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Abstract. The focus of this study was to determine the genomic prediction (GP) algorithms with the 
highest prediction accuracies for reducing the breeding and selection cycles in Vitellaria paradoxa. 
The efficiency of the GP algorithms were compared to evaluate five Shea tree growth traits in 708 
genotypes with 30734 Single Nucleotide Polymorphic (SNPs) markers, which were reduced to 27063 
after removing duplicates. Five hundred forty-nine (77.54%) Shea tree training population and 159 
(22.46%) training population were genotyped for 30734 single nucleotide polymorphisms (SNPs) 
and phenotyped for five Shea tree growth traits. We built a model using phenotype and marker data 
from a training population by optimizing its genomic prediction accuracy for effectiveness of GS. 
The phenotype and marker data were used for cross validation of the prediction accuracies of the 
different models. Prediction accuracies varied among the genomic prediction algorithms based on the 
five phenotypic traits. We determined the best genomic algorithm that is more suitable for reduction 
of selection and breeding cycles in Vitellaria paradoxa. The GP algorithms were evaluated and we 
conclude that rrBLUP is the best for improving the prediction accuracy for reducing the breeding 
cycle in Shea tree. 

Keywords: Imputation, genomic selection, phenotypic traits, genotypes, validation. 

Introduction 

Shea tree (Vitellaria paradoxa C.F. Gaertn.subsp. nilotica (Kotschy) belongs to the Order 
Ebenales, family Sapotaceae, genus Vitellaria (Byakagaba et. al., 2011, Makerere University 
Institute of Environment and Natural Resources. 1998). The specie plays economic and 
ecological roles to the communities in the savannah parklands of Africa where it has been 
growing for over 1000 years (Jasaw et al., 2015 and Issaka, 2017). The tree’s importance is 
derived from its products which include: edible fruits, oils, income, cosmetics and chocolate 
production which are well traded worldwide (Gwali et. al. 2012). Since its domestication over 
1000 years ago, it has not yet fully been improved for important agronomic traits and this limits 
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its cultivation as a commercial crop despite of its commercial importance. Conventional Shea 
breeding efforts have been tried in West Africa with no any such effort in Uganda (Asante et al. 
2012, Gwali et al. 2015, Mawa et al. 2016 and Issaka 2017). Application of genomic selection as 
a new approach of breeding system would go a long way in cutting down the long breeding 
period that would be taken using conventional means (Koebner and Summers, 2003, Reece & 
Ejnavarzala, 2006 and Grattapaglia 2014). When clearly identified, molecular markers can be 
used in Shea breeding programmes to predict the presence of preferred traits important for 
trees improvement (Chataway, 2005 and Hayes et al. 2009). In fact, genomic selection efficiency 
can be improved with increased genomic prediction accuracies. Studies conducted by 
Cleverland et al. (2013) revealed that the Genomic Estimated Breeding Value (GEBV) 
accuracies in pigs were comparable to those of dairy cattle with increased size of the training 
set. Several algorithms/models are now in place for prediction and validation of their prediction 
accuracies. Choice of the prediction models that yield the highest prediction accuracies of 
breeding values for traits of interest is important in any tree improvement programme (Calus 
2010). 

Although (Bernando et al. 2007) recommended Bayesian methods in evaluating genomic 
selection, likewise, quantitative tools such as Best Linear Unbiased Prediction (BLUP) have also 
successfully been used elsewhere (Silva et al. 2000). It is important to note here that different 
genomic prediction models will have varied prediction accuracies based on their trait genetic 
architecture. A number of tree species such as Pines, poplars, eucalyptus and apple fruit tree 
(Resende et al. 2012a; Zapata-Valenzuela et al. 2012 and Kumar et al. 2012b) have been advanced 
from such methods. The main focus of this study was to reduce the selection and breeding 
cycles in Shea tree (V. paradoxa) for its improvement in Uganda. Furthermore, the study aimed 
at testing the effectiveness of genomic prediction for improvement of Shea tree for diameter, 
total height and leaf index traits and identifying the tree’s traits significantly important for 
reducing selection and breeding cycles.  

