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ABSTRACT

The linear theory of thermoelasticity without energy dissipation for isotropic and homogeneous mate-
rials is employed to study waves in an elastic plate.  The waves are assumed to arise out of a ramp-type
stress on the plate’s boundary which is maintained at constant temperature.  Laplace transforms are
used to solve the problem, and the distributions of  displacement, temperature, radial and hoop stresses
are displayed graphically.
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INTRODUCTION

Thermoelasticity theories which admit a finite speed for thermal signals have been
receiving a lot of attention for the past thirty years.  In contrast to the conventional
coupled thermoelasticity theory based on a parabolic heat equation (Biot, 1956),
which predicts an infinite speed for the propagation of heat, these theories involve
a hyperbolic heat equation and are referred to as generalized thermoelasticity
theories.

The first generalization, for isotropic bodies, is due to Lord & Shulman (1967) who
obtained a wave-type heat equation by postulating a new law of heat conduction to
replace the classical Fourier’s law.  The anisotropic case was later developed by
Dhaliwal & Sherief (1980).

The second generalization is known as the theory of thermoelasticity with two re-
laxation times, or the theory of temperature-rate-dependent thermoelasticity, and
was proposed by Green & Lindsay (1972).  It is based on a form of the entropy
inequality proposed by Green & Laws (1972).  It does not violate Fourier’s law of
heat conduction when the body under consideration has a centre of symmetry, and
it is valid for both isotropic and anisotropic bodies.

The theory of thermoelasticity without energy dissipation is another generalized
theory and was formulated by Green & Naghdi (1993).  It includes the “thermal-
displacement gradient” among its independent constitutive variables, and differs
from the previous theories in that it does not accommodate dissipation of thermal
energy.  For a review of the relevant literature, see Chandrasekharaiah (1986, 1998)
and Joseph & Preziosi (1989,1990).

The present investigation is devoted to the study of the thermoelastic interactions
induced by a suddenly punched hole in an unbounded elastic plate, under the
purview of the Green-Naghdi theory (Green & Naghdi, 1993).  The plate is
considered to be made of a linear, homogeneous and isotropic thermoelastic
material, its bounding surface being at constant temperature and subjected to
a ramp-type stress. The problem is solved by using the Laplace transform, and
exact solutions are obtained in the transform space.  Since the response is of more
interest in the transient state, the Laplace inversions have been carried out in such a
way that the results are particularly applicable in the short-time range; these are
justified by the fact that the second-sound effects are short-lived.  The derived
analytical expressions for the displacement, temperature and stresses are computed
numerically for a copper-like material and the results are displayed graphically.
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Further, with a view to obtaining more insight into the problem, the Laplace inver-
sions have also been carried out numerically by using the method of Durbin (1972).

We note that the counterpart of our problem in the context of the generalized theory
of Green & Lindsay (1972) has been studied by Chand & Sharma (1991). A
discussion of the main differences between our results and those of the latter is
included.

FORMULATION OF THE PROBLEM

Following Chand & Sharma (1991), we consider a homogeneous and isotropic
unbounded elastic plate of thickness h, initially unstressed, at rest and at
constant temperature 0θ .  A flat nose cylindrical projectile of radius 0r ,
moving with velocity V, strikes the plate and begins to punch out a hole of equal
radius.  The following assumptions are made :

(i)  The plastic flow due to punching is localised in the neighbourhood of
 punching sections.

(ii)  The punching begins instantaneously at time 0=t  over the whole punched
section.

(iii)The punching action starts at velocity 2/V , the projectile’s velocity in the
compressional wave that develops in both projectile and plate on impact, i.e.,
the plate material below the projectile is removed as a plug  at velocity 2/V .
Hence, the punching time, TVh =/2 , is based on a large ratio of diameter of
projectile to plate thickness.

We work in cylindrical polar coordinates ),,( zr ϑ , choosing the z-axis along the
axis of the hole,  and consider thermoelastic interactions which are
symmetrical about the axis.  Thus, the displacement vector has only the radial com-
ponent 

),( truu =

, where r is the distance measured from the z-axis, and the stress
tensor has only two components 

rrσ

 and ϑϑσ  which are the normal stresses in the
radial and transverse directions respectively.

