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Abstract 

Two of the state of the art multiobjective evolutionary algorithms have been 

used to solve the environmental/economic dispatch problem.  The Fast and 

Elitist Nondominated Sorting Genetic Algorithm (NSGA-II) and the 

Strength Pareto Evolutionary Algorithm 2 (SPEA2) have been compared for 

the IEEE 30-bus system using normalized values of the objectives by 

generational distance as convergence metric, spread as diversity metric and 

actual computational times.  A further investigation was carried using tools 

for statistical comparison of multiobjective optimizers.  Results are 

presented for two cases: lossless system and system with transmission 

losses. 
 
Keywords: Power Systems, Environmental/Economic Dispatch, 

Nondominated Sorting Genetic Algorithm, Strength Pareto Evolutionary 

Algorithm. 
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1. INTRODUCTION 

 

Most real world problems are multiobjective in nature and have often been 

considered as single objective problems for their solutions because of 

limitations in the solution methods.  With the advent of new optimization 

tools due to the development of evolutionary algorithms, these problems can 

now be handled with the consideration of multiple objectives.  Research has 

also helped in effectively handling the equality and inequality constraints of 

such problems. 

 

As presented in Momoh (2001), power system optimization has been 

performed by mathematical programming techniques and heuristic methods.  

Many applications of modern heuristic methods to the power systems area 

have been tried in the past decades (Nara 2000, Bansal 2005).  Among these 

heuristic methods, evolutionary algorithms have attracted many researchers 

to consider them as robust optimization tools for various applications 

(Bansal 2006). 

 

Some researchers have carried out simultaneous optimization of multiple 

objectives in the environmental/economic dispatch problem using 

evolutionary algorithms.  The environmental/economic dispatch problem is 

a multiobjective optimization problem where the fuel cost for power 

generation and the emissions from the generating plant are simultaneously 

minimized.  Srinivasan and Tettamanzi (1997) used a hybrid genetic 

algorithm using an indirect representation for solutions and a decoding 

procedure that always generates a feasible solution.  However, the approach 

did not yield a good distribution on the Pareto-optimal front.  Das and 

Patvardhan (1998) have proposed a Multi-Objective Stochastic Search 

Technique (MOSST) for the multi-objective economic dispatch problem.  

The method is based on a hybrid combination of real coded genetic 

algorithms and simulated annealing.  Promising results have been obtained 
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by Abido (2001 and 2003a) by using a Non-dominated Sorting Genetic 

Algorithm (NSGA) to locate the Pareto-optimal solutions with a good 

diversity.  Subsequently, a niched Pareto genetic algorithm (NPGA) (Abido 

2003b), the Strength Pareto Evolutionary Algorithm (Abido 2003c) and a 

comparative study of NSGA, NPGA and SPEA (Abido 2006) were 

performed by the same author who concluded that SPEA is better than the 

other algorithms.  Perez Guerrero (2004) presented differential evolution for 

solving real and reactive power dispatch problems.  Penalty function method 

was used to handle the constraints and this required multiple runs for finding 

the best solutions.  Ah King et al. (2005) applied NSGA-II to the problem 

under consideration but also considered stochastic generation, loads and 

objectives.  Multiobjective particle swarm optimization techniques to solve 

the environmental/economic dispatch problem have been proposed by Zhao 

and Cao (2005), Wang and Singh (2007), Victoire and Suganthan (2007) 

and Agrawal et al. (2008). 

 

In this paper, the multiobjective environmental/economic dispatch problem 

has been solved for a typical test system using two state of the art 

multiobjective evolutionary algorithms: the fast and elitist Nondominated 

Sorting Genetic Algorithm (NSGA-II) and the strength Pareto evolutionary 

algorithm 2 (SPEA2).  The two algorithms are compared using different 

performance indices. 