Materials and Methods 

Genotyping 
Shea Tree DNA extraction was conducted from Biosciences Eastern and Central Africa- 
International Livestock Research Institute (BeCA-ILRI) Integrated Genotyping Service & 
Support (IGSS) Unit. Genotyping by sequencing DArTseq (1.0) technology was performed in 
accordance to Barilli et al. (2018), Raman et al, (2014) and Kilian et al, 2012).  

The Shea tree reference genome was accessed from BREED project to align the reads and 
detect the single nucleotide polymorphism (SNPs) using SNP callers in accordance to Glaubitz 
et al., (2014) and Wang (2010). SNP calling was performed using TASSEL 5.0. Missing data of 
10% were sought and imputed using snpReady software (Granato and Fritsche-Neto, 2018). 
Search for SNP markers for polymorphic information content, expected heterozygosity, 
compliance with Hardy Weinberg Equilibrium and number of polymorphic loci done.  

A total of 205,781 reads of sequenced data were obtained on analysis and 78% were good 
barcoded reads. The total alignment rate of the reads to the Shea tree reference genome 
(Diversity Arrays Technology 2017) was 90%, with 78.5% exactly aligned once to an existing 
model genome. Initially, the FASTQ files were demultiplexed according to the assigned 
barcode. The reads from the samples were trimmed and tags identified as follows: a kmer length 
of 60 bp, minimum quality of 50ng/ul and quantity of 30%. The files were then cleaned using 
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kdc2_standalone_twoLetter2DArTSnp by converting two letter genotypic data into DArT SNP 
genotypic data. After imputation, 30734 Single Nucleotide Polymorphic (SNPs) markers were 
available from 708 genotyped Shea tree seedlings which were reduced to 27063 SNP markers 
after removing duplicates using the R package DartR. These were later used in the genomic 
analyses. 

Phenotyping 
A total of 708 Shea tree lines from five districts in Uganda (Amuru, Arua, Katakwi, Moyo and 
Otuke) were used in this study. Out of the total number of lines, 549 (77.54% of the whole 
population) lines with both genotypic and phenotypic data composed the training set and the 
remaining 159 (22.46%) lines were considered as the breeding set.  

All these lines were phenotyped for five Shea tree growth traits which included root collar 
diameter- measured right above the soil, total height- measured from above the ground to the 
apex of the highest leaf, leaf length measured from the petiole and the leaf blade, leaf width and 
petiole length. 

Imputation 
Imputation was performed and Nipals; PPCA; MissForest; SVD; EM and Knn imputation 
methods were ran on the dataset with an additional 10% introduced missing values. Missing 
values were automatically estimated by the software as a linear combo of the k most significant 
eigengenes. They were iterated until the change in the estimated solution fell below threshold. 
A collection of imputation methods in the algorithms was scored by a calculated Simple 
Matching Coefficient (SMC) and the optimal candidate (highest SMC) used to impute the 
original genotypic dataset. Here, genotypic data were imputed using a dynamically selected best-
performing method by testing a number of different imputation algorithms (Nipals, PPCA, 
MissForest, SVD, EM), calculating a SMC which reflected their performance. 
The NIPALS algorithm (Wold 1973) which had the highest SMC was then used to impute the 
dataset. The algorithm with Prediction models were developed for each trait and cross validated 
by means of a ‘validation’ population, a randomly sampled subset of individuals of the same 
training population that did not participate in the estimation of marker effects.  

Genomic Prediction Models 
We used sixteen Genomic Prediction algorithms to evaluate prediction accuracies of five Shea 
tree growth traits. Prediction models were developed for each trait and cross validated using 
‘validation’ (test) population (Bai and Li 2019). Genomic predictions were performed using the 
KD Compute platform with the 27063 unique SNPs and the raw phenotypic data.  

