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ABSTRACT

Piezoelectric actuators have great capabilities as elements of intelligent structures for active vibration
cancellation. One problem with this type of actuator is its nonlinear behaviour. In active vibration
control systems, it is important to have an accurate model of the control branch. This paper demonstrates

the ability of neural networks to model the nonlinearity of a piezoelectric actuator in the control branch.
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INTRODUCTION

Vibration of mechanical surfaces is often a nuisance since it may cause damage to
fixtures and produce undesirable audible noise. In active vibration control systems,
sensors are used to measure the vibration in the structure at appropriate positions,
and a counterwave is applied to the structure via an actuator so that the superposition
of the disturbance and counterwave results in destructive interference (Fuller &
Von Flotow, 1995).

There are many types of actuator-sensor systems currently used in active vibration
control. Among these, piezoelectric actuators have great capabilities as elements of
intelligent structures for active vibration cancellation (Crawley & Luis, 1987). Being
light and compact, they may be glued to the mechanical surfaces to be controlled
without significantly altering the structure.

In active vibration control systems, it is important to have an accurate model of the
control branch, that is the transfer function between the signal applied on the actuator
and the signal measured on the sensor. In most systems a linear model of the control
branch is assumed. However, piezoelectric actuators have inherent nonlinearity
(Chung Won  & Sulla, 1994; Abe, 1995) and therefore cannot be represented by
linear models. Some studies have been carried out to model hysteresis nonlinearity
(Nobakht & Ardalan, 1992) which is present in piezoelectric actuators. However,
the model considers only one type of nonlinearity (hysteresis) while the physical
system may contain several types of nonlinearities acting altogether (hysteresis,
nonlinear stiffness, type of glue used, etc.).
In active vibration control systems, it is common to perform system identification
to obtain a model of the control branch. System identification consist basically of
choosing a model structure (e.g. linear recursive and nonrecursive models, Volterra
models, etc.) and then finding the model parameters from known input and output
signals (Narendra & Parthasarathy, 1990; Schoukens & Pintelon, 1991; Haykin,
1996). Iterative algorithms such as LMS and RLS are commonly employed to find
the model parameters (Schoukens & Pintelon, 1991; Haykin, 1996).

At the other end, neural networks have been greatly developed over the last two
decades. Hornick et al. (1989) have shown that multilayer feedforward neural
networks are universal approximators. Also, neural networks have been considered
for the modelling and control of nonlinear and dynamical systems (Bozich & Mackay,
1991; Snyder & Tanaka, 1995; Narendra et al. 1990). It seems convenient then to
model the control branch in a piezoelectric-based vibration control system using
neural networks.
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In this paper, the results of investigations on the modelling of the control branch in
a piezoelectric-based vibration control system is presented. The mechanical structure
was a cantilever beam fixed at one end. Since the system was very resonant (with a
Q-factor of about 100), it was necessary to use recurrent models. Initially, a linear
recursive model was assumed for the control branch, and the parameters were found
using the equation-error approach (Shynk, 1989) and normalised LMS algorithm.
Then, nonlinear recurrent models based on neural networks (proposed by Narendra
& Parthasarathy, 1990) were assumed, and the model parameters found using a fast
training algorithm proposed by Scalero & Tepedelenlioglu (1992). It was found
that the neural network based models performed much better than the linear model.

ACTIVE CANCELLATION OF VIBRATION ON CANTILEVER BEAM

The arrangement used for this investigation is shown in Fig. 1 a and the dimensions
are given in Fig. 1 b.

Fig. 1 a. Physical arrangement used in the investigations
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Fig. 1 b. Beam dimensions (side view shown)

The aluminium cantilever beam has several resonant frequencies depending on the
vibration mode. The first resonant frequency is around 15Hz and the second resonant
frequency is higher than 75Hz. The actuator consists of two piezoelectric wafers
glued on both sides of the cantilever close to fixed end. By applying a sufficiently
high voltage on the actuator, one of the wafers contracts while the other extends in
the direction of the beam length. This results in a bending moment that causes the
beam to deflect sideways.

The beam deflection produces charge on the PVDF sensor which is proportional to
the deflection. This results in a voltage appearing at the input of the preamplifier
which boosts the signal level. The analogue-to-digital converter transforms the output
voltage of the preamplifier into a digital signal. The sampling frequency was set to
120.0Hz. Antialiasing filters are automatically configured to reject signal
components above 60.0Hz. The high voltage applied on the actuator was
reconstructed using a digital-to-analogue converter and amplified by about fifty
times by the power amplifier.