 

2. ENVIRONMENTAL/ECONOMIC DISPATCH PROBLEM 

 

Environmental/economic dispatch is a multiobjective problem with 

conflicting objectives because pollution minimization is conflicting with 

minimum cost of generation.  The environmental/economic dispatch 

involves the simultaneous optimization of fuel cost and emission objectives 

which are conflicting ones.  The problem is formulated as described below. 
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2.1 Fuel Cost Objective 

The classical economic dispatch problem of finding the optimal 

combination of power generation which minimizes the total fuel cost while 

satisfying the total required demand can be mathematically stated as follows 

(Wood and Wollenberg 1996): 





n

i
GiiGiii PcPbaC

1

2  (1) 

Where C is total fuel cost ($/hr); ai, bi, ci are fuel cost coefficients of 

generator i; PGi: is real power generated by generator i (MW); and n is 

number of generators. 

 

2.2 Emission Objective 

 

The minimum emission dispatch as opposed to the above classical economic 

dispatch minimizes the NOx emission objective which can be modeled using 

second order polynomial functions (Talaq et al. 1994a): 

))exp(( 2

1
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n
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 (2) 

where aiN, biN, ciN, diN and eiN are NOx emission coefficients of generator i.  

Unit of E  is ton/hr. 

 

The optimization problem is bounded by the following constraints. 

 

2.3 Power Balance Constraint 

 

This is represented by an equality constraint: 

0
1




LD

n

i
Gi PPP  (3) 

where PD is total load (MW), and PL is transmission losses (MW). 
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A loadflow or powerflow solution has to be carried out and this involves an 

iterative process using Newton-Raphson method.  In this case, the equality 

constraints on real and reactive power at each bus are as follows (Abido 

2006): 

 

0)]sin()cos([
1
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NB

j
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where iV  and jV  are voltages at bus i  and j ; i  and j  are voltage 

angles at bus i  and j ; GiQ  and DiQ  are reactive power generated and 

reactive power demand at bus i ; ijG  and ijB  are real and imaginary 

components of BUSY  and NB is the number of buses in the power system. 

 

2.4 Power Generation Limits Constraint 

 

The power generated PGi by each generator should lie between its minimum 

and maximum limits, i.e., 

maxmin GiGiGi PPP   (6) 

where minGiP  is minimum power generated; and maxGiP  is maximum power 

generated. 

 

2.5 Multiobjective Formulation 

 

The multiobjective environmental/economic dispatch optimization problem 

is therefore formulated as: 
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Minimize [ EC  , ] 

subject to: 0
1




LD

n

i
Gi PPP  

maxmin GiGiGi PPP   

(7) 

 

 

3. ELITIST NON-DOMINATED SORTING GENETIC ALGORITHM 

(NSGA-II) 

 

Deb et al. (2000) have proposed an elitist Non-dominated Sorting Genetic 

Algorithm known as NSGA-II which uses both elite-preserving and 

diversity-preserving mechanisms.  The two distinct goals in multiobjective 

optimization are: 

 

(i) discover solutions as close to the Pareto-optimal solutions as 

possible 

 

(ii) find solutions as diverse as possible in the obtained non-dominated 

front 

It has been shown that NSGA-II can achieve these two goals well (Deb et 

al.2000). 

 

A description of the NSGA-II algorithm is given in this section.  Initially a 

random population Po is created.  The population is sorted into different 

non-domination levels.  Each solution is assigned a fitness equal to its non-

domination level where level 1 is the best level.  Binary tournament 

selection with a crowded tournament operator, recombination, and mutation 

operators are used to create an offspring population Qo of size N.  The 

NSGA-II procedure (as in Deb et al. (2000)) is outlined below and shown 

schematically in Figure 1.  Figure 2 illustrates the crowding distance 

calculation. 
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NSGA-II 

Step 1 Combine parent and offspring populations and create ttt QPR   

Perform a non-dominated sorting to Rt and identify different 

            fronts: Fi, i = 1, 2,… 

Step 2 Set new population Pt+1 = null.  Set a counter i = 1. 

