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Abstract

Fractional polynomial response surface models are polynomial models whose powers

are restricted to a small predefined set of rational numbers. Very often these models

can give a good a fit to the data and much more plausible behavior between de-

sign points than the polynomial models. In this paper, we propose a one-stage and

two-stage design strategy for obtaining designs under model uncertainty for these

nonlinear class of models.
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1 Introduction

In much of statistical practice, particularly in biological and chemical processes, nonlin-

ear regression models are more applicable than their linear counterparts as they tend to

fit the data often with few parameters and the model parameters are more scientifically

meaningful. See for example Ratkowsky (1983, 1990) and Seber and Wild (1989) for

general discussions on the class of nonlinear models. But before we can fit a nonlinear

model to data, we actually need to carry out an experimental design. Researchers have

often resorted to the theory of optimal designs to get practical designs for those models.

However the complexity of these nonlinear models is such that the optimum experimental

designs for these models depend on the values of the unknown parameters.

A common approach to this problem is to adopt a best guess for the parameters and then

choose the design that maximizes a selected design optimality criterion evaluated at the

guess value. This approach leads to what is termed locally optimal designs, introduced

by Chernoff (1953). The best guess used in a locally optimal design might come from

previous experiments, past experience including the analysis of related experiments or a

pilot experiment conducted especially for that purpose (see Atkinson and Haines (1996)

for details and extensive references on the designs for nonlinear models).

Another shortcoming of most optimal designs for nonlinear models is that these designs

often have only p support points, where p is the number of parameters in the nonlinear

model. This may cause no problems if the experimenter believes the postulated model is

adequate. However, in practice the assumed model may be inadequate so that researchers

often look for designs which are near-optimal for the assumed model but which contain

“extra” design points that can be used to test for model inadequacy.
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In this paper, we shall introduce and illustrate such a one-stage “robust” design proce-

dure using the approach proposed by Atkinson (1972), Atkinson and Donev (1992) and

O’Brien (1993) for the class of fractional polynomial response surface models. We shall

also propose a two-stage design strategy for obtaining designs under model uncertainty

for these nonlinear models.

2 Optimal design theory

The design problem for the nonlinear model

yi = η(xi,θ) + εi i = 1, . . . , n (1)

typically involves choosing a n-point design, ξ, to estimate some function of the p-

dimensional parameter vector, θ, with high efficiency. Here ξ can be written as

ξ =

 x1,x2, . . . ,xn

ω1, ω2, . . . , ωn

 ,

where the design vectors, x1,x2, . . . ,xn are elements of the design space, χ and are not nec-

essarily distinct with the ω1, ω2, . . . , ωn being the associated replicates of design points. Al-

ternatively, ξ can be expressed in terms of its r (r ≤ n) distinct design points, s1, s2, . . . , sr,

called its support points and their associated design weights λ1, λ2, . . . , λr, i.e.,

ξ =

 s1, s2, . . . , sr

λ1, λ2, . . . , λr

 .

Whenever nλi is integral for each i, ξ is said to be a discrete design, otherwise it is said

to be a continuous design. The latter can be converted into practical designs by using

rounding procedures given in Pukelsheim and Rieder (1992) and Pukelsheim (1993).
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Under the assumption of uncorrelated Gaussian random errors with zero mean and con-

stant variance (taken to be one without loss of generality), the Fisher information matrix

for θ is given by M(ξ,θ) = V′ΩV, where V is the n × p Jacobian of η with ith row

equal to the gradient ∂η(xi,θ)/∂θ
′ and Ω is the diagonal matrix with diagonal elements

{ω1, ω2, . . . , ωn}. Designs which maximize the determinant | M(ξ,θ0) | for some value

θ = θ0 are called locally D-optimal.

