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Abstract 

 

Inverse electromagnetic induction is an imaging technique for reconstructing the 

conductivity and permeability distributions in a region of interest from 

measurements of impedance made at its boundary. In general, there are two 

approaches to the reconstruction problem: the pixel-based approach and the 

parameter-based approach. This paper describes how both approaches may be 

combined for a more systematic reconstruction. 
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I!TRODUCTIO! 

 
Non-invasive imaging is an ensemble of techniques for reconstructing the material 

composition of a region of interest, or object space, from measurements made at its 

boundary. For example, in electromagnetic induction imaging, it is the magnetic 

permeability and conductivity contrasts in the object space that are exploited. In 

this technique, the region of interest is energised by a time-varying magnetic field, 

usually sinusoidal, which is scattered in regions of high conductivity and 

reinforced in regions of high magnetic permeability. Measurements of mutual 

inductance, or impedance, are then made at the accessible boundary of the object 

space using a sensor array. The change in impedances, relative to an empty object 

space, is a function of the conductivity and permeability distributions. These 

measurements are used to reconstruct the object space composition using an 

appropriate inversion, or image reconstruction, algorithm. An overview of this 

technique can be found in (Tapp et al, 2003). Applications of electromagnetic 

imaging include medical imaging (Al Zeibak et al, 1993), solidification imaging of 

molten metals (Xiandong et al, 2005; Pham et al, 2000), and non-destructive 

testing of reinforced concrete structures (Gaydecki et al, 1994), amongst others. 

This technique bears strong similarities with microwave imaging (Pastorino, 

1998), with the difference that a much lower frequency is used for electromagnetic 

induction imaging, and this allows for a quasi-static field approximation. The 

situation presented in this paper is geared towards the imaging of steel 

reinforcement bars in concrete structures, and is further complicated from the fact 

that measurements cannot be made over the entire boundary surrounding the 

region of interest, but only from one side. This form of imaging is also known as 

planar electromagnetic induction tomography. 

 

An algorithm which has been developed and tested for electromagnetic imaging is 

the simultaneous increment reconstruction technique (SIRT) (for example, see 

Bissessur & Peyton, 2006). This algorithm employs a pixel representation of the 

material distribution, and assumes a linear relationship between the boundary 

measurements and the material distribution in the object space. In practice, this is 

not the case since inter-scatter interaction is a nonlinear behaviour. Another form 

of reconstruction, which is used for general imaging problems, is based on a 

parametric representation of the object space. These parameters may then be found 

by an optimisation technique such as the Levenberg-Marquardt algorithm (see Gill 

et al, 1981). A practical example is given in (Isaksen et al, 1993) for the shape 

reconstruction of stratified oil in a circular flow pipe from capacitance 

measurements made at its boundary. Application of this technique to an 

electromagnetic inverse problem has been considered by Bissessur & Bhurtun 

(2005). The success of this technique, however, relies on a proper choice of 

parameters and their initialisation. In this paper, a systematic approach for the 

reconstruction problem is presented, which combines the pixel-based and 

parameter-based algorithms. It is shown how the pixel-based algorithm provides a 

useful first-order estimate of the object space and, in particular, how the number of 

objects and object parameters are estimated from an amplitude image. These 

parameters are then refined by the parametric reconstruction algorithm. 
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ELECTROMAG!ETIC I!DUCTIO!: FORWARD A!D I!VERSE 

PROBLEMS 

 