Data Analysis 

Plant Material and Phenotype Data 
The Shea tree plants used in this study were derived from the open pollinated seeds in the 
natural populations of the Shea parklands of eastern, Northern and West Nile regions of 
Uganda. The training population, used in this study consisted of 180 Half-sib (HS) families 
composed of 708 individuals. The HS families were raised in a tree nursery at Ngetta Zonal 
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Agricultural Research and Development Institute (NgeZARDI), Lira district. Their parents 
were selected from five populations located in the districts of Katakwi, Otuke, Amuru, Moyo 
and Arua in Uganda. Out of 752 genotyped trees, 708_were selected after filtration for high 
quality SNPs. The training set was comprised of 549 (77.54% of the whole population) lines 
with both genotypic and phenotypic data and the remaining 159 (22.46%) lines were considered 
as the breeding set.  

Genotype Data 
The DArTseq and SNP platforms images were analysed using DArTsoft v.7.4.7 (DArT P/L, 
Canberra, Australia) and scored using DArTsoft as binary data (1/0). The DArT software 
automatically computed the SNP markers (call rate, polymorphic information content (PIC). A 
Mixed Linear Model (MLM) based method, genomic best linear unbiased prediction (GBLUP), 
was performed by using the “kinship.BLUP” function of the R package rrBLUP ver. 4.337 with 
linear ridge kernel regression (RR) and non-linear Gaussian kernel regression (GAUSS) and the 
Bayesian linear regression models Bayesian Ridge Regression (BRR), Bayesian Lasso (BL), 
BayesA, BayesB, and BayesC implemented in the R package BGLR ver. 1.0.363. The additive 
relationship matrix (kinship matrix) was computed by the “A.mat” function of the R package 
rrBLUP. 

We verified the algorithms by assessing their prediction accuracies. A 10-fold cross-validation 
scheme with 5 replications totalling 50 repetitions and the prediction accuracies were a result 
of the pooled correlations between the GEBV and the true phenotypic values from each to 
compare their prediction accuracies. Cross Validation was performed by randomly subletting 
the marker data by filtering samples that had a known phenotype. This in turn was further 
separated into 10 parts; one part as the test set and the remaining 9 as the training set for each 
iteration. Correlation scores were calculated by collapsing results across all folds within a 
repetition. The prediction accuracies were a result of the pooled correlations between the 
GEBV and the true phenotypic values from each trait. The genomic prediction accuracies were 
evaluated using their correlations between their GEBV and phenotypic means (estimated 
breeding values) as in (Crossa et al. 2010). Four prediction models out of the sixteen validated 
ones provided satisfactory selection accuracies (correlation between the observed and predicted 
breeding values obtained by cross-validation) useful for calculating the genomic estimated 
breeding values (GEBV) of the candidates. 

The GP Model performed in this current study was: y = 1nµ + Zg + e.  
Where:  
y represents vector of observation; 1n represents n × 1 vectors which had one; µ represents the 
population mean; Z stands for the design matrix which relates the random variables to genetic 
values; g ∼ N(0, Kσ2 g) stands for the genetic values; K represents relatedness matrices; σ2 g 
represents the genetic variance; e ∼ N(0, Iσ2e) stands for the residuals; I stands for identity 
matrix and σ2e represents the residual variance. BLUPs was used to perform Cross Validation 
by randomly subletting the marker data by filtering samples that had a known phenotype. 

Results 

Genomic Selection Algorithms and Prediction Accuracies 
The prediction accuracy was high for leaf length and combination of tree diameter and leaf size 
characteristics and lower in leaf width and petiole length. GBLUP (RR and GAUSS), Ridge 
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Regression, and Bayesian regressions had higher accuracies for all the traits. The prediction 
models included the SNP information and the four phenotypic growth traits. MissForest_Sqt 
(r = 0.251) models proved more reliable for the prediction of height growth trait. On the other 
hand, the Bayesian Ridge Regression (BRR) model yielded the highest prediction accuracy (r = 
0.27), followed by Bayesian Lasso (BL), (r = 0.26) and rrBLUP (r = 0.25), implemented in the 
R package BGLR ver. 1.0.363.  Assessment of the leaf biomass trait resulted in rrBLUP (r = 
0.26) and MissForest_Sqt (r = 0.252) with the highest prediction accuracy. It was also observed 
that rrBLUP (r = 0.297) and mms+REML (r = 0.296) among others were most suitable for leaf 
size index prediction (Table 1).  

