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Abstract 

 

This paper presents the modeling, design and simulation of an adaptive fuzzy 

controlled pH tracking system for an exhaust dyeing process. The proposed system 

is shown to track both linear and exponential command pH profiles even when the 

measured pH signal is corrupted by random noise, and despite the inherent 

transport lag in the pH sensor. The controller gains can eventually be used as a 

starting point for quicker tuning of the actual control system under real dyeing 

conditions, thus reducing the number of experimental runs and associated costs in 

achieving adequate pH tracking performance. 
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I$TRODUCTIO$ 

 

Critical factors including temperature, dye concentration and pH largely affect the 

shade and colour uniformity of the dyed fabric in dyeing processes. The control of 

these key parameters is therefore essential for improving dye exhaustion and 

fixation, dyeing levelness, and shade reproducibility (Gore, 1995; Shamey and 

Nobbs, 2000). The availability of high performance temperature controllers is 

widespread and these are successfully applied in exhaust dyeing for achieving 

specific temperature profiles. During dyeing, however, the control of pH is quite 

complex since it has been shown that pH varies, to different extents, with dyeing 

parameters such as temperature, salt concentration, the quality of the dyed fabric, 

the water quality and the presence of dyes and auxiliaries (Huang and Yu, 1999). 

In batch dyeing processes using reactive dyes onto cotton, the pH is normally 

required to start from a value of about 7.0 (or slightly lower) to reach a final value 

of around 11.0. The pH profile against time may be either linear or non-linear. 

Moreover, with the intrinsic non-linearity between pH and concentration, together 

with the time lags associated with pH sensors, conventional Proportional Integral 

Derivative (PID) controllers cannot satisfactorily perform the control of pH over a 

desired profile. Such controllers produce oscillatory responses with large tracking 

errors, and are typically capable of tracking the pH profile only over a relatively 

small pH range (Shamey and Nobbs, 1999). Besides, accurate mathematical 

models of the dyeing process to include the non-linear effects of temperature, salt 

concentration, the quality of the cotton fabric, the water quality and the presence of 

dyes and auxiliaries on the dyebath pH, are quite complex (Huang and Yu, 1999). 

On the other hand, without any accurate model at hand, experienced human 

operators can potentially control the dyeing operation consistently by controlling 

the key dyeing parameters. Fuzzy controllers provide a means for implementing an 

operator’s expert knowledge for controlling complex processes, and have been 

successfully implemented in various industrial processes. Fuzzy controllers possess 

non-linear features and may operate independent from an accurate system model. 

The fuzzy controller takes control decisions based on linguistic ‘If-Then’ rules 

(Driankov et al., 1995), and can be designed for implementing non-linear, time 

varying control characteristics required for successful pH tracking. However, 

thorough heuristic knowledge of the dyebath pH dynamic behaviour is essential for 

proper controller design, and this may require several repeated process runs. Fine-

tuning the fuzzy controller parameters may also require an extensive number of 

iterative experimental tests on the dyeing plant. A typical test involving preparation 

of dyes, and chemicals can be relatively time-consuming and expensive, thus 

significantly increasing the cost of implementing a working control system. This 

paper proposes the design of an adaptive fuzzy control system to track the desired 

pH profiles. The fuzzy controller parameters are tuned through computer 

simulations, with the aim of reducing the tracking error between the output and 

desired pH over the process duration. The simulated controller can then be used as 

a starting point for optimizing the implemented control system. Such an approach 

largely reduces the number of preliminary experimental tests required for obtaining 

a satisfactorily working fuzzy controller. The proposed fuzzy controller is shown to 

produce adequate pH tracking with both linear and non-linear reference profiles, 

despite the presence pH measurement noise. Its superior performance compared 

with a classical PID control scheme is also demonstrated.  
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MODELI$G OF SE$SOR, ACTUATORS A$D DYE BATH 

 
In this paper, control of the dye bath pH is realized by a closed loop fuzzy control 

system, as shown in Figure 1. For a batch dyeing process, the desired pH profile, 

pHref(kT), typically starts from pH 7 and reaches pH 11 at the end of the process. A 

pH sensor/ transmitter unit gives a steady-state voltage proportional to the actual 

dye bath pH.  