A planar sensor array for electromagnetic induction imaging is shown in Figure 1, 

in two dimensions. The sensor array consists of 16 coils, which can be energised 

in turn by a sinusoidal current of frequency 100 kHz, and this produces a time-

varying magnetic field over the neighbourhood of the array in the region to be 

inspected, that is, the object space.  This excitation frequency is chosen so that 

the wavelength is large compared the problem dimensions, and hence a 

quasi-static field approximation may be employed. The flux linkage with the 
other sensor coils produces induced voltages at their terminals. The coupling 

between an excitation and sensor coil can be represented by a mutual-impedance, 

which can be measured using an impedance analyser. When there are no scattering 

objects present in the object space, the impedance of coil pairs are referred to as 

background impedances. These background mutual impedances may be organised 

in a vector, denoted by 
0Z , which consists of 256 complex numbers. For a 

lossless sensor array, all entries in 
0Z  are purely imaginary. 
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Figure 1. A sensor array for electromagnetic induction imaging 

 

When scattering objects are present in the object space, the magnetic flux linkage 

between all excitation-sensor coil pair is altered. This results in a change in 

impedance (from the background value) of every coil-pair in the sensor array. The 

vector of impedance changes, denoted by Z∆ , is a function of the size, shape, 

position, and electrical properties (such as conductivity and magnetic permeability) 

of the scattering objects. The entries in vector Z∆  are, in general, complex 

numbers. In a practical situation, the material distribution in the object space is 

unknown, and the inverse problem (or image reconstruction problem) consists in 

estimating it from the measurable vector Z∆ . 

 

Solving the general inverse problem presents a formidable difficulty for several 

reasons. Firstly, the problem of reconstructing the material distribution )(ro , as a 
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function of all points r in the object space, from a limited number of measurements 

is underdetermined, or ill-posed. Secondly, the function that relates Z∆ to )(ro  is 

not known explicitly, and numerical and computational methods are normally 

employed for its evaluation. Thirdly, this function would in general be highly 

nonlinear, and till date, there is no direct method to invert a general multivariable 

and multidimensional non-linear function. For these reasons, it is necessary to 

reduce the number of unknowns, and assume certain a priori information. 

 

Electromagnetic scattering inverse problems are generally divided into two 

categories: inverse medium problem and inverse obstacle problem (Colton & 

Kress, 1998). In the former, the unknown is the material distribution as a 

continuous function of spatial coordinates over the object space. In the latter, the 

scatterers are considered as compact objects of uniform material composition, 

which is known. The unknown is the boundary between the scatterers and the host 

medium (which is assumed to be non-conducting and non-magnetic). The second 

class of problems are in general much simpler to solve since a fewer number of 

parameters are needed to specify a boundary than to specify a continuous variation 

over an entire object space. 

 

In this paper, it is assumed that the object space consists of an unknown number of 

circular obstacles, denoted by c� . Furthermore, the centre-position ),( cc yx  and 

radius R of the scatterers are unknown, whereas the electrical properties of all 

scatterers are the same, and known values. It is assumed that scattering objects 

have conductivity 
-116 m102 −Ω×=σ  and relative permeability 600=µR , 

which corresponds to the material properties of steel commonly used as 

reinforcement bars in concrete structures. In other words, the object space material 

distribution is characterised by an open set of parameters 

{ }K,,,,,, 222111 RyxRyx cccc=β . 

 

In the above context, the forward problem is defined as the evaluation of Z∆  for a 

known vector β . An efficient approach for solving this problem is described in 

(Bissessur & Peyton, 2006). For a compact obstacle, the scattered electromagnetic 

field is adequately represented by a surface current density and a magnetic dipole 

density on the surface of the object (Colton & Kress, 1998). In the current problem, 

the object space is modelled by a two-dimensional compact support ℜ  in the x-y 

plane, representing a cut through a three-dimensional region by the sensor-array 

plane. Therefore, three-dimensional bars are modelled by circular contours C in the 

x-y plane. Furthermore, it is assumed that the total electric field is in the z-

direction, whereas the magnetic field has no z-component. Hence the surface 

current density on a scatterer is defined on C and oriented in the z-direction, 

whereas magnetic dipole distribution is defined over the same support but always 

tangential to C. The scattered electric field is then expressed as a sum of the 

electric field produced by surface current density and a magnetic dipole density, 

and its z-component is given by: 
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where:  