The points labelled A and B correspond to specific points on a DSP board (DSP
Starter Kit from Texas Instruments) for the input and output signals of the system.
The DSP board was interfaced to a computer via serial port. The system between
points A and B, from the signal point of view, is called the control branch and is
labelled C in the following description.

In a vibration control problem, the cantilever is subjected to an external disturbance
which may be due to mechanical coupling at the fixed end or some other force
acting on the mechanical structure (e.g. wind gusts). In such case there will exist a
vibrational wave on the structure. The principle of active vibration cancellation is
to apply a counterwave on the structure (180 degrees out of phase with the initial
wave) so that the superposition of the two waves result in destructive interference.
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The counterwave is applied via the piezoelectric actuator and stems from a controller.
The controller output signal is called the control signal. The effect of superposition
of the vibrational wave and counterwave is measured by the PVDF sensor and a
control error signal is obtained at point B.

Two control strategies are commonly employed: feedforward control and feedback
control. The former is illustrated in Fig. 2 a. In this system, a reference signal,
which comes from an upstream sensor at the disturbance, is fed to the controller.
The transfer function between this upstream sensor and point B is represented by P.
In the case when it is not possible to have a reference signal at the source of the
disturbance, a feedback control strategy is more appropriate. This configuration is
shown in Fig. 2 b. Notice that the controller input comes from the PVDF sensor.

Fig. 2 a. Feedforward vibration control system

Fig. 2 b. Feedback vibration control system
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In both of the above control systems, the problem is to find the optimal controller.
In this end, it is important to have an accurate model of the control branch C. The
process of obtaining a model for the control branch is called system identification.
Since the control branch is in general not linear, nonlinear models are required for
system identification.

IDENTIFICATION OF THE CONTROL BRANCH USING A
LINEAR RECURSIVE MODEL

In this section, identification of the control branch using a linear recursive model is
described. Since there is only one resonant frequency (around 15Hz) for  the
cantilever beam on the range from zero to 60.0Hz, a recursive model with only two
coefficients for the autoregressive part would be sufficient. If x(n) is the input signal
and y(n) the output signal of the model representing the control branch, then an
adequate linear representation of the system is:

     
N - 1     2

y(n) = Σb
i
x(n - i) + Σa

j
y(n - j)                                                      (1)

          i = 0                                j = 1

The system identification problem reduces to choosing a suitable N, and finding
the a- and b-coefficients using an appropriate algorithm. The physical system was
excited with a broadband signal (white noise this case) and the error e(n) between
its output d(n) and the model output y(n) evaluated. The model coefficients were
found using the equation-error formulation (Shynk, 1989) and iteratively updating
the coefficients with the normalised LMS algorithm based on error signal e(n). The
algorithm is very well known and details may be found in the book by Haykin
(1996). After a sufficiently large number of iterations, the parameter set converges
to the optimal set, giving the model closest to the physical system. The normalised
LMS algorithm was chosen for simplicity and also because the rate of convergence
was not the issue here: only the solution at convergence was important. A measure
of the accuracy of the model at convergence is the error-to-signal ratio η in decibels:

η = 10xlg (energy of e(n))                                                            (2)

                   
energy of d(n)

In the identification process, N was set to 256. After 4000 iterations the error-to-
signal ratio was �34 ± 3 dB. Subsequent iteration does not improve this value
significantly. The ± 3 dB was due to variations of the amplitude of target signal
d(n) and system nonlinearity which is not accounted for by the model.
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The b-coefficients at convergence are shown in Fig. 3. The coefficients a
1
 and a

2
 at

convergence were �1.3992 and 0.9916 respectively, which correspond to a resonant
frequency of 15.12 Hz and Q-factor of 98.8. The signal spectra as well as the
identified transfer function are shown in Fig. 4. Examination of Fig. 3 suggests that
128 b-coefficients would have been sufficient. This result was used later in nonlinear
system identifications.

Fig. 3. The b-coefficients identified for the linear recursive model

Fig. 4. A = spectrum of target signal d(n); B = spectrum of error signal e(n);
C =  transfer function evaluated from the identified a- and b-coefficients
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IDENTIFICATION OF THE CONTROL BRANCH WITH NEURAL
NETWORK BASED MODELS

In this section, identification of the control branch based on the recurrent nonlinear
models, proposed by Narendra et al. (1990), is considered. The four models are:

                                             M

Model I : y(n) = Σa
i
y(n - i) + g[x(n), x(n - 1), ..., x(n - N)]                                (3)

                                           i = 1

                                                                                                                                            N

Model II : y(n) = f[y(n - 1), y(n - 2), ..., y(n - M)] + Σb
i
x(n - i)                         (4)

                                                                                                                                          i = 0

Model III : y(n) = f[y(n - 1), y(y - 2), ..., y(n - M)] + g[x(n), x(n - 1), ..., x(n - N)] (5)

Model IV : y(n) = f[y(n - 1), y(y - 2), ..., y(n - M), x(n), x(n - 1), ..., x(n - N)]   (6)

In each case, x(n) is the model input, y(n) the model output, f(.) and g(.) are nonlinear
functions to be identified, and the orders M and N to be appropriately chosen. Note
that model III is more general than the first two and model IV is most general.