 

The transmitter output is sampled at regular intervals by an Analog to Digital 

(A/D) converter, giving a discrete-time signal, )(ˆ kTHp , where k represents the 

sample number, and T is the sampling interval.  

For each sample, the error between the reference pH and the dye bath pH is 

computed as  

 

)(ˆ)()( kTHpkTpHkTe ref −=     (1) 

 

 
 

The error signal is further processed to generate two more signals, which are 

applied to the fuzzy controller, and computed respectively as: 
 

[ ] )1()(.)( 11 −++= kekeTGGke ie
   (2) 

 

T

keke
Gke e

)1()(
)(2

−−
= δ

    (3) 

 

where Ge, Gi and Gδe are adjustable gains, which are used for tuning the fuzzy 

controller to give the desired pH tracking performance. It should be noted that e1(k) 
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represents a weighted sum of the pH error and its time integral, while e2(k) gives an 

indication of the rate of change of the pH error. Depending on the sign and 
magnitude of e1(k) and e2(k), the fuzzy controller generates a control signal so as to 
dose either acid or alkali into the dyebath, with the aim of reducing the tracking 

error to zero. 
 

 

pH reference profile 

A linear profile for the reference pH is first considered and its time variation can be 

expressed as: 

 





















 −
+= kT

TpH

pHTpH
pHkTpH

fref

reffref

refref
)0(

)0()(
1)0()(   (4) 

 

where Tf is the process terminal time. 
 
 

pH sensor/ Transmitter and A/D Converter  

pH sensors have an inherent transport lag typically in the range 10 to 50 s. To 

obtain the dynamic characteristics of the sensor, the dyes, and required auxiliaries 
were all added to the bath at an initial set pH of 7. The amount of alkali required to 
bring the pH to 11 was pre-calculated and added to the bath at once so as to 

simulate a step input, and the bath is stirred using the liquor circulating system. 
The experiment was performed using a Roaches Jet M10 Soft Flow dyeing 

machine, retrofitted with a LiquisisTM pH sensor / transmitter. The transmitter 
output was recorded and re-scaled to the range 0 to 11, to simulate zero initial 

conditions. The corresponding response is shown in Figure 2, from which the 
transfer function of the sensor in the Laplace domain can be approximated. The 
temperature of the bath was automatically maintained at 600C by an inbuilt closed 

loop temperature controller in the dyeing machine. The dynamic response is 
slightly under-damped and gives a characteristic time delay, Td, of about 14.8s 

Assuming that the response to be essentially due to the sensor/ transmitter unit, the 
s-domain transfer function is approximated by the following second order system: 
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where the natural angular frequency, �n = 0.337 rad./s, and the damping ratio,  � = 

0.83. 
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Figure 2 Step response of the pH sensor 

 

 

The A/D converter samples the measured pH and holds the output value 

constant until the next sampling instant, and as such, it is modeled as a zero 

order hold block (Dorf and Bishop, 1998) with a transfer function given by 
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Dosing pumps and dye bath 
The control signal generated by the fuzzy controller, u(kT), determines the amount 

by which the process pH needs to be increased or decreased, so as to match the 
reference profile. For a positive control signal, the alkali-dosing pump is turned on, 

while for negative control signal, the acid-dosing pump needs to be activated. It is 
assumed that there is homogeneous mixing in the tank.  
 

The flow rate of the acid and alkali dosing pumps are preset to QA and QB litres/s, 
respectively. The control signal from the fuzzy controller represents the time 

duration for which the relevant dosing pump needs to be activated over one 
sampling period. A typical time profile of the flow rate from either pump is shown 
in Figure 3. With T<<Tf, the local average value taken over one sampling interval 

of the acid and alkali flow rates, respectively, are given by 
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Figure 3 Instantaneous and local average flow rates from a dosing pump 

 

To model the dyebath, the mixing dynamics are first considered as if there were no 

reactions, and then a non-linear titration model is incorporated to account for the 
pH change due to acid-base reaction (Astrom and Wittenmark, 1995).  It is 

assumed that the dyebath temperature is kept constant for the process duration by 
an appropriate temperature regulation system. The rate of increase of concentration 
of alkali in the dye bath can be expressed as 

