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Abstract 

 
In this work we discussed the representation ability, the model building process 
and the applicability of a non-standard feedforward neural network (FNN) 
approach. Traditional neural network models have a static mapping capability since 
they are composed of a fixed number of input nodes. However, in a dynamic 
environment, it is desirable to have a non-standard network that uses a variable set 
of input data.  This approach enables already presented knowledge to adapt to new 
situations and conditions of the environment and new knowledge to be integrated 
into the fitting database.  We applied successfully the approach to a system of 
linear chain of silicon (Si) atoms.  In this study, a back-propagation algorithm was 
employed to train a feedforward neural network.  The Levenberg-Marquardt (LM) 
technique was chosen from the various back-propagation training algorithms 
available for use in this study. 
 
Keywords: Feedforward neural network, Back-propagation algorithm, 

Levenberg-Marquardt technique  
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1. I�TRODUCTIO� 

 
At the current stage of knowledge, neural network models are crude 
approximations of the human brain such that a very important feature of neural 
networks is their adaptive nature, where “learning by example” replaces 
“programming” in solving problems1. Neural networks must first be trained on 
samples of the data so that it can learn to recognise patterns in the data. Once 
trained it can generalise, i.e., make predictions by detecting patterns in future data. 
This feature makes these computational models very appealing in application 
domains where one has little or incomplete understanding of the problem to be 
solved but where training data is readily available.  
 
One such application domain is developing an accurate and efficient method that 
can be used systematically to fit empirical potential energy surfaces of systems 
with many degrees of freedom2. These potentials are simplified mathematical 
expressions that attempt to model interatomic forces arising from quantum 
mechanical interactions of electrons and nuclei. Empirical potentials are generally 
developed by first choosing an appropriate analytic functional form containing 
adjustable parameters. The parameters are then optimized, fitting the potential to 
experimentally determined structures or, to the results of quantum mechanical 
calculations. The success of the fitting procedure is determined to a large extent by 
the derived functional form for the potential. At present, there is no definitive 
functional form that describes all types of multi-atom bonding3. In the case of Si, 
more than 30 empirical potentials have been reported4. 
 
On the other hand, no assumptions about the functional form of the potential are 
required to achieve a good representation using neural networks. The neural 
network models can extract the underlying relationships between the input and 
output variables directly from the data being modelled. Several efforts to use neural 
networks to describe potential functions have been reported, in most cases with 
good results5-18. The resulting function is infinitely differentiable and globally 
defined. The fit is not only merely local, like a spline, but can also reproduce 
global features, such as symmetry2. Thus, neural networks are legitimate 
candidates substantiated by the fact that FNN's are known to possess the universal 
approximation property19. 
 
The basic FNN performs a non-linear transformation of input data in order to 
approximate output data. This results in a static network structure. In some 
situations, such as a dynamic environment (e.g., a molecular dynamics (MD) 
simulation whereby an atom constantly changes its local environment and number 
of neighbours), knowledge acquisition remains incomplete. Already represented 
knowledge has to be adapted to new situations and conditions of the environment 
and new knowledge has to be integrated into the fitting database. At this point, the 
principle unresolved issue is how to present the information regarding the 
variability of the local environment of an atom to the input layer of a FNN. 
 
The aim of this paper is to demonstrate the use of a non-standard (dynamic 
mapping) FNN to deal with the issue of the variability of the atomic local 
environment in some simple linear chain models of Si of two and three atoms. The 
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insight available from these simple models may be a helpful guide to 
understanding the limitations of neural networks and improving their performance. 
The ultimate goal of the project is to systematise the development of accurate and 
transferable potential energy surfaces using neural networks. 
 
The paper is organized as follows. Section 2 describes the structure of a traditional 
FNN. In section 3, the non-standard FNN is discussed. The fitting process of the 
non-standard network using data derived from Si linear chains is examined in 
section 4. Finally, the results of the training are presented and analysed in section 
5.  
 