Being universal approximators, feedforward neural networks can be used to model
the nonlinear functions f(.) and g(.) as suggested by Narendra & Parthasarathy
(1990). In the investigations presented here, two-layer feedforward neural networks
were used. The hidden layer consisted of a weight matrix followed by sigmoidal
functions. The output layer simply consisted of a weighted sum of the hidden layer
outputs. For example, to model function f[x(n),x(n-1),�,x(n-N)], the following
construct was used. The signal x(n) was fed into a tapped delay line with N delay
elements to give the vector X

0
:

X
0
 = [x(n),x(n-1),�,x(n-N)]T      (7)

The vector X
0
 is the input to the hidden layer:

X
0
* = [1,x(n),x(n-1),�,x(n-N)]T      (8)

Y
1
 = W

1
.X

0
*    (9)

where W
1
 is the weight matrix of hidden layer
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X
1
 = [Γ(Y

1,1
),Γ(Y

1,2
),�,Γ(Y

1,N1
)]T   (10)

where Γ(x) = tanh(βx), and β is arbitrarily chosen to 1.

X
1 
is the output vector of the hidden layer and therefore input to the output layer.

The function f(.) is then given by:

f[x(n),x(n-1),�,x(n-N)] = W
2
.X

1   
(11)

where W
2
 is the weight matrix of the output layer.

In model I, II and IV there is only a single nonlinear function and therefore a single
neural network is required. In model III, there are two nonlinear functions and
therefore two neural networks are necessary. The model output y(n) in this case is
the sum of each network output.

The system identification problem consists of choosing suitable orders M and N,
finding the weight matrices W

1
 and W

2
 for the feedforward approximators, and the

coefficients a
i
 and b

i
 where necessary. The system parameters were to be found

using appropriate algorithms. The physical system was excited with a broadband
signal (white noise in all cases) and the error e(n) between its output d(n) and model
output y(n) evaluated. In each case, the modelling error was found based on the
series-parallel identification approach described by Narendra & Parthasarathy
(1990). The weight matrices were iteratively updated with the enhanced back-
propagation (EBP) algorithm proposed by Scalero & Tepedelenlioglu (1992). For
models I and II the a

i
 and b

i
 coefficients were found using the normalised LMS

algorithm.

As an example consider the identification of the control branch based on model II.
The physical system is excited with a broadband signal x(n) (white noise) and the
response d(n) is measured. In the series-parallel identification process, both x(n)
and d(n) are used as reference signals. Let y

1
(n) be defined by:

  

                     N

y
1
(n) = Σb

i
x(n - i)                                                                       (12)

                   i = 0

and y
2
(n) defined by:

y
2
(n) = f[d(n - 1), d(n - 2), ..., d(n - M)]                                      (13)



18

Y. Bissessur

The aim is to find coefficients b
i
 and function f(.) so that the model output y(n),

defined in eqn. 4, tends to y
1
(n) + y

2
(n). For each pair of samples (x(n), d(n)), the

model error e(n) is evaluate as follows:
Tapped delay lines are used to form the vectors:

Tdl#1 = [x(n), x(n-1), �, x(n-N)]  (14)
Tdl#2 = [d(n-1), d(n-2),�, d(n-M)]  (15)

Eqn. 12 is modelled by an FIR filter whose input is x(n) and output is y
1
(n). Eqn. 13

is modelled by a feedforward neural network NN1 whose input is Tdl#2 and output
is y

2
(n). y

2
(n) is evaluated according to eqns.  7-11.  The model output y(n) is given

by y
1
(n) + y

2
(n).  The error e(n) is given by :

e(n) = d(n) - y(n)                                                                         (16)

The coefficients b
i
 of the FIR filter are updated using the normalised LMS algorithm

based on reference signal x(n) and error signal e(n). The weights of NN1 are found
according to the EBP algorithm based on input pattern Tdl#2 and error e(n). Note
that, since d(n) is used to approximate y(n) in eqn. 13, the model will be biased by
uncorrelated noise present in d(n). However, the advantages of using this approach
are faster convergence and lower risk of local minimum.