According to the theory of thermoelasticity without energy dissipation, the field
equations for a homogeneous and isotropic thermoelastic body, in the absence of
heat sources and body forces, are as follows (Green & Naghdi, 1993) :

u.uu &&ρ=θ∇γ−∇∇µ+λ+∇µ )(2 ,                                                              (1)

θ∇=∇γθ+θ 2
0 kc u. &&&& .                                                                                   (2)
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The constitutive relation, in tensor notation, is given by

. (3)

Here, u is the displacement vector, θ  is the temperature change above the uniform

reference temperature , ρ is the mass density, c is the specific heat,  and 

are the Lamé constants,  being the coefficient of volume ex-

pansion, and k is a material constant characteristic of the theory.  Further, ijσ  and

ijδ  are the stress tensor and Kronecker delta respectively.

In the present study eqns. (1) and (2) yield the following governing
equations for u and θ :

,                                              (4)
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The relation (3) yields the following expressions for rrσ  and  ϑϑσ  :

γθ−λ+
∂
∂µ+λ=σ

r
u

r
u

rr )2( ,                                                                      (6)

γθ−µ+λ+
∂
∂λ=σϑϑ r

u
r
u )2( .                                                                     (7)

It is convenient to have eqns. (4) and (5) and expressions (6) and (7) cast into
dimensionless form.  To this end, we follow Chandrasekharaiah (1997), and
consider the following non-dimensionalization scheme :

ϑϑϑϑ σ
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where l  is  a standard length, and v  is  a standard speed.  Henceforth,
non-dimensionalized quantities are used and the primes are omitted for
convenience. Substituting (8) into eqns (4)-(7) , we obtain the following
dimensionless equations :
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In the above,
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We also point out  that PC  and SC  denote respectively the dimensionless speeds
of purely elastic dilatational and shear waves, while TC  denotes that of purely
thermal waves.  Further, ε  is the usual thermoelastic coupling parameter, and

10 <η<

.

Let a denote the dimensionless radius of the hole.  Assuming the body is at rest and
undisturbed initially, then the following initial and regularity conditions  hold :
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, at  0=t    for  ar ≥ .                                              (14)
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The boundary conditions are given by

and  0=θ   at .

We note that this ramp-type stress boundary condition may be written as

,

where 0σ  is a positive constant, and )(H  is the Heaviside unit step function.  On
using (11), these conditions become

=η+
∂
∂

r
u

r
u

])()[(0 tTtHTt
T

−−−
σ

,  and  0=θ   at .                   (15)

TRANSFORM SOLUTION

Taking the Laplace transform defined by

,

of Eqns (9) and (10) and expressions (11) and (12) under the homogeneous initial
conditions (14), the following equations are obtained :

θ=− DCusDDC PP
22

1
2 ][ ,                                                                      (16)

uDssDDCT 1
22
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θ−η+=σ
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where
 

rdr
dD

dr
dD 1, 1 +== .

From eqns. (16) and (17), we obtain

0))(( 2
21

2
11 =−− umDDmDD ,                                                (20)

0))(( 2
21

2
11 =θ−− mDDmDD ,       (21)

where 1m  and  2m  satisfy the bi-quadratic equation

0])1([ 42222422 =+ε++− smCCsmCC PTTP .       (22)

On solving eqns. (20) and (21)  and using (14), the following solutions are
obtained :

)()( 212111 rmKArmKAu += ,       (23)

)()( 202101 rmKBrmKB +=θ .       (24)

Here, 1K  and 0K  are modified Bessel functions of order one and zero
respectively, and 2121 ,,, BBAA  are arbitrary constants.  Also,  1m  and 2m  are
assumed to have positive real parts in order to meet the regularity conditions (14).
The solution of eqn. (22) leads to
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Here and in the expressions that follow, the index α  takes values 1, 2.
Substituting for u  and from (23) and (24) into (17), and equating the
corresponding coefficients of the Bessel functions, we have