 

 
)(

)(

tv

Ctq

dt

dx BBB =       (9) 

where CB is the alkali concentration at the inlet pipe of the dyeing machine, 

and v(t) is the instantaneous volume of the dye bath, which is given by 

 

 [ ]dttqtqVtv
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V0 is the initial volume of solution in the bath. From (9) and (10), the alkali 

concentration in the dye bath at time t is therefore 
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    (11) 

 

Likewise, considering the addition of acid at a flow rate )(tq
A

, the acid 

concentration in the dye bath at time t, is given by 
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Since the number of positive and negative ions in the dye bath should be equal, the 

concentration of hydroxyl ions, [OH-], and of hydrogen ions, [H+] are related by 

 

 ][][ +− +=+ HxOHx BA      (13) 

 

and 
1410][][ −+− =⋅ HOH       (14) 

 

From Eq. (13) and (14), the dye bath pH can be found as 
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A block diagram of the overall closed loop control system, based on Eqs. (1) to 

(15) is shown in Figure 4. 
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Figure 4 Block diagram of fuzzy controlled pH control model 

 

ADAPTIVE FUZZY CO$TROLLER FOR PH TRACKI$G 

 
The pH control process is characterized by the highly non-linear dyebath model 
and the time delay associated with the dynamic response of the pH sensor. The 

proposed fuzzy controller is well suited for achieving tracking of the reference pH 
profile as it can implement non-linear and time-varying control actions. The inputs 

to the fuzzy controller are the pH error-related variables, e1 and e2, as described by 
Eqs. (2) and (3) respectively.  
 

The control decisions are taken, based on linguistic rules as would be used by an 
experienced operator, for controlling the process. The output of the fuzzy 

controller, u(kT) represents the time during which either the acid or the alkali 
dosing pump needs to be activated to make the output pH track the desired pH 
profile. The time during which the pump is on allows computation of the local 

average value of the flow rate of each dosing pump, according to Eqs. (7) and (8), 
respectively.  

 
The inputs to the fuzzy controller, e1 and e2, are each characterized by membership 

functions, µe1 and µe2, respectively, as shown in Figure 5.Linguistic-numeric values 

‘–4’, ‘-3’, ‘-2’, ‘-1’, ‘0’, ‘1’, ‘2’, ‘3’ and ‘4’ have been used to represent the 
linguistic terms for e1 and e2. Thus, from linguistic-numeric values ‘-4’ to ‘4’, e1 

(and e2 ) are progressively changing from very large negative values to very large 
positive values, while the term ‘0’ represents the set of real values which are very 
close to zero.  
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Figure 5 Membership functions for e1 and e2 

 

The rule base for the fuzzy controller is shown in Table 1. In this paper, the min 

operator (Driankov et al. 1997) is used for evaluating the premise, µ,p,q, for a given 
active rule, so that 

 

 { })(),(min),( 2,21,121, eeee jeieqp µµµ =     (16), 

 

where ]4,4[, −∈ji  are the linguistic-numeric values of e1 and e2, 

respectively, and the indices  ]9,1[, ∈qp locate the rule number by row- and 

column-wise in Table 1. 

 

The result of premise quantification for each firing rule next determines 

how the output fuzzy sets of the fuzzy controller are modified to reflect the 

result recommended from the relevant cell in the rule-base given in Table 1. 

 

 
Table 1 Rule base for proposed fuzzy controller 

 

uout 

e2 

- 4 -3 -2 -1 0 1 2 3 4 

 

 

 

 

-4 -4 -4 -4 -4 -4 -3 -2 -1 0 

-3 -4 -4 -4 -4 -3 -2 -1 0 1 

-2 -4 -4 -4 -3 -2 -1 0 1 2 

-1 -4 -4 -3 -2 -1 0 1 2 3 
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e1 0 -2 -2 -2 -1 0 1 2 3 4 