RESULTS OF NONLINEAR SYSTEM IDENTIFICATIONS

System identification was performed for all the four models described in the previous
section. For model I, identification was performed with M = 2 and N = 127. The
neural network representing function g(.) has 128 input points in the  input layer,
and 64 neurones in the hidden layer. After 45,000 iterations, during which the
adaptation rates was gradually reduced, an error-to-signal ratio of      -34 ± 3 dB
was reached. Further iterations did not improve this figure. Notice that the error
using this nonlinear model is not better than the linear recursive model. Figs. 5 a �
5 b. show a block of the system output signal d(n) and the identification error signal
e(n) at the end of the identification

^

^
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Fig. 5 a. A block of target signal d(n) (*see note below)

Fig. 5 b. Error signal e(n) at the end of identification process (model I) (*)

*Note : The vertical axis in Fig. 5 a represents the output of the A/D converter. To
obtain the measured voltage in µV, the vertical axis must be scaled by a factor of
91, which is the sensitivity of the A/D converter. Also, the horizontal axis gives the
time index. To obtain time in seconds, the horizontal axis must be scaled by a factor
of 1/120 representing the sampling period. This also applies to Fig. 5 b and Fig. 6.

In a system identification based on model II, the model orders were set to M =8 and
N = 159. The neural network modelling function f(.) has 8 entry points and 50
neurones in the hidden layer. After 75,000 iterations the error-to-signal ratio was �
36 ± 3 dB. This value represents a slight improvement on model I.
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Identification based on model III required two neural networks: NN1 to represent
function g(.) and NN2 to represent function f(.). Values of M = 8 and N = 127 were
used. NN1 contained 128 entry points and 48 neurones in the hidden layer. NN2
contained 8 entry points and 48 hidden layer neurones. After 45,000 iterations the
error-to-signal ratio was �39 ± 3 dB. Further iterations does not cause significant
improvement. We note that this result is much better than with the first two models.
This is to be expected as model III is more general than models I and II.

Identification based on model IV was performed with M = 8 and N = 127. The
neural network modelling the function f(.) contained 136 entry points and 48
neurones in the hidden layer. After 45,000 iterations the error-to-signal ratio was �
40 ± 2 dB which represents a slight improvement over model III. The convergence
does not improve with further iterations. The error signal at the end of the
identification process is shown in Fig. 6. Notice that the amplitude is considerably
less when compared with Fig. 5 b  (model I).

Fig. 6. Error signal at the end of identification process with model IV

In further investigations, model IV was optimised in terms of system order (M and
N) and the number of neurones in the hidden layer. Table 1 shows the error-to-
signal ratio attainable with the number of hidden layer neurones fixed at 56 and the
orders M and N varied. Clearly the orders M = 24 and N = 31 seem more appropriate
since they represent the shortest length of tapped delay line.
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Table 1. Error-to-signal ratio (dB) when system orders M and N are varied

                                N

127 63 31 15 7

32 -39 -3

24 -40 -39 -3

M 16 X* -40 X* -39

8 -40 -40 -39 -35

4 -38 -37

2 -35 -33

* For some combinations of M and N, the model would not converge during training
and these are marked by X in the table.

Table 2 shows the error-to-signal ratio with M = 24, N = 31 and the number of
hidden layer neurones (N

1
) varied.

Table 2. Error-to-signal ratio with M and N fixed to 24 and 31
respectively and N

1
 varied

N
1

28 56 112 224

Error-to-signal
ratio (dB) X -40 -41 -41

We note that there is no significant improvement by using more than 56 neurones in
the hidden layer. However, if the number of hidden layer neurones is too small, the
model may fail to converge (c.f. N

1
 = 28).
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CONCLUSION

In this study, identification of the control branch in an active vibration cancellation
system employing piezoelectric actuators was investigated. In a system identification
using a linear recursive model, the error-to-signal ratio was about �34 dB.
Identification of the control branch using nonlinear recurrent models based on neural
networks was then considered. It was found possible to reduce the error-to-signal
ratio down to about � 40 dB with the most general nonlinear model, that is the error
signal power was reduced down to one-quarter of the error signal power obtained
with the linear model.

Once an accurate model for the control branch is obtained, the next step is to find
an optimum controller for the system. Since the control branch is nonlinear, finding
a nonlinear controller is not so simple as in the case of linear control branches.
Techniques for finding the optimal controllers must be investigated in future research
work.
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