Until NFP it 1 , perform itt FPP   11  and 1 ii . 

Step 3 Perform the Crowding-sort(Fi,<c) procedure given below and 

include the most widely spread ( 1 tPN ) solutions by using the 

crowding distance values in the sorted Fi to Pt+1. 

Step 4 Create offspring population Qt+1 from Pt+1 by using the crowded 

tournament selection, crossover and mutation operators. 

 

 

 
Figure 1: A schematic of the NSGA-II procedure (Deb et al. 2002) 
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Crowding-sort(Fi<c) 

Step 1 Call the number of solutions in F as Fl  .  For each i in the set, 

first assign crowding distance, 0id . 

Step 2 For each objective function M,...,,m 21 , sort the set in worse order 

of mf  or, find the sorted indices vector: 

mI =sort(fm,>) 

Step 3 For M,...,,m 21 , assign a large distance to the boundary solutions, 

or  m
l

m II dd
1

, and for all other solutions j = 2 to (l - 1), assign: 

min
m

max
m

)I(
m

)I(
m

II ff
ff

dd
m
j

m
j

m
j

m
j 




 11

. 

 
 

 

 

 
Figure 2: The crowding distance calculation (Deb et al. 2002) 

 

NSGA-II performs a non-dominated sorting of the combined parent and 

offspring population.  Elitism is introduced by maintaining the best non-

dominated solutions in fronts until all P population slots are filled.   

A crowded distance-based niching strategy is used to find solutions from the 

last front that are to be carried over to the next generation. 
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3.1 Simulated Binary Crossover and Parameter-based Mutation 

 

The use of real-valued genes in GAs offers a number of advantages in 

numerical function optimization over binary encodings (Wright 1991).  The 

variables are therefore represented as real numbers and the simulated binary 

crossover (Deb and Agrawal 1995) and the real-parameter mutation operator 

are used.  With simulated binary crossover (SBX), two children solutions (c1 

and c2) are created from two parents (p1 and p2) as follows (Deb and 

Agrawal 1999): 

 

Simulated Binary Crossover 

Step 1 Choose a random number )1,0[u . 

Step 2 Calculate  

 
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)( c 12  , 

    21
12

21 yy,yymin
yy ul 


 . 

yl and yu: lower and upper limits of y 

c : distribution index for crossover  

Step 3 Compute children solutions: 
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The mutation operator (Deb and Agrawal 1999) is applied as follows: 

Parameter-based Mutation 

Step 1 Choose a random number )1,0[u . 

Step 2 Calculate 

   
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where 

      luul yy/yy,yymin   

m : distribution index for mutation 

Step 3 Calculate the mutated child: 

)yy(yc luq  .                                   
 
 

3.2 Constrained Tournament Method 

 

In this method, two solutions are picked from the population and the better 

solution is chosen.  With constraints, each solution can be either feasible or 

infeasible.  The constrain-domination principle (Deb et al. 2002) is defined 

as follows: 

A solution i is said to constrained-dominate a solution j if any of the 

following conditions is true. 

1) Solution i is feasible and solution j is not. 

2) Solutions i and j are both infeasible, but solution i has a smaller 

overall constraint violation. 

3) Solutions i and j are feasible and solution i dominates solution j. 

Thus, feasible solutions are ranked according to their nondomination level 

based on the objective function values such that feasible solutions have 

better ranks than infeasible solutions.  The infeasible solution with a smaller 

constraint violation is chosen when the tournament takes place between two 

infeasible solutions. 
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4. STRENGTH PARETO EVOLUTIONARY ALGORITHM 2 

(SPEA2) 

 

An improved version of SPEA, namely SPEA2, was proposed by Zitzler et 

al. (2001).  SPEA2 uses a fine-grained fitness assignment strategy, a density 

estimation technique, and an enhanced archive truncation method.  The 

SPEA2 algorithm as in Zitzler et al. (2001) is given below. 