α
α

α
α −

ε
= A

mCs
msB
T

222

2

.       (27)

We now determine αA  by taking the Laplace transform of the boundary conditions

(15) and substituting for u  from (23) into the resulting expression.  This yields

,                                (28)
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The substitution of  αA  from (28) and of  αB  from (27) into  (23) and (24) yields
explicit expressions for u  and , which, on taking the inverse Laplace transform,
then give u and θ .   However, finding  u and θ  for arbitrary t is a formidable task.
We therefore proceed in two ways.  First, since the second-sound effects are
short-lived, we obtain and analyse the solutions for small t, i.e., we take s to be
large.  Secondly, we use a numerical inversion technique to study the long-time
behaviour.

SMALL -TIME SOLUTIONS

When s is large, so are  as given by (25).  We therefore make use of the
asymptotic expansions of the modified Bessel functions for large arguments; thus
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Using (25) and (30), we find that expression (28) gets simplified to
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Substituting for αA  from (31) and for αB   from (27) into expressions (23) and

(24), we obtain u  and 

θ

.  Substituting  the latter into (18) and (19) then yields

rrσ  and ϑϑσ .  Taking the inverse Laplace transforms of the expressions for u ,θ
,  rrσ  and  ϑϑσ , we obtain the following solutions for ϑϑσσθ ,,, rru , valid

for small values of  t :
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where  
α

α
−−=τ

V
art .

DISCUSSION

From  the short-time solutions obtained above, it can be shown  (Chandrasekharaiah,
1997), that they each consist of two distinct coupled waves, one following the other;
the faster wave travelling with speed  1V  and the slower wave travelling with speed

2V  .   As indicated in Chandrasekharaiah (1997), we note that the faster wave is a
predominantly elastic wave (e-wave), or a predominantly thermal wave ( θ -wave)
according as  or .

Further, we observe that neither the e-wave nor the  -wave experiences exponential
decay with distance (attenuation).  This is in sharp contrast with the results of Chand
& Sharma (1991).

Another important point to mention is that all the field variables are continuous at
the two wavefronts, unlike those of Chand & Sharma (1991), where only the
displacement is continuous and where the radial stress  experiences delta-function
discontinuities as well.

Lastly, we note that  for  , all of  and ϑϑσ   vanish identically,
meaning that  at a given instant of  time 00 >t   , the points of the region ar >
which are beyond the faster wavefront  do not experience any
disturbance. This is a characteristic feature of the generalized theories and also
holds for Chand & Sharma (1991).
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NUMERICAL RESULTS

In this section we present some numerical results to illustrate the theoretical ones
obtained above.  To this end, we choose a hypothetical, copper-like material
characterized by the following (dimensionless) parameters :

 0168.0,2387.0,20,1 222 =ε=== STP CCC .

For this material, we have PT CC >  , so that the 

θ

 -wave is  faster than the
 e-wave.  From Eqn. (26) it follows that the (dimensionless) speeds of these waves
are 

474113.41 =V

 and 999558.02 =V  respectively.  By taking
2,1,1 0 ==σ= Ta   , the behaviour of  rru σθ,,  and ϑϑσ   is analysed at

(dimensionless) time 1.0=t  .  It is found that at this instant of time the θ -wavefront
is located at  447411.11 11 =+== tVrr  ,  and the  e-wavefront at

099956.11 22 =+== tVrr . Further, we have computed the field variables given
by Eqns. (33)-(36) for various values of  r at time 1.0=t   .   The results are shown
in Figs. 1-3.   We notice from these figures that the displacement, temperature and
stresses all vanish identically beyond the θ  -wavefront, thereby indicating that the
effects of the waves are confined to the region 
11 rr ≤≤  , as predicted by the

theoretical results above.=σϑϑ ),( tr ∑
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Fig. 1 shows that u is continuous  and decreases monotonically throughout the
domain .  It can be observed that it achieves its maximum value
(  ) on the boundary of the hole.
Regarding the temperature field, Fig. 2 shows that  is also continuous, rising
steadily and attaining its peak value ( 0.0000321) at the first wavefront and
thereafter decreasing  uniformly to zero.