1 -2 -2 -1 0 1 2 3 4 4 

2 -2 -1 0 1 2 3 4 4 4 

3 -1 0 1 2 3 4 4 4 3 

4 2 2 2 3 4 4 4 3 2 

 

Figure 6 shows the proposed consequent membership functions for the fuzzy 

inference system. The index at the tip of each triangle represents the linguistic-
numeric value for each output fuzzy set. Each membership function represents the 

consequent reached by each cell of the rule-base.  In effect, the fuzzy inference 
stage generates one or more new implied output fuzzy sets, depending on the 
number of rules that fired at a particular sampling instant. The membership 

function formed by an implied fuzzy set arising from rule (p, q) in the rule-base is 
computed as 

 

 { })(),,(min)( ,21,,, outluoutqpoutqpuout ueeu µµµ =    (17), 

 

where µp,q(e1,e2) is found from Eq. (16), µuout,l(uout) is the consequent 

membership function of the firing rule in Figure 6, and l  is the linguistic-

numeric value of uout, with ]4,4[−∈l . This procedure is applied to all other 

rules that fire.  
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Figure 6 Consequent output membership functions and implied fuzzy sets 
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Once the implied fuzzy sets are formed, a real valued output needs to be computed 

so as to apply the required control action to the dosing pumps. In this paper, Center 
of Gravity defuzzification method is used to compute uout, so that  

 

  

∫
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==

outoutqpuout

out

r

m

outqpuoutm

out
duu

duuc

u
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    (18), 

 

where r is the total number of rules that fire at a given instant, cm is the 

center of the consequent membership function for the m
th
 rule, and the 

integral terms represent the area under each implied fuzzy set.  

 

The final output from the fuzzy controller, u(kT) represents the time interval 

during which the acid or alkali pump needs to be turned on so that the 

dyebath pH tracks the reference value during the k
th
 sampling interval. The 

fuzzy controller output is computed as 

 

 )()( 0 kTuGkTu out=       (19), 

 

where G0 is the output gain of the fuzzy controller. 
From Eq. (15), the change in pH is most sensitive to addition of acid or alkali at pH 
7. As the pH progresses to its terminal value, this sensitivity is largely reduced, so 

that a much larger volume of alkali needs to be added to the dyebath to achieve a 
given change in pH. Hence the output gain of the fuzzy controller should be 

adapted to the current value of the pH reference, as shown in Figure 4. In this 
paper, G0 is made to vary non-linearly with the pH so that 

 

 
])([

0 10
bkTapH refG
−=       (20), 

 

where the parameters a and b are tuned to provide the desired pH tracking 

performance. These constants are adjusted so as to set the minimum and maximum 
volumes of acid or alkali supplied by the dosing pumps. Hence, as the reference pH 

increases, larger volumes are dosed so as to achieve a given change in pH with 
minimal tacking error. 
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SIMULATIO$ TESTS A$D RESULTS 

 
The model of fuzzy controlled dyebath pH system is implemented using MatlabTM 
and SimulinkTM software (Mathworks, 2000) so as to evaluate the controller 

performance for tracking different reference pH profiles. Table 2 summarizes the 
values of the process and the controller parameters used for the tests. The input and 

output gain parameters of the fuzzy controller were tuned iteratively over a large 
number of simulation runs, until the desired pH tracking performance was 
obtained. Once tuned, these values were kept constant for all reference profiles. In 

practice the output signal from the pH transmitter is affected by electrical noise, 
which can be represented as a normally distributed random noise signal, adding to 

the incoming dyebath pH signal. Measurement noise with a variance equivalent to 
0.001 pH is used in the simulations. 
 

Linear reference profile 
The reference pH profile defined by Eq. (4) is applied, along with the parameters 

defined in Table 2. Figure 7 shows the corresponding dynamic responses of both 
the reference and output pH. It is assumed that initially, the pH sensor output has 

stabilized to the dyebath pH, as would be the case in a typical setup.  Figure 8 
shows the error between the measured and actual pH, the tracking error and the 
time Integral of the Square of the tracking Error (ISE), used as a performance 

index. It is observed that the fuzzy controller can achieve quite robust tracking of 
the pH, even in the presence of noise. The maximum instantaneous tracking error 

magnitude is less than 0.1 pH and the ISE at the end of the process is less than 3.5 
pH2s. The fuzzy controller was replaced by a PID controller, where the gains were 
adjusted for pH tracking at an operating point of 8.7 pH. The corresponding pH 

and ISE responses are shown in Figures 9 and 10, respectively. In this case the 
dyebath pH is characterized by high overshoots at the start of the process, and a 

steady-state error 0.7 pH at 2400 s, with a corresponding ISE exceeding 1400 pH2s. 