 

SPEA2 Algorithm 

Input: N  (population size) 

         N (archive size) 

         T  (maximum number of generations) 

Output: A (nondominated set) 

Step 1 Initialization: Generate an initial population 0P  and create the 

empty archive (external set) 0P . Set 0t . 

Step 2 Fitness assignment: Calculate fitness values of individuals in tP  

and tP . 

Step 3 Environmental selection: Copy all nondominated individuals in tP   

and tP  to 1tP . If size of 1tP  exceeds N  then reduce 1tP  by 

means of the truncation operator, otherwise if size of 1tP  is less 

than N  then fill 1tP  with dominated individuals in tP  and tP . 

Step 4 Termination: If Tt    or another stopping criterion is satisfied 

then set A to the set of decision vectors represented by the 

nondominated individuals in 1tP . Stop. 

Step 5 Mating selection: Perform binary tournament selection with 

replacement on 1tP  in order to fill the mating pool. 
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Step 6 Variation: Apply recombination and mutation operators to the 

mating pool and set 1tP  to the resulting population. Increment 

generation counter ( 1 tt ) and go to Step 2. 

 

 

4.1 Fitness Assignment 

 

Each individual i  in the archive tP  and the population tP  is assigned a 

strength value )(iS , representing the number of solutions it dominates: 

 

}|{)( jiPPjjiS tt   (12) 

where .  denotes the cardinality of a set, + stands for multiset union and 

the symbol 

  corresponds to the Pareto dominance relation.  On the basis of the S  

values, the raw fitness )(iR  of an individual i  is calculated: 





ijPPj tt

jSiR
,

)()(  (13) 

 

The density )(iD  corresponding to i  is defined by 

2
1)(


 k
i

iD


 
(14) 

where k
i  is the k -th element for each individual i  the distances (in 

objective space) to all individuals in archive and population after sorting the 

list in increasing order. 

Finally, adding )(iD  to the raw fitness value )(iR  of an individual i  yields 

its fitness )(iF : 

)()()( iDiRiF   (15) 
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4.2 Environmental Selection 

 

Copy all nondominated individuals, i.e., those which have a fitness lower 

than one, from archive and population to the archive of the next generation: 

}1)(|{1  iFPPiiP ttt  

If the nondominated front fits exactly into the archive NP t 1 the 

environmental selection step is completed. 

If the archive is too small ( NP t 1 ), the best 1 tPN  dominated 

individuals in the previous archive and population are copied to the new 

archive. 

If the archive is too large ( NP t 1 ),an archive truncation procedure is 

invoked which iteratively removes individuals from 1tP  until NP t 1 , 

that is, the individual which has the minimum distance to another individual 

is chosen at each stage; if there are several individuals with minimum 

distance the tie is broken by considering the second smallest distances and 

so forth. 

 

5. PERFORMANCE METRICS 

 

The two distinct goals in multi-objective optimization are (i) to discover 

solutions as close to the Pareto-optimal solutions as possible and (ii) to find 

solutions as diverse as possible in the obtained non-dominated front.  For 

comparing two algorithms, at least two performance metrics (one evaluating 

the progress towards the Pareto-optimal front and the other evaluating the 

spread of solutions) need to be used (Deb 2001).  Two such performance 

metrics together with two combined weighted metric for the overall 

performance of an algorithm are described below.  A critical review of 

performance metrics was performed by Okabe (2003) whereas Knowles et 
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al. (2006) summarized the state of the art in performance assessment of 

stochastic multiobjective optimizers. 

 

5.1 Generational Distance for Convergence 

 

Given a nondominated set Q and a Pareto-optimal set P*, the Generational 

Distance (GD) metric calculates the average distance of the solutions of Q 

from P*, as follows (Veldhuizen 1999): 

1/
1

( )Q p p
ii

d
GD

Q
   

(16) 

 

For p = 2, the parameter di is the Euclidean distance (in the objective space) 

between the solution in Q and the nearest member of P*: 

*
( ) *( ) 2

1
min ( )

P
i k

i m mk
d f f


   

(17) 

where *( )k
mf  is the m-th objective function value of the k-th member of P*. 