Over all, rrBLUP (r = 0.2767), BLR (r = 0.2744), mmer_EMMA (r = 0.2726) and bglr_Bayes 
(0.2722) were the top four algorithms with highest accuracies (Figure 7).  The prediction 
accuracies were evaluated by 10 folds of the covariance of the parental population partitioned 
by each fold to verify the models. Five repetitions and 10 folds were applied maintaining the 
prediction accuracy as Pearson’s correlation coefficients (r = 0 at r < 0) between observed and 
predicted genotypic values. The missing data were imputed using Nipals which had the highest 
SMC (0.804). 

 
Table 1. Prediction accuracies of genomic prediction algorithms for the Shea tree growth traits. 

 
 
 
 
 
 
 
 
 
 
 

Algorithms Trait prediction accuracies 

Tree height Tree diameter Leaves per tree Leaf size index 
MissForest_Sqt 0.25 0.2 0.252 0.27 
BL 0.20 0.26 0.2 0.253 
RKHS 0.179 0.2 0.2 0.26 
BRR 0.14 0.27 0.168 0.272 
mmer_AI 0.132 0.2 0.2 0.2 
mmer_NR 0.131 0.16 0.19 0.075 
mmer_Emma 0.13 0.162 0.23 0.273 
BLR 0.098 0.122 0.179 0.15 
MissForest_Reg 0.095 0.214 0.2 0.22 
BayesB 0.08 0.216 0.21 0.21 
BayesA 0.066 0.2 0.179 0.25 
BayesC 0.058 0.213 0.25 0.27 
rrBLUP -0.88 0.25 0.26 0.297 
mms+ML -0.153 0.004 0.1 0.06 
mms+REML -0.15 0.24 0.23 0.296 
brnn -0.01 0.09 0.08 0.1 
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a. 

 
 
b. 
 

 
 
Figure 1. Comparison of prediction accuracies for the four Shea tree growth traits in a) PC1 
and b) PC2 using 16 genomic prediction algorithms. Prediction accuracy was measured as 
the Pearson’s correlation coefficient (r) between predicted genotypic values and phenotypic 
values. 

Choice of Genomic Prediction Algorithm 
Choice of an algorithm with high genomic prediction accuracy and precision gives an upper 
hand to tree improvement over other algorithms with relatively lower accuracy (Xie and Yanchu 
2000). Each of the evaluated prediction algorithms indicated varying levels of prediction 
accuracies with each of the traits in studied (Table 1).  
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The ANOVA for the differences in the prediction accuracies of the different algorithms was 
significant (P <0.001); the s.e.d. was 0.01089; Least significant differences (l.s.d.) of means (5% 
level) 0.02178 confirming their significance. 

Figure 2 below clearly show how close the predicted parameters are too close to the middle 
line for the rrBLUP plot (blue colour) as compared to the rest. It indicates that the predicted 
values are closer to the observed values in rrBLUP than in other algorithms. 

 
 

 
 

Figure 2. Scatter plot showing overall variability and dispersion of predicted values and 
observed values of Shea genotypes for fast growth. The colours represent the different 

algorithms while the dots show distribution of genotype scores. 
 
 
The heat map reveals how the Shea tree genotypes have clustered according to their faster 
growth traits. Two clusters were formed revealing two groups/population as those with first 
growth traits and those with low growth traits (Figure 3). 