),(1 rr ′AG represents the electric field at r produced by an impulse current 

at r’ and oriented in the z-direction, and is given by 'ln
2

0 rr −
π

ωµj
 

 ),(2 rr ′AG represents the electric field at r produced by an impulse 

magnetic dipole at r’ and oriented in the tangential direction on C, and is equal to 

)(

),(1

rn

rr

′∂

′∂ AG
, with )(rn ′  being the outward unit normal on C at r′  

 )(r′SJ is the surface current density at point C∈′r , 

 SZ  is the surface impedance of the scatterer, 

 ω  is the angular excitation frequency, 

and 0µ  is the permeability of free space. 

In equation (1), the integrals are evaluated with respect to the coordinates C∈′r . 

The first integral is referred to as a single layer potential and is continuous across 

boundary C. The second integral is referred to as a double layer potential and is 

discontinuous across the boundary, and the discontinuity amounts to SS JZ
2

1
± . 

Using the superposition principle (Colton & Kress, 1998), and using the fact that 

the total electric field is zero inside the obstacle, the unknown density SJ  in 

equation (1) may solved for a known incident electric field. 

 

Once, the surface current density on each scatterer has been solved, the change in 

self-impedance of any coil i excited with current I can be found from the following 

relation: 

 [ ]∫ −−=∆
C

StS dCJEHZ
I

Z   
1 )0()0(

2
     

 (2) 

where 
)0(

tH and 
)0(E  are the background tangential magnetic field intensity and 

electric field strength respectively. Equation (2) has been obtained by applying 

reciprocity relations (Auld et al, 1984), and its derivation is given in (Bissessur & 

Peyton, 2006). For mutual impedance changes ijZ∆ , the background fields 

)0(E and 
)0(

tH are taken for the case when coil i is energised, whereas the surface 

current density SJ  is calculated from the background field originating from coil j. 

However, due to reciprocity, it would make no difference whether the two field 

patterns are interchanged. Furthermore, if there is more than one scatterer, each 

will contribute to a change in impedance and all contributions must be summed. 
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The impedance change of all excitation-sensor coil pairs are computed using 

equation (2) and organised in the measurement vector Z∆ . 

 

For a numerical implementation of equations (1) and (2), the surface of each 

conductor is discretised as a number of source and observation points. The method 

of moments may then be used to convert the integral equations into linear algebraic 

equations. Details of the computational method are outside the scope of this paper 

and the reader is invited to refer to the paper (Bissessur & Peyton, 2006). The main 

concern of this paper is on the inverse problem. 

 

The following sections describe how the inverse problem may be solved. For 

practical reasons, the image reconstruction is not based directly on Z∆ , but rather 

on the fractional change in impedance from background, denoted by Ω , where 

)Im(/ 0
ijijij ZZ∆=Ω . Two approaches are presented for the inverse problem: a 

pixel-based approach and a parametric approach. 

 
A PIXEL-BASED APPROACH TO SOLVE THE INVERSE PROBLEM 

 

In a pixel-based approach to reconstruct the object space, the latter is limited to the 

region { }cm 200  ,cm 1616:),( ≤≤≤≤−=ℜ yxyx , which is digitised as a 

uniform grid with a resolution of 1 cm without considering points on the borders. 

The grid is composed of 31x19 points i.e. 589 pixels altogether. When a circular 

test object of radius 1 cm, say, is positioned with its centre at a point on the grid, 

the fractional change in impedances that would result on the sensor array are 

computed are described in the previous section. It is assumed that the test object 

behaves as a perfect scatterer and the surface impedance is set to zero. Therefore, 

the impedance changes corresponding to the test object are purely imaginary, and 

are converted to purely real by applying the j−  operator. The vector of fractional 

impedance changes calculated for each grid position is the sensitivity of the sensor 

array for a test object at that location. By sweeping the test object over the entire 

grid, it is possible to generate an ensemble of sensitivity vectors for the sensor 

array over region ℜ . These vectors are then organised as the columns of a 

sensitivity matrix, denoted by A, which can be used to construct a linear model of 

the forward problem. The object function over region ℜ  may be represented by a 

vector f, where each entry fi is a complex number representing the material 

properties at the given grid location (xi, yi).  For the simplest linearisation of the 

forward problem, a commonly used approximation for the function ))(( roΩ  is in 

the following form: 