 

2. BASIC FEEDFORWARD �EURAL �ETWORK 

 
The architecture of a FNN is defined by a directed, acyclic graph and a choice of 
neuron activation functions20. The FNN can be arranged into (at least) three layers: 
one input layer, one (or more) hidden layer(s) and one output layer. The 
interconnections within the network are such that every neuron in each layer is 
connected to every neuron in the adjacent layers. Each interconnection has 
associated with it a scalar weight which is adjusted during the training phase. The 
hidden and output layer nodes are computational nodes typically having biases and 
sigmoid activation functions ϕ  given by equation (1). 
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Figure 1 illustrates a three-hidden-layered FNN with P input nodes, SRQ  and ,  

nodes in the first, second and third hidden layers respectively, and T output nodes 
where ∈TSRQP ,,,,  
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Figure 1: A feedforward neural network model consisting of P inputs, SRQ  and ,  nodes in the first, second 

and third hidden layers respectively, and T output nodes. The x ’s are the input variables to the network. 
The biases and the weights are indicated by the b’s and w’s respectively. The output of the neurons are 

denoted by the 
��y ’s. 
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The number of input and output nodes is determined by the nature of the modelling 
problem being tackled, the input data representation and the form of the network 

output required. Thus, the network in figure 1 has P  input variables Pxxx ,...,, 21  

and T  output variables ��

T

���� yyy ,...,, 21 . Such a network can be interpreted as a 

composition of function from       to       given by equation (2). 
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for Tt ,...,2,1= whereby γ
αβw represents the thγ  level of weights between nodes 

α  and β  and γ
αb  represents the thγ  level of biases associated with node α . 

 
The number of hidden layer nodes is related to the complexity of the system being 
modelled. A number of papers21,22 have shown that a two-hidden-layered FNN has 
the ability to approximate any non-linear continuous function to an arbitrary degree 
of exactness, provided that the hidden layer contains sufficient nodes. More than 
two hidden layers have proved to be useful in certain applications18,23-25 as well. 
 
The learning in a FNN is done in a supervised manner which assumes the 

availability of a set of training data made up of Train�  input-output examples 

( ){ } Train�

lll 1, =dx  where lx is the input vector of the lth example and ld is the desired 

(target) response of the lth example. Given the training sample, the network 
parameters (weights and biases) are adjusted in such a way that the difference 

between the actual output of the neural network ��
y l due to lx  and the desired 

output ld is minimised for all l. Usually this is done by minimising the sum-

squared error (SSE) function (equation (3)). 
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The problem of determining the network parameters is essentially a non-linear 
optimisation task. The back-propagation method26,27, which is a distributed gradient 
descent technique, is the most popular training algorithm. However, a major 
limitation of the algorithm is that it does not always converge and can be 
excruciatingly slow, particularly when dealing with a difficult learning task that 
requires the use of a large network28. More efficient methods include the Conjugate 
Gradient29, Quasi-Newton30 and the LM29,31 algorithms. In particular, the LM 
algorithm was designed specifically for minimising SSE with a single output 
variable (i.e., 1=T )32.  
 
In general, to reach the best generalisation, the dataset should be split into three 
parts: a training set is used to train a neural net and the error of this dataset is 
minimised during training; a validation set is used to determine the performance of 
the neural network on patterns that are not trained during learning; and a test set for 

ℝP ℝT 

(2) 

(3) 



A �eural �etwork Model for Dynamics Simulation 

 177 

finally checking the overall performance of the neural net. The learning should be 
stopped at the minimum of the validation set error. 
 
 

3. FEEDFORWARD �EURAL �ETWORK FOR DY�AMICS 

SIMULATIO� 

 
Reconciling the architecture of a FNN with the requirements of an interatomic 
potential energy function for use in a MD simulation is non-trivial as the local 
environment (namely the geometry and the number of neighbours) of an atom will 
be constantly varying throughout the course of the simulation. In addition, the 
network must be able to provide a continuous mapping as atoms move in and out 
of the neighbour distance. The network potential must also be well behaved in the 
sense that spurious potential minima do not occur and the model must be invariant 
to the ordering of the input vectors for a given atom. 
 