 

Table 2 Process and Controller parameters 

Parameter Value 

Process terminal time, Tf 2400 s 

Initial dyebath pH: pH(0) 7 

Desired terminal pH: pHref(Tf) 11 

Sampling time period: T 20 s 

Fuzzy Controller input gains: Ge, Gi, 

Gδe 

1.7, 6e-4, 0.47 

Dosing pumps preset peak flow rate: 

QA, QB 

0.03 l /s 
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Acid concentration in inlet pipe: CA 2 mol/l 

Base concentration in inlet pipe: CB 2  mol/l 

Initial volume of solution in dyebath: V0 20 l 

Fuzzy controller output gain 

parameters: a, b 

1.057, 15.113 
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Figure 7 Dyebath pH response with a linear reference profile 
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Figure 8 pH Error Performances For Linear Profile 
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Figure 9 Dyebath pH response with a linear reference profile with a PID Controller 
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Figure 10 ISE Performance  with a linear reference profile with a PID Controller 

 

Exponential reference profile 

To demonstrate the controller’s ability to track reference profiles with 

varying slopes, the reference pH was changed to an exponential type of the 

form 

 

 )0(1exp)( refref pH
h

kT
kTpH +
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
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
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where the parameter h is computed from the final and initial pH values as 

 

 
1)0()( +−

=
reffref

f

pHTpH

T
h     (22) 

 
The same fuzzy controller input and output parameters, as well as the pH 
measurement noise levels were maintained as in the linear pH profile. Figures 11 
and 12 show the corresponding pH responses and error performances, respectively, 

for the exponential pH profile. The pH tracking error performances are of the same 
orders of magnitude as with the linear reference profile, with a maximum ISE and 
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tracking error of 1.5 and 0.16, respectively. The time variation of the fuzzy 

controller output gain for the linear profile (Case I) and exponential profile (Case 
II) are shown in Figure 13. For both cases, the initially low controller output gain 
produces very little dosing so as to avoid large overshoots in the pH response. The 

gains increase to the same final value at a pH of 11, so that a larger dosing volume 
is provided to achieve a given pH change.  
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Figure 11 Dyebath pH response with an exponential reference profile 
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Figure 12 Error Performances For Exponential Profile 



M. I. Jahmeerbacus & �. Kistamah 

 42

0 500 1000 1500 2000

0.5

1

1.5

2

2.5

3

x 10
-4

Time (secs)

F
u
z
z
y
 C
o
n
tr
o
lle
r 
O
u
tp
u
t 
G
a
in

Case I 

Case II 

 

Figure 13 Fuzzy Controller Output Gain For Linear And Exponential Profiles 

 

CO$CLUSIO$ 

 
The design and simulation of an adaptive fuzzy pH control for exhaust dyeing has 
been presented. Mathematical models were derived for the various stages forming 
the control system, including the pH sensor, analog to digital converter, fuzzy 

controller, dosing pumps and dyebath.  The proposed adaptive fuzzy controller has 
a variable output gain, which is a non-linear function of the reference pH. The 

performance of the controller has been evaluated by applying both linear and 
exponential pH reference profiles, and with the pH transmitter output affected by 
random noise signals. The proposed controller is shown to closely track command 

pH profiles even with measurement errors due to the sensor’s characteristic delay 
and electrical noise in the system. The fuzzy controller is also shown to perform 

significantly better than a conventional PID controller. The simulated controller 
gains and process parameters can be used as a good starting point for further fine-
tuning of the real control system.  Such an approach will considerably reduce the 

number of experiments and required to obtain a satisfactorily working pH 
controller, with consequent savings on time and chemicals.  
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