 21 19 22 Litho

Y (ppm) 0 24 24 6 (-) 12 (-) 6 4 5 Litho

Sr (ppm) 70 83 18 (5.5) 33 (5.5) 11 26 Litho

U (ppm) 3 3 4 (0.002) (0.002) Litho

Rb (ppm) 2 140 90 8 (1.1) 25 (1.1) 9 7 15 Litho

Th (ppm) 0 15 16 4 (0.0045) 5 (0.0045) Litho

Pb (ppm) 22 39 54 (0.5) 9 (0.5) 14 32 31 Chalc

Ga (ppm) 21 20 7 (1.8) 9 (1.8) 9 13 8
Chalc*

L

Zn (ppm) 47 98 101 (40) 71 (40) 161 177 103 Chalc

Cu (ppm) 24 108 310 (15) 68 (15) 3519 4117 1113 Chalc

Ni (ppm) 631 93 1132
5208

(2000)
562 (2000) 23934 24490 4300 Sidero

Nd (ppm) 22 30 (1.9*) 21 (1.9*) Chalc
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V (ppm) 5 97 71 114 (40) 165 (40) 37 44 83 Litho

Ce (ppm) 6 54 66 12 (3.5*) 18 (3.5*) 11 10 12 Litho

La (ppm) 1 30 36 9 (1.3*) 12 (1.3*) 11 9 Litho

Ba (ppm) 18 578 351 42 (0.7) 86 (0.7) 27 16 60 Litho

Ru (ppb) 0 0 0 0 0 0 0 Sidero

Rh (ppb) 0 0 0 0 0 0 0 0 Sidero

Pd (ppb) 1 3 11 44 3 49 53 11 Sidero

Os (ppb) 0 0 0 0 0 0 0 Sidero

Ir (ppb) 0 0 0 0 0 0 0 0 Sidero

Pt (ppb) 1 4 8 33 5 36 42 13 Sidero

Au (ppb) 3 7 8 32 (60) 7 (60) 10 15 13 Sidero

Table 1 B: Ratios between the element concentrations in both areas. OR = average crustal concentration of ultramafic rocks.

KB=Kabanga, LH = Luhuma. N= Number of data used. Other abbreviations are the same as in Table 1A. (After Macheyeki,

2011).

 
QTZ

(N=2)

SCHIST

(N=8)

MPEL

(N=10)

KULTRA

((N=8)
OR

KULTRA/

OR

LUTRA

(N=8)

LULTRA/

OR
KB/LUH

LH/

KB

KMORE

(N=8) 

KNORE

(N=8)

LORE

(N=6)

Element

type

(Faure,

1991)

Cr (ppm) 257 142 171 2496 1800 1.39 1978 1.10 1.26 0.79 907 1108 947 Chalc*S

Mo (ppm) 1 1 2 4 0.3 13.33 2 6.67 2.00 0.50 17 18 10 Chalc*L

Nb (ppm) 11 10 2 9 0.22 3 0.33 0.67 1.50 2 2 Litho

Zr (ppm) 33 261 254 22 38 0.58 43 1.13 0.51 1.95 21 19 22 Litho

Y (ppm) 0 24 24 6 12 6 4 5 Litho

Sr (ppm) 70 83 18 5.5 3.27 33 6.00 0.55 1.83 11 26 Litho

U (ppm) 3 3 4 0.002 2000.00 0.002 1.00 2000.00 0.00 Litho

Rb (ppm) 2 140 90 8 1.1 7.27 25 22.73 0.32 3.13 9 7 15 Litho

Th (ppm) 0 15 16 4 0.0045 888.89 5 1111.11 0.80 1.25 Litho

Pb (ppm) 22 39 54 0.5 108.00 9 18.00 6.00 0.17 14 32 31 Chalc

Ga (ppm) 21 20 7 1.8 3.89 9 5.00 0.78 1.29 9 13 8 Chalc*L

Zn (ppm) 47 98 101 40 2.53 71 1.78 1.42 0.70 161 177 103 Chalc

Cu (ppm) 24 108 310 15 20.67 68 4.53 4.56 0.22 3519 4117 1113 Chalc

Ni (ppm) 631 93 1132 5208 2000 2.60 562 0.28 9.27 0.11 23934 24490 4300 Sidero

Nd (ppm) 22 30 1.9 0.00 21 11.05 0.00 Chalc
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(Faure,

1991)