3 Model nesting as a robust design strategy

In this section, we look at the nesting strategy proposed by Atkinson and Donev (1992)

and adapted by O’Brien (1993) to obtain designs with “extra” design points by embedding

a given model function (called the original model function) in a larger one (called the

supermodel) which reduces to the original model for certain parameter choices. Use of

the nesting technique as a means of model robustness for linear models is highlighted in

Atkinson (1972), Stigler (1971), Jones and Mitchell (1978), Studden (1982), DeFeo and

Myers (1992). The application to nonlinear models is mentioned in Box and Lucas (1959),

Cochran (1973) and Atkinson and Donev (1992). Suppose we feel that the one-parameter

simple exponential model function

η1 = exp(−θ1x) (2)

adequately describes a process but wish to allow for an inflection point, then we could

nest (2) in the two-parameter sigmoidal supermodel

η = exp(−θ1x
θ2). (3)

Note that (3) reduces to (2) for θ2 = 1. The nesting strategy developed here is useful

when the experimenter’s belief in the original model is quite high but it is desired to have
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additional design points to check for possible departures. In the next section we outline

the procedure of Atkinson and Donev (1992) and O’Brien (1993) to find such types of

designs.

4 The first-order nesting design strategy

Consider the case where the original model function η1(θ1) is nested in the supermodel

η(θ1,θ2) which reduces to η1(θ1) for θ2 = c; here θ1 is p×1, θ2 is q×1, and θ = (θ′1,θ
′
2)

′.

One measure of information the design ξ contains regarding θ1 in the model η1 is |M11|.

Here M11 = V′
1ΩV1, where V1 is the Jacobian of η1 and Ω = diag{ω1, ω2, . . . , ωn} where

ω1, ω2, . . . , ωn are the design weights of ξ. Atkinson and Donev (1992) suggest that the

information ξ contains regarding departures from η1 “in the direction of η” is

| M22 −M21 M−1
11 M12 |=

| M |
| M11 |

,

where Mij = V′
iΩVj for i, j = 1, 2 and M = V′ΩV is the information matrix for the

supermodel η.

For some weight γ (0 ≤ γ ≤ 1), Atkinson and Donev (1992) combine these measures into

the single information measure

ψ(ξ,θ, γ) =
γ

p
log | M11 | +

(1− γ)

q
log

(
| M |
| M11 |

)
, (4)

and seek designs that maximize ψ for given choices of θ and γ. We shall refer to these

design as the Dγ-optimal designs. When γ = 1, maximization of (4) yields the D-optimum

design for θ1, γ = 0 gives the Ds-optimum design for θ2. In order to use this criterion a

value of γ can be specified which reflects the interest in estimating θ1 relative to checking

the model (Atkinson and Donev (1992)). Approximate designs for the compound criteria

of the form (4) can be readily constructed and in addition the appropriate Equivalence
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Theorem can be invoked in order to demonstrate the global optimality or otherwise of

such a design. O’Brien (1993) illustrates the procedure for the class of sigmoidal models

and shows with several examples, that the combined criterion (4) provides extra design

points to enable a check of model adequacy for the original model. For example, if the

experimenter wishes to check for an inflection point by nesting (2) into (3), then (s)/he

could obtain two support points using initial estimate θ0
2 = 1 and the compound criterion

(4). Note that this design would be preferred to the D-optimal design for (2) which will

take all observations at a unique support point and consequently allow no check for model

inadequacy.

We shall illustrate the above procedure for the class of fractional polynomial response

surface models. Royston and Altman (1994) proposed the extended family of curves,

called the fractional polynomials. These models are polynomial models whose powers

are restricted to a small predefined set of rational numbers. Gilmour and Trinca (2005)

have recently studied this class of models and illustrate that sometimes the fractional

polynomials can give a good a fit to the data and much more plausible behavior between

design points than the polynomial models. To our knowledge, no work on optimal designs

for these models has appeared in the literature except for a presentation by Gilmour and

Trinca (2003).

We will refer to

η = β0 +

q∑
i=1

βix
(αi)
i

as the first order fractional polynomial response surface model and to

η = β0 +

q∑
i=1

βix
(αi)
i +

q∑
i=1

βiix
2(αi)
i +

q−1∑
i=1

q∑
j=i+1

βijx
(αi)
i x

(αj)
j ,
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where

x
(αi)
i =

 xαi
i , αi 6= 0;

log xi, αi = 0.
and x

2(αi)
i =

 x2αi
i , αi 6= 0;

(log xi)
2, αi = 0.

as the second order fractional polynomial response surface model. As we can see, these

models are nonlinear in some parameters and Gilmour and Trinca (2005) give an excellent

description on estimation and inference for these models. In practice, the parameter αi

can take any real value, but there are advantages in terms of interpretation in restricting

them to some interval and/or set of rational numbers. It is often sensible to restrict atten-

tion to a set such as {−3,−2,−1,−1
2
,−1

3
, 0, 1

3
, 1

2
, 1, 2, 3}, so that we consider only squares

and cubes, square and cube roots, reciprocals, combinations of these and logarithms of the

factors (Gilmour and Trinca (2005)). In linear regression the variables are usually coded

between−1 and +1, but in this case the factor levels are not coded, since we require xi > 0.