  AffΩ j=)(        

 (3) 

 

For a vector of measured fractional impedance changes measΩ , the inverse 

problem consists in finding f such that the product Afj  is as close as possible to 

measΩ  in the least square sense. An iterative inversion algorithm, such as the 

simultaneous increment reconstruction technique (SIRT), may be used to solve for 
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the best-fit image vector f. For convenience, we let qpΩ jj meas +=− and 

hgf j+= , so that the real and imaginary image vectors g and h may  be 

reconstructed from p and q respectively. First the reconstruction of the real image 

g from p is considered. The algorithm starts with an initialised value for g say g
(0)
, 

which is often taken as the null vector. The corresponding error at iteration n is 

calculated according to: 

  pAge −= )()( nn
      

 (4) 

The object space distribution f is then updated according to: 

  
)()()1( nnn λSegg −=+
     

 (5) 

where λ  is a small relaxation constant, g(n+1)
 is the updated object space to be used 

in the next iteration, and S is another sensitivity matrix constructed as follows. 

Each row of the matrix S, denoted by si, is obtained by dividing each column of A 

by its norm squared, that is: 

2
T
i

T
i

i

a

a
s =        

 (6) 

These steps are repeated until a pre-set limit is reached or the errors are sufficiently 

small. A measure of the data fitting error, such as an error-to-signal ratio (ESR), 

may be computed after the n
th
 iteration as follows: 

 
p

e

  

  
log10 dB)(in   10

ofenergy

ofenergy
ESR ×=     

 (7) 

where the energy of a vector is the sum of the squared values in the vector. 

 

An improvement of the standard SIRT algorithm is given in (Bissessur et al, 

2004). Initially, the relaxation factor is set to some value, say 0.01. If the error 

energy 
2

e for the current iteration is less than that of the previous iteration, then 

the relaxation factor is increased by, say, 10 percent. Otherwise the relaxation 

factor is decreased to say a quarter of its previous value. This allows the algorithm 

to track the maximum value that may be used for the relaxation factor at each 

iteration. A faster convergence is achieved with this modification than with the 

standard SIRT algorithm, and only about 500 iterations are sufficient to approach 

very close to the minimum achievable value of ESR with a linear model. 

 

The above algorithm is repeated for the imaginary component of the image, h, 

which is reconstructed from vector q. Hence in equations (4), (5) and (7), g and p 

are substituted by h and q respectively. Furthermore, in order to improve the 

quality of the reconstructed images, constraints may be applied on the pixels at 

each iteration, depending on a priori information available. For example, since the 

vector q is attributed to restive loss, the reconstructed vector h may be constrained 

to all positive pixels at each iteration. However, the vector g can have positive or 
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negative pixel values, depending on whether the scattering object is cancelling or 

reinforcing the magnetic field on its boundary. If it is known that the object is a 

strong scatterer, all pixel values in g may be constrained to positive values. 

 
A PARAMETRIC APPROACH TO SOLVE THE INVERSE PROBLEM 

 

In a parametric approach to solve the inverse problem, a number c� of conductors 

is assumed, and the object space is represented by the set of parameters 

{ }
ccc ��� RyxRyx ,,,,,, 111 K=β . The inverse problem may then be regarded 

as finding the vector optβ  that maximises the resemblance between )(βΩ  and the 

measured vector measΩ . In the Euclidean sense, this is the same as minimising 

the cost function ζ , where: 

 
2

e=ζ         

 (8) 

and e is the error vector given by: 

measΩβΩe −= )(        

 (9) 

 

The minimisation of the cost function may be done by a deterministic method 

employing the standard Levenberg-Marquardt algorithm, or a variant form, as 

described below. The algorithm starts with an estimate 
)0(β of the object space. 