V (ppm) 5 97 71 114 40 2.85 165 4.13 0.69 1.45 37 44 83 Litho

Ce (ppm) 6 54 66 12 3.5 3.43 18 5.14 0.67 1.50 11 10 12 Litho

La (ppm) 1 30 36 9 1.3 6.92 12 9.23 0.75 1.33 11 9 Litho

Ba (ppm) 18 578 351 42 0.7 60.00 86 122.86 0.49 2.05 27 16 60 Litho

Ru (ppb) 0 0 0 0 0 0 0 Sidero

Rh (ppb) 0 0 0 0 0 0 0 0 Sidero

Pd (ppb) 1 3 11 44 3 49 53 11 Sidero

Os (ppb) 0 0 0 0 0 0 0 Sidero

Ir (ppb) 0 0 0 0 0 0 0 0 Sidero

Pt (ppb) 1 4 8 33 5 36 42 13 Sidero

Au (ppb) 3 7 8 32 60 0.53 7 0.12 4.57 0.22 10 15 13 Sidero
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Figure 9: Chondrite-normalized PGE (IPGE, PPGE) plot for the Kabanga ores (knO and
kmO), Luhuma ores (Lo1 and Lo2), Kabanga ultramafic bodies (ku73 and ku08),
Luhuma ultramafic bodies (Lu5 and Lu6) and gossans from Kabanga main (GOSSa
and GOSSb). The order of the elements (left to right) is of decreasing melting point.
Chondrite values used are from Naldrett and Duke (1980) and Rollinson (1993).
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Cu/Pd plots

Plots of Cu/Pd are presented. They show
positive correlation (with some few outliers)
for the Kabanga area and positive clear
correlation for the Luhuma. The slopes are !
30 for the Kabanga and 150 for the Luhuma
(Fig. 8). The difference between the two
slopes implies that Cu than Pd are enriched
differently in Kabanga and Luhuma.

Chondrite normalized plots of PGE

Chondrite normalized plots have been
presented firstly in a summary statistical
table (Table 1) and also as chondrite
normalized plots (Fig. 9).

Fig. 9 shows that all the IPGEs have very
low normalized ratios in each rock and in
gossan samples as compared to the PPGEs.
This can be explained by a number of
contrasting reasons. (1) the effect of
compatibility and incompatibility of IPGEs
and PPGEs during mantle melting and
fractionation, (2) the IPGEs are often
associated with chromites as alloys or
sulfides in dunites whilst the PPGEs are
often associated with the sulfides of Fe, Ni
and Cu and are found in norites, gabbros and
dunites (Rollinson 1993). Palladium indeed
shows positive anomalies as compared to Pt.
According to Rollinson (1993), the
ultramafic and mafic rocks do show positive
Pd and negative Pt and Au anomalies.
Again, all plots for ultramafic rocks and ores
from Luhuma areas are relatively subdued as
compared to those from Kabanga. These
differences in contrasts of the plots could be
attributed to controls by major element
composition of the magma (Pichard et al.

1995), which acts on the variations of
sulfidesulfide capacity in residual liquids.
Important major elements are CaO +Al2O3

and SiO2. The FeO activity has also been
pointed as an important element contributing
to the variation mentioned above.

Other trace elements

Table 1A, B show that, lithophiles are 1.5 to
3 times more concentrated in Luhuma than
in Kabanga. This observation however
excludes U that seems to be highly
concentrated in Kabanga to the order of
2000 times the average crustal concentration
of U in ultramafic rocks (Faure 1991).
Chalcophiles are more concentrated in
Kabanga than in Luhuma at orders of 1.5 to
6 times. Elements that are concentrated in
more than one phase are of the order of 1 to
2 times higher in Kabanga than in Luhuma.
These include Cr, Mo and Ga.

Platinum: the average concentration of Pt in
the Luhuma ultramafic rocks is the same as
that in metasedimentary rocks in Kabanga
(i.e. 1-8 ppb). In massive sulfides (ore)
however, the values rise slightly (mean,
13ppb). Contrarily, Pt values in ultramafic
rocks from Kabanga are 5 times more higher
than those in Luhuma, and in Luhuma ores,
Pt values are 3 time less than those in
Kabanga ores.

DISCUSSION

The fact that IPGE versus MgO (wt%) plots
show unclear trends whereas PPGE (except
Pt) show clear trends in the Kabanga area
reflects the degree of compatibility of the
IPGE  and incompatibility of the PPGE in
the upper mantle. Data from Fig. 10 show
that Pt has been abnormally concentrated in
metasedimentary rocks particularly on the
western part of the Kabanga main deposit
(as intersected by drill hole KN9869)-hence
its unique trends with silicates or MgO
(wt%).

It can also be shown that the silicate magma
from Kabanga have two major sources of
Al2O3 (wt%) as a plot of Al2O3 (wt%) from
Kabanga shows two populations, probably
reflecting Al2O3 (wt%) from silicate and
country rocks or one population reflects of
Al2O3 background values and the other,
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anomalous values. For the Luhuma, such a
plot show only one population, this probably

indicate that the Al2O3 (wt%) used here
comes from one major source; the silicates.

Figure 10: The plot of Pt (ppb) versus MgO (wt %) for the Kabanga Ni-Cu sulfide deposit.
Isolated higher values of Pt (up to > 3000 ppb i.e. > 3%) in the Kabanga Main ore
body were intersected.