As for the stress field, we have from Fig. 3  that both the radial and hoop stresses
are compressive throughout the domain of influence  , and that their
magnitudes increase gradually. The maximum value of   is found to be 0.04998,
while that of  ϑϑσ  is 0.02433, both maxima occurring on the boundary 1=r  .
We now turn our attention to the behaviour of the field variables at the position

 for various values of  t.  At this location the faster wave (  -wave) arrives at
time  and the slower wave (e-wave) at

00044.1)/1( 2 == Vt  .  We have worked out the values of the field variables at
this location for 0>t using the solutions (33)-(36).  These values are displayed in
Figs. 4-6 for the interval t ε[ 0, 1/v2] .  From Figs. 4 and 5 we observe that both the
displacement and temperature fields are continuous for all 0≥t  , including the
instants of arrival of  wavefronts, as predicted by the theoretical results above.  We
also note that u and θ   become positive immediately after the arrival of the faster
wave, and increase rapidly.

Fig. 2.  Variation of θwith  r at  t = 0.1

1
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As for the stress field, we find from Fig. 5 that upon the arrival of the first wavefront,
the stresses become compressive and stay so.  Further, as in Fig. 3, we notice that
the radial and circumferential stresses have qualitatively the same behaviour.

r

Fig. 3.  Variation of  rrσ and ϑϑσ with r at  t = 0.1

Fig. 4.  Variation of  u with  t  at r = 2.
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LONG-TIME SOLUTIONS

In order to investigate the long-time behaviour of the solutions we perform the
numerical inversion of  Eqs (23)-(24) and (18)-(19), using the relations given by
(27) and (28) as well as the above  values for a,  and T.  The method employed
is due to Durbin (1972).

The Durbin method is based on a Fourier series expansion, where the inverse )(tf
of Laplace transform  is approximated by
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)ln(ε
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The term ωopt   is an optimal number greater than the real part of all the singularities
of )(sf  if any, else ωopt   is defaulted to zero. maxT is the maximum time simulated,
N is the number of terms in the series and optε   is an optimal tolerance value.
The results are displayed in Figs. 7-9, for the position 2=r  , and .

Fig. 6.  Variation of  and with  t at  r = 2.ϑσ

,
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Fig. 7 shows that the long-time displacement  increases monotonically, reaching a
maximum value of  1.3928 at time

ı���=t

, and thereafter decreasing to zero.

Fig. 8 shows the long-time thermal field attaining a maximum of 0.00021 at
time 2/1 Vt =   , after which it decreases until it reaches a minimum value of
-0.000159 at 

023.3=t

 .  The temperature then increases until it becomes positive
again to finally tend to zero.

Regarding the stress field in Fig. 9 we find that the radial stress remains compressive
in the chosen time interval, dropping to a minimum of -0.55407 at 023.3=t  , and
then rising to a maximum of -0.17223 at 007.8=t .  On the other hand, the hoop
stress remains compressive for a while, with a minimum value of -0.10979 occurring
at 25.2=t  , thereafter increasing until it becomes tensile and attaining a peak of
0.40762 when 955.6=t .
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Fig. 7.  Variation of  u with t  at r = 2. Fig.  8.  Variation of θ  with t  at r = 2.
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CONCLUDING REMARKS

In this paper we have studied the thermoelastic interactions due to the punching of
a cylindrical hole in an elastic plate, using the theory of Green & Naghdi (1993).  It
has helped bring into focus the similarities and differences between the predictions
of the latter theory and those of Green & Lindsay (1972).  The main similarities are
that the effects of the waves are localized and the displacements are continuous,
while the major differences are the absence of discontinuities in the thermal and
stress fields, and  the absence of  attenuation in the Green-Naghdi theory.   Finally,
it is worth mentioning that the relative merits of one theory over the other cannot
be judged upon the basis of these predictions, the latter merely help us in
understanding the features inherent in the two theories in the context of the chosen
problem.
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