We now consider the nesting strategy for the class of models discussed above under the

usual Gaussian random errors. We shall however, consider discrete designs in what follows.

The exact designs have been found by integer approximation of the optimum continuous

measure.

Example I

Suppose the experimenter believes that the following first order fractional polynomial

model

η1 = β0 + β1x
(α), (5)

adequately describes a given process, but wishes to check for a quadratic effect by nesting

(5) into the following second order fractional polynomial model

η = β0 + β1x
(α) + β2x

2(α). (6)
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Notice in this case that the supermodel (6) reduces to the original model (5) by setting

β2 = 0. So, here θ1 = (β0, β1, α), θ = (β0, β1, β2, α).

The Jacobians for the original model η1 and supermodel η are respectively

V1 = ∂η1/∂θ1

=
[
∂η1/∂β0 ∂η1/∂β1 ∂η1/∂α

]
=

[
1, x(α), β1x

(α) log(x)
]

V = ∂η/∂θ

=
[
∂η/∂β0 ∂η/∂β1 ∂η/∂β2 ∂η/∂α

]
=

[
1, x(α), x2(α), β1x

(α) log(x) + 2β2x
2(α) log(x)

]
.

Assume the range of x ∈ [0.5, 5.0]. Using the initial parameter estimates, (β0, β1, β2, α) =

(5.8, 2.2, 0, 0.5), γ = 0.90 and six observations, the locally Dγ design is located at the

following design points x = 0.50(2), 1.41, 2.64, 5.0(2), where the numbers in brackets indi-

cate the number of replications at the respective points. This design would be preferred

to the locally D-optimal design for (5) since the latter has only three support points at

x = 0.50, 1.96, 5.0. As an aside, it is interesting to note that the number of support points

for the D-optimal designs is equal to the number of parameters in the original model and

as postulated by Silvey (1980), must necessarily have weights equal to 1/p.

Example II

We now consider the fractional polynomial in two explanatory variables as the original

model:

η1 = β0 + β1x
(α1)
1 + β2x

(α2)
2 . (7)

Suppose the experimenter feels that (7) reasonably describes the process but desires a

design with “extra” (i.e., more than five) support points. The original model can then be
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embedded in the following supermodel:

η = β0 + β1x
(α1)
1 + β2x

(α2)
2 + β11x

2(α1)
1 + β22x

2(α2)
2 . (8)

Here the original model can be recovered by setting β11 = β22 = 0 in the supermodel (8).

We can obtain the Jacobian matrices for (7) and (8) in a similar fashion as in Example

I. Assume the ranges for x1 and x2 to be [0.5, 10] and the initial parameter estimates,

(β0, β1, β2, β11, β22, α1, α2) = (8.2, 3.2, 2.5, 0, 0, 0.5, 1.5) and γ = 0.90. A ten point locally

Dγ-optimal design is shown in Figure 1 (The areas of the solid circles reflect the weights

attached to the points).

v v

z
v

zv

z

2

2

2

x2

x1

Figure 1: Design points for a locally Dγ-optimal design

This design with 10 points would be preferred to the locally D-optimal design for estimat-

ing the parameters of model (7) since the D-optimal design has only five support points

(see Figure 2) and consequently provides no check from any possible departures from the

assumed model.
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Figure 2: Design for locally D-optimal design for the original model

So far in our discussion, we have focused on a one-stage procedure and our approach was

based on the assumption that the researcher is intending to fit the original model but just

required a few “extra” design points to check for model inadequacy. In the next section

we shall propose a two-stage design strategy for fractional polynomial models when there

is uncertainty in the specification of the original model (also referred to as the primary

model).