NiO (wt%) versus MgO (wt%) plots show
that there is a positive correlation in the
Luhuma and a negative correlation in the
Kabanga. However, this fact is true for NiO
(wt%) "2 (Figs. 11) and mineralized zones
are characterized by MgO (wt%) of # 2
meaning that relatively low values of Ni
concentration are proportional to silicate
concentrations but as Ni values increase
above a certain level, the relationship is
different.

TiO2 versus Fe2O3T, Al2O3 versus SiO2,
PGE versus MgO, PGE versus Cr as well as
Cu/Pd have been compared.

A unique picture, worthy mentioning, is the
one that is revealed when Fe2O3T and TiO2

are plotted. The picture is clearer for the data
from Kabanga than those from Luhuma:

clusters and gaps (horizontal and vertical)
are defined. From these results one may
attempt to say that the values of TiO2 close
to 0.45 wt% and the values of Fe2O3T ! 50
wt%, when obtained from exploration
activities are not characteristic of any
samples from Kabanga (Fig. 4). They
r e s p e c t i v e l y  s e p a r a t e  b a r r e n
metasedimentary rocks-disseminated sulfide
ore and massive sulfide ore-disseminated
sulfide ore.

PGE versus MgO indicate variable trends;
generally increasing with increase in MgO.
For Cu/Pd, the plots show positive
correlation from both Kabanga and Luhuma
ores implying that Cu than Pd are enriched
differently in Kabanga and Luhuma. Steeper
slope in the Luhuma than in the Kabanga
may also imply higher Cu values in Luhuma
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than in the Kabanga. However, the fact that
PGE increase with increase in MgO means
that PGE (and hence Pd) are higher in the
MgO higher area (the Kabanga area) and

that the Cu/Pd higher slopes in the Luhuma
means that Pd is depleted or is present in
relatively small amount as compared to
Kabanga (the MgO-rich area).

Figure 11: (A) MgO (wt.%) versus Ni (ppm) for the Kabanga area. KM = Kabanga Main,
KN = Kabanga North, S = suprolite, dis = disseminated ore, KMd = detached  ore from
Kabanga Main, KNd = detached ore from Kabanga North. M + G = metapelite and
gossan. (B) MgO (wt.%) versus Ni (ppm) for the Luhuma area. ‘A’ represents fields of
drill holes LUH02, 05, 06, 13 and 15; ‘B’ represent fields of drill holes LUH02, 05, 13
and 15; and ‘C’ represent fields of drill holes LUH05, 06, 13 & 15. LUH06, is the
exclusively the field of LUH06 (For location see Fig. 12); (From Macheyeki 2011).

All these results indicate potentiality of the
Kabanga over the Luhuma in terms of PGE.
However, similar positions of ores from both
Luhuma and Kabanga on their TiO2 versus
Fe2O3T plots indicate that the Luhuma is
also potential for Ni-Cu sulfide deposits
particularly on drill holes LUH05 and
LUH13 where these samples were taken
from.  In Macheyeki (2011), the areas in
which these drill holes are located were
recommended as suitable drill targets for Ni-
Cu sulfide deposits (Fig. 12). What could
this imply? This could be compared to the
facts reported by Song et al. (2011) that
several factors that lead to concentration of
Ni are therefore not only limited to presence
of Ni in parental magma but also depend on;
(i) crustal contamination and assimilation of
sedimentary sulfides; e.g. Naldrett, 1998),
(ii) degree of sulfide segregation and
immiscibility, (iii) reaction between sulfide
droplets and new pulses of mafic magmas as
well as fractionation of sulfide liquids.
Recent studies have, however, shown that

the genesis of orthomagmatic deposits is
controlled by magma chamber processes
such as fractional crystallization (with or
without contamination, Duchesne et al.

2004), immiscibility and magma mixing.

In Table 1A, B, the results cast some light
on the degree of silicate-sulfide interaction
in the two areas (deposits). The possible
explanation would be that the silicate rocks
in Kabanga have segregated more (as a
results of silicate rocks-metasedimentary
rocks interaction (Naldrett 1998) or that
relatively more pulses of chalcophile rich
silicate magma have been pumped in the
Kabanga area than in the Luhuma area.

While three of the PPGE (Pt, Pd and Au)
have significant concentrations in both
Kabanga and Luhuma areas, there are
relatively more in Kabanga than in Luhuma.
The IPGE and Rh, have negligible
concentrations in both areas.
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Figure 12: The overlay of the proposed drill targets on the geology of the Luhuma prospect.
The relatively most potential area is within the area defined by coordinates UTM36
259799E/9707413N (From Macheyeki 2011).

CONCLUSION AND

RECOMMENDATIONS

It has been shown that PGE (especially
PPGE) have higher concentrations in the
Kabanga than in the Luhuma. IPPGE have
insignificant values in either part. The
Kabanga area, particularly the Kabanga
Main need be studied for PPGE in detail. In

terms of Ni-Cu sulfide deposits, the Luhuma
area need not be ruled out even though its
PGE contents are too low to justify for PGE
exploration. The zone between LUH05 and
LUH13 is likely to be the most potential for
Ni-Cu sulfide deposit (s), Fig. 12.
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