The architecture of the neural network adopted by Hobday et al.

14 provides a useful 
means to deal with the issue of the variability of the atomic local environment. 
However, they did not try to systematise the approach to produce a general 
potential energy surface. In that respect, the neural network model in this work is a 
significant improvement over the work of Hobday et al. and represents a 
reasonable compromise between the predicting capabilities of the network within 
the fitting database and its transferability outside the fitting database. 
 
The architecture of the non-standard neural network in this work is shown in figure 
2. This dynamic mapping model has a variable set of input nodes in the input layer 

that represents the variable set { })()2()1( ,...,, �

iii xxx  of �  input vectors for each 

atom i  that could be formed in a MD simulation. Each set of input nodes 

corresponding to the vector ( )�nn

i ,...,2,1)( =x has a one-to-one correspondence 

with a set of neurons in the first hidden layer containing a fixed number, Q , of 

neurons. To meet the requirement of the potential to be invariant to any ordering of 
input data and to provide a continuous mapping, the following conditions are 
applied to the model:  
 

(1) The first level A  of weights and biases between the corresponding 
input nodes and the first hidden nodes are identical. Thus, we have 
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(3) The strength of the connections is equal for the corresponding 
neurons in the first and second hidden layers which satisfy the relation 
(6). The strength of the connections is measured in terms of a 

screening factor )()( n

ij

n SS = , which measures the extent of screening 

in the bond i – j between atom i and atom j due to neighbouring 
atoms. The full details of the screening procedure18 is based on the 
idea put forward by Baskes33. Hence we have  

 

From the second hidden layer to the output iE , the energy per atom i , the neural 

network is connected in a traditional feedforward manner. Therefore, for 
connections between the output and the second hidden layer, the application of the 
back-propagation algorithm is identical to that of a standard network. For the 
adjustment of weights and biases between the first hidden layer and the input layer 
during the training process, the back-propagation is slightly modified by the special 
form of the input layer18. 

4. FITTI�G PROCESS 

 
To illustrate the applicability of the network, simple Si systems of dimers 
(figure 3(a)) and linear trimers (figure 3(b)) are considered. 
 

 
 

We used the neural network model to predict the energy iE , for each atom 

)3,2,1( =ii , such that  

( ) ( )( )wRXR ,ii YE =  

where R is the set of atomic Cartesian coordinates of all the atoms in a given 

system, ( ) { })()2()1( ,...,, �

iiii xxxRX = is the set of input variables associated with 

atom i  and is derived from R , w is the vector of the network weights and biases, 
and Y is the composition of activation functions representing the model. The 

response iE can be expressed as follows: 
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ix . The number of 

parameters, parameter� , of the network is given by equation (10). 
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Figure 3: Si (a) dimer and (b) linear trimer considered in the process to fit the non-standard neural 
network. 
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We have 6 input variables (i.e., P = 6), based on the geometry, to describe the 
structural properties of the systems. These variables are listed in table 1. Thus, for 

the neural network model shown in figure 2, the input vector )(n

ix , is defined as   

( )′= inputsji

n

ijk

n

jk

n

ij

n

i ���rr ,,,cos,, )()()()( θx  

where .kji ≠≠  The variables inputsji ���  and ,  are given in terms of the 

screening factors. For the simple linear chain systems, 1== jkij SS . To 

model the absent bond kj − in the dimer, an imaginary interaction at a 

distance maxr was used and the associated missing bond angle was taken to 

be o180 . The input vectors per atom for the dimer (figure 3(a)) and linear 
trimer (figure 3(b)) generated using equation (11) are given in table 2 and 
table 3 respectively. In particular, atom 2=i  of the linear trimer has 

2=� input vectors. 
 