An algorithm having a small value of GD is better.  If the objective function 

values are of differing magnitude, they should be normalized before 

calculating the distance measure.  A large number of solutions in P* is 

recommended in order to make the distance calculations reliable. 

 

5.2 Spread for Diversity 

 

A spread metric for evaluating the diversity among non-dominated solutions 

was proposed by Deb (Deb et al. 2000): 

1 1

1

M Qe
m im i

M e
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 
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 


 
(18) 
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where id  can be any distance measure between neighboring solutions and 

d  is the mean value of these distance measures.  In this paper, id  is 

calculated using Schott’s difference distance measure (Schott 1995), that is, 

the minimum of the sum of the absolute difference in objective function 

values between the i-th solution and any other solution in the obtained non-

dominated set.  Alternatively the Euclidean distance or the crowding 

distance can be used to calculate id .  e
md  is the distance between the 

extreme solutions of Q and P* for each objective.  For a two-objective 

problem, the term Q  is replaced by 1Q  .  For an ideal distribution of 

solutions,   = 0 and for bad distributions,   can take a value greater than 

1.  Thus, an algorithm finding a smaller   value is able to find a better 

diverse set of non-dominated solutions. 

 

5.3 Combined Convergence and Diversity Metrics 

 

Currently, there are only a few metrics combining both convergence and 

diversity evaluations.  Such metrics are the attainment suface based 

statistical metric, weighted metric and non-dominated evaluation metric 

(Deb 2001).  The last method is simply considering the convergence and 

diversity evaluations as a two-objective problem and if one algorithm 

dominates the other in both objectives, then the former is undoubtedly better 

than the other. Otherwise, no conclusions can be made.  The attainment 

suface based statistical and weighted metrics are described in detail in the 

following. 

 

5.3.1 Attainment Surface Based Statistical Metric 

 

Once a set of non-dominated solutions are obtained, a curve cannot be 

drawn to join the solutions since the intermediate points are not guaranteed 

to be feasible or even Pareto-optimal.  A concept to represent the non-
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dominated solutions was suggested by Fonseca and Fleming (Fonseca 1996) 

whereby instead of joining the obtained non-dominated solutions by a curve, 

an envelope which represents the search space which are dominated by the 

obtained non-dominated solutions is created.  The generated envelope is 

called an attainment surface and is a measure of both convergence and 

diversity of obtained solutions. 

 

The attainment surface metric is particularly useful to represent the outcome 

of multiple runs.  The attainment surface of each run is created and a 

number of diagonal imaginary lines, running in the direction of 

improvement in all objectives, are drawn.  The intersection of the diagonal 

lines and the attainment surfaces are calculated, from which a frequency 

distribution is obtained based on the statistics.  Thus, 0%, 50% and 100% 

attainment surfaces represent the region of the objective space which are 

dominated by 0%, 50% and 100% of the simulation runs. 

 

The attainment function can be estimated from a sample of r independent 

runs of an optimizer via the empirical attainment surface (EAF) defined as 

(Knowles et al. 2006, Fonseca et al. 2005): 





r

i

i
r zAI

r
z

1
}){(1)(   

(19) 

where iA  is the ith approximation set (run) of the optimizer and (.)I  is the 

indicator function, wguch evaluates to one if its arguments is true and zero if 

its argument is false.  Furthermore, the authors mentioned it may be 

interesting to plot all the goals that have been attained (independently) in 

50% of the runs and defined the k%-approximation set A of an EAF )(zr  

if and only if it weakly dominates exactly those objective vectors that have 

been attained in at least k percent of the r runs: 

}{100/)(: zAkzZz r    (20) 
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The attainment surface of such an approximation set A is the union of all the 

tightest goals that are known to be attainable as a result of A.  Thus, the k%-

attainment surface divides the objective space in two parts: the goals that 

have been attained and the goals that have not been attained with a 

frequency of at least k percent (Knowles et al. 2006). 