The forward problem is solved with this estimate, and the partial derivatives of Ω  

with respect to each entry in β are also estimated from a finite-difference method, 

as follows: 

 
m

m

m β

β

β ∆

−∆+
≈

∂
∂ )()()( βΩβΩβΩ

     

 (10) 

where mβ∆ represents a small perturbation on the particular object space 

parameter. The partial derivatives may be organised in the form of a Jacobian 

matrix J, where each column is computed according to equation (10). In the 

standard LM algorithm, the change β∆  that should be made on the vector 
)0(β is 

obtained by solving the following equation: 

 ( ) eJβIJJ TT −=∆λ+        

 (11) 

where I is the identity matrix, 
T

J is the conjugate-transpose of J, and λ  is a small 
regularisation parameter to ensure that the matrix on the right-hand side is 

reasonably well-conditioned. The choice of λ  is in fact a compromise and based 
on trial and error. A very small λ  may lead to a faster convergence towards the 
solution optβ , but there is also a high risk of divergence outside the region of 
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interest. On the other hand, a larger λ  gives more stability but a slower 
convergence. 

 

A systematic procedure to obtain a proper regularisation parameter λ was 
proposed by Ciric et al (1997). The algorithm starts with an initial value of 

λ according to the following: 

 )(
1)0( JJTtr

�β
λ =        

 (12) 

where β�  is the number of entries in β . At each iteration, the current value of 

)(nλ is used to calculate β∆  according to equation (11). If this results in a 

decrease in the cost function then the regularisation parameter is decreased by a 

factor, say by 0.5 times. Otherwise the parameter is increased by a factor, say 1.5. 

This means starting with a sufficiently large regularisation parameter to avoid 

divergence, and gradually decreasing it to gain to convergence rate. Equation (11) 

may therefore be written in the following form: 

 eJIJJJJβ
TTT tr

�

1

 )( 

−

β 











 ρ
+−=∆     

 (13) 

Here, a normalised regularisation parameter ρ  is introduced. Its value is initialised 

to 1, and updated at each iteration in the same way as before. In order to assess the 

correctness of a solution, the cost function may be used as a measure of 

performance, which may also be expressed in decibels as in equation (7). 

 

Once that β∆  has been calculated using equation (13), the object space vector may 

then be updated as follows: 

 βββ ∆+=+ )()1( nn
       

 (14) 

The updated object space is then used in another iteration. This process is 

repeated until the reconstructed parameters are sufficiently close to the 

actual values, or if the data-fitting error has converged to a minimum. 

 
A COMBI!ED APPROACH TO SOLVE THE I!VERSE PROBLEM 

 

In the previous sections, two approaches to solve the inverse problem were 

presented. In the first, a linear model of the scattering problem is assumed and no 

initial information of the object space is required. A complex image f is 

reconstructed from which information may be extracted. In the second approach 

the objects are represented parametrically. The modelling of the scattering problem 

is thus more accurate. However, the best-fit function is highly nonlinear and it is 

necessary to have a good initial estimate of the vector of parameters, β . In this 

section, it is shown how the two approaches are combined. 
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First, a pixel-based reconstruction is attempted since it requires no a priori 

knowledge of the object space. From the reconstructed complex image f, an 

amplitude image m may be extracted as follows: 

 
22
iii hgm +=        

 (15) 

This amplitude image is then reorganised as a two-dimensional array and displayed 

as an intensity plot. This plot will reveal the presence of objects in the object space 

and is used to extract as much information as possible on the object space. First, 

the number of objects is estimated by inspection of the image for groups of pixel 

with high intensity. A rectangular window, W , is then defined for each distinct 

group of pixel. The centre ),( cc yx of the object is estimated by calculating the 

centre of moment over the window, as follows: 
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 (16) 