5 A two-stage design strategy: the one variable frac-

tional polynomial model

To explain our procedure, we use an example involving the one variable fractional polyno-

mial model. Suppose that the experimenter postulates the following terms in the model

η = β0 + β1x
(α), (9)
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to be necessary in modelling the response. Further, in addition to these primary terms,

there are some potential terms that may be additionally important but may not have

been studied thoroughly enough to justify being in the primary model. However the

researcher would like to protect against these terms and, if possible, incorporate any of

the important ones in the model that (s)/he will eventually use to fit the data at the end

of the experiment. The combined (full) model with all the primary and potential terms

is as follows:

η = β0 + β1x
(α) + β2x

2(α) + β3x
3(α). (10)

So here, the primary terms of the model are {β0, β1x
(α)} and the potential terms are

{β2x
2(α), β3x

3(α)}. Suppose past experience suggests the following local values at which

“optimality” criterion will be sought, {β0, β1, β2, β3, α} = {10.0, 5.0, 1.8, 1.2, 1.5} and

x ∈ [0.5, 5.0]. The researcher has resources for 10 runs in the first stage and four in

the second stage.

Let that the ‘true’ model, which the experimenter is unaware of, is actually the quadratic

fractional polynomial model

y = 12.8 + 6.8x3/2 + 3.0x2(3/2) + ε, (11)

which comprises all the primary terms and one of the potential terms. So here in the true

model we have {β0, β1, β2, α} = (12.8, 6.8, 3.0, 3/2). The two-stage strategy we propose to

obtain designs robust to model uncertainty for nonlinear models can be summarized in

the following steps.

Step I: In the first stage experiment, the researcher would like to detect any departures

from the postulated primary model specification in the direction of the potential terms

and a compound design criterion of the type (4) with a moderate value of γ, would seem
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to be very desirable to get a design that enables the researcher to test for lack of fit. A

moderate value of γ = 0.80, seems appropriate for that purpose (see O’Brien (1996) for

his discussion on the choice of γ and on robust design strategies for nonlinear regression

models in general). Using the above local values, the Dγ-optimal design has five support

points at x = 0.5, 1.8, 3.1, 4.5, 5.0. We can replicate each of these support points to obtain

our 10 point design. Note that this design is efficient for estimation of the parameters of

the primary model but also provides a check for any departures from the model in the

direction of the potential terms.

Step II: Using this 10 point design, the experimenter performs the experiment and col-

lects first stage data. We assume that first stage data is actually emanating from the

‘true’ model (11) where ε is drawn from a N(0, 1) distribution. Once we obtain the sim-

ulated first stage data, we fit the full model (10) to uncover any active terms driving the

system. The estimated parameters, approximate standard errors, approximate t-statistic

and the corresponding p-values for the test using the Golub-Pereyra partial linear algo-

rithm, implemented in R (see Venables and Ripley (2002) and Gilmour and Trinca (2005)

for details) for one simulation are shown in Table 1.

If we use the conservative p-value of 20% used by Neff (1996) and Ruggoo (2004), the

estimate of β3 is not significant and can be dropped in the numerical construction of the

second stage design. Other simulations we have examined show similar results. Hence

the rearranged primary model at the end of the first stage will be the model comprising

the following terms {β0, β1x
(α), β2x

2(α)}.

Step III: We can now obtain the second stage design which would be an augmented four

point locally D-optimal design for the rearranged primary model using the parameter
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Table 1: Parameter estimates and approximate p-values

Parameter Estimate Approximate Approximate p-value

standard error t-statistic

β0 11.88 0.7336 16.20 0.0000

β1 3.58 0.9211 3.88 0.0116

β2 5.61 0.3779 14.85 0.0000

β3 0.73 1.5694 0.47 0.6602

α 1.16 0.2332 4.96 0.0042

estimates of the fitted model as updated local values in the search algorithm. Note

that the nature of the information matrix for this purpose is | M0 + M(ξ) | where M0

corresponds to the first stage design and M(ξ) to the points of the augmented design.

The four additional design points for this model are located at x = 0.5, 1.7, 3.7, 5.0. For

the analysis, the first and second stage design can be combined, leading to a design with

14 runs. The experimenter will eventually fit the rearranged primary model to the data.