 

5.3.2 Weighted Metric 

 

In order to evaluate both goals of convergence and diversity, a weighted 

metric combining the Generational Distance metric, GD and spread metric, 

  is suggested (Deb 2001): 

1 2W w GD w      (21) 

with 1 2 1w w  .  An algorithm having an overall small value of W  means 

that the algorithm is good in both convergence and diversity-preserving 

ability.  It is recommended to use a normalized pair of metrics. 

 

6. SIMULATION RESULTS 

 

Two cases: system without transmission losses referred as Case 1 and 

system with transmission losses referred as Case 2 have been considered.  

For both Case 1 and Case 2 of the standard system, NSGA-II and SPEA2 

algorithms have been compared using normalized values of the objectives 

by generational distance (GD) (Veldhuizen 1999) as convergence metric, 

spread ( ) (Deb 2000) as diversity metric, weighted convergence and 

diversity metrics (W) (Deb 2001) with equal weightage for each metric, and 

actual computational time on a 3.2 GHz Pentium 4 PC with 1 GB RAM 

running Linux operating system.  The best nondominated Pareto front 

obtained from the combined Pareto fronts of 30 independent runs of each 

algorithm for 200 generations were used to calculate the metrics.  The 

statistics (Mean, Standard Deviation, Minimum and Maximum values) are 
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given in Tables 1 and 2.  Furthermore, Figures 3 and 5 show the box and 

whisker plots (box plots) for the performance metrics for each case.  Figures 

4 and 6 also show the 0% attainment surface (best nondominated front) and 

100% attainment surface (worst nondominated front) of each algorithm for 

all 30 runs for each case. 

 

An interesting observation from Figures 5.30 and 5.32 is that the extreme 

values (minimum fuel cost and minimum NOx emission) are attained by all 

runs of both algorithms and this is certainly not the case for the other 

solutions as confirmed by the 0% and 100% attainment surfaces ‘gap’. 

 

Table 1: Performance metrics for deterministic Case 1 

 

Generational 

Distance, GD Spread,   Weighted Metric, W Time (s) 

 NSGA-II SPEA2 NSGA-II SPEA2 NSGA-II SPEA2 NSGA-II SPEA2 

Mean 0.000851 0.000547 0.473265 0.177034 0.237058 0.088791 0.891333 15.987333 

SD 0.000182 0.000171 0.093398 0.021224 0.046697 0.010597 0.028856 0.352302 

Min 0.000543 0.000348 0.336502 0.130890 0.168828 0.065720 0.830000 15.520000 

Max 0.001289 0.001170 0.710375 0.216421 0.355561 0.108427 0.950000 17.080000 

 

 
  (a)     (b) 
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  (c)     (d) 

Figure 3: Box plots of performance metrics for Case 1 

(a) Generational Distance (b) Spread (c) Weighted Metric (d) Time 

 
Figure 4: 0% and 100% attainment surface plots for NSGA-II and SPEA2 

for Case 1 
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Table 2: Performance metrics for deterministic Case 2 

 

Generational 

Distance, GD Spread,   Weighted Metric, W Time (s) 

 NSGA-II SPEA2 NSGA-II SPEA2 NSGA-II SPEA2 NSGA-II SPEA2 

Mean 0.000834 0.000536 0.427368 0.168292 0.214101 0.084414 68.943667 87.024333 

SD 0.000142 0.000093 0.078230 0.024900 0.039092 0.012442 0.096149 0.378643 

Min 0.000589 0.000358 0.280877 0.126628 0.140997 0.063589 68.550000 86.290000 

Max 0.001221 0.000693 0.600633 0.225991 0.300786 0.113200 69.110000 87.760000 

 

 
  (a)     (b) 

 
  (c)     (d) 