 

It is also found that the relative area of the object, relA , can be estimated by 

summing all the amplitude values over the window, as follows: 

 ∑
∈

=
Wi

irel mA         

 (17) 

 The relative area refers to the ratio of the actual object area and the area of the test 

scatterer that was used to construct the sensitivity matrix A. Since a test object of 

1cm radius was used, the radius of a scattering object is estimated by taking the 

square-root of the relative area. With the estimates ),( cc yx and R  for each 

scatterer, the object space vector β  may be initialised and then refined within a 

few iterations of the optimisation algorithm. The efficiency of this combined 

approach is demonstrated in the examples below. 

 
RESULTS 

 

Example 1 

Consider a large circular scatterer of radius 6cm and centred at (0, 9)cm in the 

object space. The forward problem is solved with these values and a vector Ω  of 

256 values is obtained, representing the fractional impedance change of each 

excitation-sensor coil pair. The object space is first reconstructed from Ω  using 

the adaptive SIRT algorithm with 500 iterations. Both real and imaginary parts of 

the reconstructed image are constrained to positive pixel values. The combined 

amplitude image m is shown in Figure 2(a). This image reveals a single object over 

the rectangular window with corners (-4, 4)cm and  (4, 12)cm. The centre of 

moment is calculated as (0.0, 8.2)cm, and the sum of amplitudes over this window 

gives a relative area of 20.7, corresponding to an estimated radius of 4.6cm. In the 

second phase of the reconstruction, the object space parameters are initialised to 
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{0.0,8.2,4.6}cm and a nonlinear reconstruction is attempted. The iterative scheme 

is terminated when the reconstructed object parameters are within 1mm of the 

actual values. After only 6 iterations, the object parameters converge to {0.0, 9.0, 

6.0}cm, as shown in Figure 2(b). 
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        (a)        (b) 

Figure 2: (a) Amplitude image and (b) parametrically reconstructed object for 

Example 1. 

 

 

Example 2 

Now consider a small circular scatterer of radius 0.3cm and centred at (0, 6)cm in 

the object space. After solving for the measurement vector Ω , the object space is 

first reconstructed using the adaptive SIRT algorithm. This time, it is necessary to 

constrain the real image to negative pixel values and the imaginary part to positive 

pixel values. The combined amplitude image is shown in Figure 3(a). The image 

reveals a single object over the rectangular window with corners (-3, 4)cm and  (3, 

8)cm. The centre of moment is calculated as (0.0, 6.1)cm, and the sum of 

amplitudes over this window gives a relative area of 0.08, corresponding to an 

estimated radius of 0.26cm. In the second phase of the reconstruction, the object 

space parameters are initialised to with these parameters and a nonlinear 



Combined Approach for Solving the Electromagnetic Induction Imaging Problem 

 67

reconstruction is attempted. After 8 iterations, the object parameters have 

converged to {0.0, 6.0, 0.3}cm, as shown in Figure 3(b). 
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        (a)                 (b) 

Figure 3: (a) Amplitude image and (b) parametrically reconstructed object for 

Example 2. 

 

Example 3 

We now consider the reconstruction of two objects of radius 8mm in the object 

space. The objects are centred at positions (-3, 6)cm and (3, 6)cm. The objects are 

close enough for their interaction to be significant. The pixel-based reconstruction 

gives a sufficiently clear image after 1200 iterations, as shown in Figure 4(a). The 

amplitude image suggests the presence of two objects over non-overlapping 

windows, the first with corners (-5, 4)cm and (0, 8)cm, and the other with corners 

(1, 4)cm and        (5, 8)cm. The centre of moment of the windows are calculated as 

(-2.5, 6.2)cm and (2.8, 6.1)cm respectively. The relative areas are found to be 0.40 

and 0.36, corresponding to radii of 0.63cm and 0.60cm respectively. These values 

are then used to initiate the parametric reconstruction scheme. After 9 iterations, 

the object parameters are correctly estimated within 1mm of the actual values, as 

shown in Figure 4(b). 
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      (a)             (b) 

Figure 4: (a) Amplitude image and (b) parametrically reconstructed object for 

Example 3. 