The training data for the neural network potential was generated using the 
Frauenheim non-orthogonal tight binding (FTB) method34 from PLATO35. 
Furthermore,  
 

Variable Description 

ijr  length of bond ji −  

jkr  length of bond kj −  

ijkθcos  cosine of angle between bonds ji −  and kj −  

∑
≠

=
ij

iji S�  sum of screening present over every bond 
ji − formed per atom i  

∑
≠
≠

=
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jkj S�  sum of screening present over every bond 
kj − formed per atom j  
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ijinputs SS�  sum of screening present over every chain 
kji −−   
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  ( )′= ° 1,0,1,180cos,,12
)1(

1 maxrrx  

  ( )′= ° 1,0,1,180cos,,21
)1(

2 maxrrx  

 

(11) 

Table 1: List of input variables used in the neural network training of the dimer and linear trimer systems. 

1 1 

1 2 

Table 2: The input vectors for the atoms in the dimer structure. 
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if two or more atoms had the same local geometry, then the information for only 

one of those atoms was considered. Calculations for iE (in eV/atom) for dimmers 

and linear trimers were cumulatively performed and used for training purposes. We 

found that iE for 2400 dimers and 2600 linear trimers were the least amount of data 

required to accurately train the neural network potential.  
 
Thus we had 2400 distinct data points for iE for the dimers and 2600 distinct data 

points were randomly extracted from the linear trimer data set. The training data 
set contained 4550 randomly drawn data from the 5000 dimers and linear trimer 
data points. The validation set was then similarly generated but with 100 data 
points from the remaining 450 data points. The remaining 350 data points form the 
pre-defined test data set. The variables in the data sets were linearly transformed in 
the interval [0.1,0.9] using their respective minimum and maximum values 

recorded. The constant parameters ijkθcos  and maxr  were pre-processed to 0.1 and 

0.9 respectively.  
 
To find the optimal parameters of the network the cost function SSE  (equation 

(3)) was minimised (with 1=T , since iE  was the only output) and the parameters 

were updated during learning by the LM based back-propagation algorithm. The 
LM parameter µ  was initially taken to be 0.1 while the fixed LM constants 

+− µµ  and were taken to 0.5 and 2.0 respectively. The values of Q and R were 

determined by pruning the least effective hidden nodes. In this study, 
Q and R were varied until a network configuration was obtained that resulted in the 

least increase of the SSE in the network. 
 

5. RESULTS A�D DISCUSSIO�S 

 
15 training processes were carried out and the final network chosen corresponded 
to the lowest mean sum-squared errors (MSE) recorded on the test data set. The 
relevant statistics of the final neural network model developed is given in table 4. 
 
 

1 1 

2 2 

3 1 

Table 3: The input vectors for the atoms in the linear trimer structure. 
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Number of epochs 322 
MSE of the transformed training set 510559.1 −×  
MSE of the transformed test set 510053.2 −×  
Number of hidden nodes, Q  11 

Number of hidden nodes, R  11 
 
 
 
Figure 4 shows the network predictions (the broken curves) of iE for the selected 

dimers (figure 4(a)) and linear trimers (figure 4(b)-(e)). The predictions were 
excellent as, in each case, the root mean sum-of-squares error (RMSE) were very 

small (< 0.05 eV) while the 2R value, the coefficient of variation, were > 0.99.  
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Table 4: Properties of the neural network model which has best fitted iE  for the system of dimers 

and linear trimers. 

(a) 

12r  
1 2 

1 2 3 
12r  Å 640.1  

1 2 3 
12r  Å 222.2  

(b) (c) 
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6. CO�CLUSIO�S 

The approach outlined in this work is novel in terms of the form of the neural 
network used. The network employed was non-standard as it used a variable set of 
input data that mapped the environment of the atoms. The method accurately 
predicted the trends in the energy per atom of the Si dimers and linear trimers. The 
insight available from these small systems indicates a robust and consistent 
methodology for fitting empirical potentials which can be applied to a wide range 
of systems including both small clusters and bulk structures. 
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