Tree Traits Significantly Affecting Selection and Breeding Cycles 
Three growth traits except “number of leaves” and “leaf petiole length” were significantly 
correlated to one another (Table 2). Root collar diameter and leaf size were most correlated and 
formed 54.8% of the total variation in Shea trees growth and maturity in Uganda.  
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Table 2. Pearson product-moment correlation coefficient of the five Shea tree growth traits with 
their p- values (italicized). 
  Root collar  Height No. leaves  Leaf length Leaf width Petiole length 
Root collar  1.000 0.001 0.009 0.001 0.001 0.001 
Height 0.305 1.000 0.010 0.001 0.001 0.001 
No leaves  0.110 0.109 1.000 0.030 0.33* 0.688* 
Leaf length 0.400 0.206 0.092 1.000 0.001 0.001 
Leaf width 0.249 0.156     -0.041*   1.000 1.000 0.001 
Petiole length 0.305 0.198     -0.017* 0.454 0.278 1.000 
 
Stem diameter (in this case, root collar diameter) and leaf size index indicated moderate 
correlation (Pearson's r = 0.4, p-value ≤ 0.001) to one another and these are good estimators 
of tree growth and thus maturity. This is in line with Okao et al., (2019) who found out that 
broad leaved and larger stemmed Shea tree accessions from Palabek were growing faster (height 
growth rate registered at annual rate of 125.5 cm) than other accessions planted within the same 
period and location. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Genetic and phenotypic population structure of the parental population showing 
heat map of Shea tree growth traits and ward’s hierarchical clustering based on Euclidean 
distance between genotypes. Up to 75% of the total variations in the populations is explained 
by the first two PC’s. 

Slow 
growing 
group 
 

Fast 
growing 
group 
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Discussion and Conclusion 

Sixteen genomic prediction algorithms were evaluated on the five traits and their prediction 
accuracies compared. Each prediction algorithms exhibited quite a different accuracy from trait 
to trait (figure 7). Ridge regression–best linear unbiased prediction (rr-BLUP) proved most 
accurate for total height with prediction accuracy of 0.277 at a very high precision. The 
algorithm assumes that traits are controlled by many loci of small effects so that all marker 
effects are random, normally distributed and with a common variance. Although Grattapaglia 
(2014) retaliated that rr-BLUP is best used for genomic prediction at start before other models, 
this study has proved it more accurate and with higher precision for genomic prediction in trees 
than all the other fifteen algorithms (table 2). rrBLUP treats SNPs as fixed effects and other 
factors as random effect. In fact, Lorenz et al. 2011 recommended rr-BLUP of being very 
effective and faster in computation time and prediction efficiency. The model works better in 
animal and plant breeding by including marker interactions which increase its prediction 
accuracy (Souza et al. 2019, Tang et al. 2016, Zapata-Valenzuela et al. 2013). Actually Hani et al. 
(2018) reported selection methods of genetic algorithm that are more suitable for scheduling 
problems. On the other hand, models such as rrBLUP that treats all SNPs as random effects 
have been reported elsewhere as having the highest prediction accuracy in genomic selection in 
Citrus (Mai et al. 2017). The algorithm was reported to capture additive genetic effects which is 
hereditary. Actually, additive genetic effects are the major contributors of genetic variation in 
any given population. Therefore, prediction algorithms that takes in account additive genetic 
effects is the best for genomic selection in perennial species like Shea tree to enable selected 
traits to be passed on to the offspring even after a long period. This indicates that rrBLUP 
algorithm accelerates breeding process by reducing the selection and breeding cycles in Shea 
trees (Bai and Li 2019). 

The rrBLUP higher performance in the prediction of tree girth and leaf size index traits 
clearly confirm the high accuracy and precision in the genomic prediction for early maturity in 
Shea tree growth. This is true because these traits are important in rapid increase of any plant 
growth. Actually, bigger tree leaves mean higher rate of manufacturing photosynthates useful 
for metabolic activities required for faster growth. This has been confirmed in the heat map 
(Figure 9) which partitioned the population clusters into fast growing and slow growing 
genotypes. 

This study reveals variation in the accuracy of genomic prediction algorithms among the four 
traits of study. Tree diameter and leaf size index had higher prediction accuracy throughout all 
the sixteen evaluated algorithms. These are the traits that determine growth and maturity in 
trees, important for reducing selection and breeding cycles. 
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