 

In all the above examples, the vector Ω  has been generated by simulation, that is, 

by solving the forward problem for a known set of object space parameters. 

Therefore, it has been possible to obtain very accurate reconstruction, within 1mm 

of actual values, after only a few iterations of the parametric algorithm. However in 

a practical situation, the measurements are corrupted by errors from several 

sources. However, it is still possible to apply the combined approach to produce a 

fairly reasonable reconstruction of the object space. This is demonstrated in 

Example 4. 

 

Example 4 

An experimental setup to demonstrate the practical feasibility of the above 

technique is shown in Figure 5. The setup comprises prototype planar sensor array 

(on the far right), an impedance analyser and a host PC. The PC sends control 

signals to the analyser, which energises one excitation coil in the sensor array at a 

time, at a frequency of 100kHz. The voltage induced on a designated sensor coil is 

sent back to the analyser, which accurately computes an impedance and sends the 

result back to the PC. The excitation-sensor coil pair is switched manually and the 
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process is repeated for all coil-pairs and organised in a vector of measured 

impedances. First measurements are made with an empty object space. Next, two 

steel bars of diameter 25mm are placed in the object space, with centres at     (-6.3, 

3.7)cm and (6.3, 3.7)cm. The impedance vector is again measured, and the change 

in impedances are obtained by subtracting the empty-space values.  

 

 
Figure 5: Experimental setup for Example 4. 

 

The fractional impedance changes are then used to reconstruct the object space. 

The pixel-based algorithm is run for 1200 iterations and the resulting amplitude 

image is shown in Figure 6(a). The amplitude image clearly indicates the presence 

of two distinct objects, one over the rectangular window with corners (-7, 4)cm and 

(-5, 6)cm, and other over the window with corners (5, 4)cm and (7, 6)cm. The 

centres and radii of the objects are estimated to (-6.0, 4.9)cm, (5.9, 4.9)cm, 1.0cm 

and 0.9cm respectively. The parametric algorithm is initialised with theses values 

and after 10 iterations the parameters have converged as follows: one bar of 

diameter 25mm centred at (-6.1, 4.8)cm, and another of diameter 24mm centred at 

(5.8, 4.9)cm, as shown in Figure 6(b). While the radius and x-position of the 

scatterers have been closely reconstructed, the y-positions have been overestimated 

by about     1cm. This difference is mainly attributed to the fact that the prototype 

sensor array employs coils of circular cross-section, and their magnetic field 

penetrate less into the object space as compared to the two-dimensional model. The 

consequence is that scattering objects appear deeper than actual values. 
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      (a)             (b) 

Figure 6: (a) Amplitude image and (b) parametrically reconstructed object for 

Example 4. 

 
CO!CLUSIO! 

 

In this paper, a method is presented for reconstructing the position and size of a 

number of scattering objects in a rectangular region of interest, from measurable 

data on the boundary of a region of interest. The method is a combination of two 

approaches: a pixel-based approach employing a linear reconstruction algorithm, 

namely SIRT, and a parametric approach using a modified version of the 

Levenberg-Marquardt algorithm. The first approach has the advantage of not 

assuming a priori information on the region of interest, and a simple linear model 

is used. An amplitude image is constructed from which essential information about 

the object space is obtained, such as number of objects, their approximate position 

and size. The results of the first approach are used as initialisation for the nonlinear 

parametric algorithm. The method is tested in several examples on both simulated 

and experimental data, and found to work satisfactorily. 
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