6 The two variable fractional polynomial model

As a second example, we consider the fractional polynomial model in two variables. Sup-

pose the primary model is

η = β0 + β1x
(α1)
1 + β2x

(α2)
2 (12)

and the full model is

η = β0 + β1x
(α1)
1 + β2x

(α2)
2 + β11x

2(α1)
1 + β22x

2(α2)
2 . (13)
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So here the primary terms are {β0, β1x
(α1)
1 , β2x

(α2)
2 } and the potential terms are {β11x

2(α1)
1 ,

β22x
2(α2)
2 }. Suppose the best guess of the parameters from a previous experiment are

{β0, β1, β2, β11, β22, α1, α2} = {15.0, 8.2, 5.6, 1.8, 1.2, 0.5, 1.5}

and “optimality” is sought at these local values. Also x1 and x2 is in the range [0.5, 10].

The researcher has 14 runs available in the first stage. The 14 runs of a Dγ-optimal

design obtained using the compound criterion (4) and γ = 0.80 is displayed in Figure 3.

It consists of seven support points which are each duplicated. We further assume that

z z

z
z

z

z

z

2 2

2

2

2

2

2

x2

x1

Figure 3: Design points for the Dγ-optimal design

first stage data is simulated from the following ‘true’ model

y = 12.8 + 7.5x
1/2
1 + 5.0x

3/2
2 + 2.7x1 + ε, (14)

where ε is simulated from a N(0, 1) distribution.
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Table 2: Parameter estimates and approximate p-values

Parameter Estimate Approximate Approximate p-value

standard error t-statistic

β0 16.00 2.0419 7.84 0.0000

β1 4.97 1.9307 2.57 0.0329

β2 6.93 2.5876 2.68 0.0280

β11 0.14 0.0357 3.93 0.0043

β22 1.04 2.3062 0.45 0.6640

α1 1.05 0.2618 4.01 0.0039

α2 0.98 0.3169 3.09 0.0147

Once we obtain simulated first stage data, we can fit the full model (13) to uncover any

active factors driving the system. The results for the significance tests of the parameters

are displayed in Table 2. Again using the conservative p-value of 20%, the parameter

β22 is not significant and can be dropped in the construction of the second stage de-

sign. Examination of the parameter estimates of other simulations in most cases leads

to similar conclusions, so that the rearranged primary model to be used in the second

stage comprises the following terms: {β0, β1x
(α1)
1 , β2x

(α2)
2 , β11x

2(α1)
1 }. We can now obtain

a six point augmented second stage D-optimal design for the rearranged model using the

updated parameter estimates as new local values (see Figure 4). The combined first and

second stage designs will thus have 20 runs in total. With this two-stage procedure, we

can refine knowledge on our initial primary model entertained and include any of the

prominent potential terms in the final model to be fitted by the researcher at the end of

the experiment.
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Figure 4: Additional design points for the D-optimal design for the rearranged model

7 Some additional remarks

The one-stage approach can be easily extended to other classes of nonlinear models.

O’Brien (1993) gives several examples for the class of sigmoidal models. In case of the

two-stage approach for other classes of nonlinear models, we need to find relevant and

meaningful supermodels that generalize a variety of different models.

In all the development in this paper, we have adopted a best guess for the parameters

and consequently obtained locally optimum designs for the fractional polynomial models.

An alternative and possibly more realistic approach would be to introduce a prior distri-

bution on the parameters and incorporate this prior into the design criteria, resulting in

Bayesian optimal designs. The approach is obviously much more complicated and very

often these designs are obtained using numerical methods. Gilmour and Trinca (2003)

have constructed a Bayesian optimal design for the first order fractional polynomial model
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in one variable by using a joint prior distribution on the unknown parameters. The proce-

dure is very complex and an adaptive grid search algorithm is required to find the optimal

design. For the second order model, as they argue, obtaining useful priors is more difficult

and analytical results are not available so that sampling from the priors is needed.