Figure 5: Box plots of performance metrics for Case 2 
(a) Generational Distance (b) Spread (c) Weighted Metric (d) Time 
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Figure 6: 0% and 100% attainment surface plots of NSGA-II and SPEA2 for 

Case 2 

 

It can be observed from the tables and box plots that the solutions obtained 

using SPEA2 are better both in terms of convergence and diversity (and 

combined weighted metric) than those obtained by NSGA-II in both 

deterministic cases.  In fact, solutions by SPEA2 have significantly better 

diversity than NSGA-II ones due to the better diversity maintenance strategy 

of SPEA2.  In addition, SPEA2 has a better distributing ability that may 

help convergence.  However, SPEA2 is more computationally expensive to 

run than NSGA-II and is therefore more time consuming (average of 15 s) 

in the simulation runs as shown by Case 1.  This observation has also been 

highlighted in Deb et al. (2003).  In Case 2, the additional computation time 

is due to executing the loadflow algorithm for each candidate solution.  

Nevertheless, there is on average an average additional time of 18 seconds 

taken by SPEA2 to complete a run compared to NSGA-II.  It is also 

interesting to note that the computational time of NSGA-II has a much 

smaller standard deviation than SPEA2 in both cases, the larger variation of 
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the latter algorithm being attributed to its archiving technique.  The box 

plots show that SPEA2 is more consistent in terms of both convergence and 

diversity at the expense of computational time to NSGA-II.  It should be 

pointed out that the 0% attainment surface plots for NSGA-II and SPEA2 in 

both cases considered are practically similar as observed in Figures 4 and 6. 

 

A further investigation was carried using tools for statistical comparison of 

multiobjective optimizers (mostats5.c) by Corne and Knowles (1999) to 

compare the solutions obtained by NSGA-II and SPEA2 on the 30 runs.  

According to Corne and Knowles (1999), the output of the tools is a 2 by N 

matrix, where N is the number of objectives (here, N=2).  Entry i in the first 

row gives the percentage of the space on which algoirthm i's performance is 

unbeaten by any of the other algorithms compared, that is, the percentage of 

the fitness space for which we cannot be 95% confident (based on a non-

parametric test - The Mann-Whitney Rank test) that any other algoirthm 

beat it.  Entry i in the second row gives the percentage of the space on which 

we can be 95% confident that algorithm i beats all of the other algorithms 

compared. 

 

The outputs of mostats5.c obtained are as follows: 

Case 1 

32.1 100 

0 67.9 

Case 2 

44.5 100 

0 55.5 

 

Thus, for Case 1, SPEA2 was not beaten anywhere in the objective space by 

NSGA-II and SPEA2 beat NSGA-II on 67.9% of the space for sure.  

NSGA-II performed well being unbeaten on 32.1% of space, however this 

was not enough to confidently beat SPEA2.  For Case 2, again SPEA2 was 
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not beaten anywhere in the objective space by NSGA-II and SPEA2 beat 

NSGA-II on 55.5% of the space for sure.  In this case, however, the 

performance of NSGA-II was relatively better, being unbeaten by SPEA2 

on 44.5% of the space. 

 

7. CONCLUSIONS 

 

The multiobjective environmental/economic dispatch for two cases of the 

IEEE 30-bus system has been solved using two state of the art 

multiobjective evolutionary algorithms: NSGA-II and SPEA2.  The two 

algorithms have been compared using normalized values of the objectives 

by generational distance as convergence metric, spread as diversity metric, 

weighted convergence and diversity metrics with equal weightage for each 

metric, and actual computational times.  In addition, tools for statistical 

comparison of multiobjective optimizers have been applied to complete the 

analysis.  It is found that the nondominated solutions obtained by SPEA2 

are better than NSGA-II both in terms of convergence and diversity but at 

the expense of computational time.  The difference in computational time is 

one magnitude higher for SPEA2 for this particular problem as 

demonstrated in the case without transmission losses. 
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