8 Conclusion

The overall objective in this paper was to develop model-robust one-stage and two-stage

designs for the fractional polynomial response surface models. The method outlined,

provides a reasonable alternative to the conventional “optimal” designs which typically

cannot be used to check the adequacy of the assumed model. The one-stage approach

is useful when the experimenter will eventually fit the original model at the end of the

experiment, but just requires a few “extra” design points to guard against possible model

misspecification. In case the experimenter has some doubts about the primary model

specification and would like to refine the model that will be used to fit the data at the

end of the experiment, we recommend to use the two-stage design strategy.

9 Acknowledgements

The author would like to thank Prof. Martina Vandebroek and Prof. Peter Goos for

very useful and constructive comments on the paper and also Prof. Steven Gilmour for

suggesting work in this direction and sending relevant papers. Thanks to the referee for

very useful comments and suggestions that improved the paper.

17



Model-robust experimental designs for the fractional polynomial models

References

ATKINSON, A. C. (1972). Planning experiments to detect inadequate regression mod-

els. Biometrika 59, 275-293.

ATKINSON, A. C. and DONEV, A. N. (1992). Optimum experimental designs. Claren-

don Press, Oxford.

ATKINSON, A. C. & HAINES, L. M. (1996). Designs for nonlinear and generalized lin-

ear models. In Handbook of Statistics 13, pp 437-475. (Eds S. GHOSH & C. R. RAO).

Elseiver Science.

BOX, G. E. P. & LUCAS, H. L. (1959). Design of experiments in nonlinear situa-

tions. Biometrika 46, 76-90.

CHERNOFF, H. (1953). Locally optimal designs for estimating parameters. Annals of

Mathematical Statistics 24, 586-602.

COCHRAN, W. G. (1973). Experiments in nonlinear situations. Journal of the Ameri-

can Statistical Association 68, 771-781.

DEFEO, P. & MYERS, R. H. (1992). A new look at experimental design robustness.

Biometrika 79, 375-380.

GILMOUR, S. G. & TRINCA, L. A. (2003). Optimal design for fractional polynomial

response surface models. Spring Research Conference on Statistics in Industry and Tech-

nology, Dayton, Ohio.

18



Model-robust experimental designs for the fractional polynomial models

GILMOUR, S. G. & TRINCA, L. A. (2005). Fractional polynomial response surface mod-

els. Journal of Agricultural, Biological and Environmental Statistics 10, 50-60.

JONES, E. R. and MITCHELL, T. J. (1978). Design criteria for detecting model inade-

quacy. Biometrika 65, 541-551.

NEFF, A. (1996). Bayesian two-stage designs under model uncertainty, Ph.D. disserta-

tion, Virginia Polytechnic and State University, Virginia.

O’ BRIEN, T. E. (1993). Designs strategies for nonlinear regression models. Ph.D. dis-

sertation, North Carolina State University, Raleigh, N.C.

PUKELSHEIM, F. (1993). Optimal design of experiments. Wiley, New York.

PUKELSHEIM, F. RIEDER, S. (1992). Efficient rounding of approximate designs.

Biometrika 79, 763-770.

RATKOWSKY, D. A. (1983). Nonlinear regression modeling. Marcel Dekker, New York.

RATKOWSKY, D. A. (1990). Handbook of nonlinear regression models. Marcel Dekker,

New York.

ROYSTON, P. & ALTMAN, D. G. (1994). Regression using fractional polynomials of

continuous covariates: parsimonious parametric modelling (with discussion). Applied

Statistics 43, 429-467.

19



Model-robust experimental designs for the fractional polynomial models

RUGGOO, A. (2004). Two-stage designs robust to model uncertainty. Ph.D. disserta-

tion, Department of Applied Economics, Katholieke Universiteit Leuven.

SEBER, G. A. F. & WILD, C. J. (1989).Nonlinear regression. Wiley, New York.

.

SILVEY, S. D. (1980). Optimal design. Chapman and Hall, London.

STIGLER, S. M. (1971). Optimal experimental design for polynomial regression. Jour-

nal of the American Statistical Association 66, 311-318.

STUDDEN, W. J. (1982). Some robust-type D-optimal design in polynomial regression.

Journal of the American Statistical Association 77, 916-921.

VENABLES, W. N. & RIPLET, B. D. (2002). Modern Applied Statistics with S, 4th edi-

tion. Springer, New York.

20


