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Abstract 

 
In this paper, a method for optimizing the parameters of Automatic Voltage Regulation (AVR) 

system installed on the generators of a multi-machine power system using Artificial Intelligence 

(AI) techniques is presented.  Each AVR system is equipped with a PID (Proportional, Integral 

and Derivative) controller and a Power System Stabilizer (PSS).  Two methods are presented, 

which are the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA).  The 

robustness of the AI algorithms is examined by studying the time-domain behavior of the 

system following different disturbances.  The AI techniques provide a much simpler way to 

solve this non-linear system compared to classical techniques. 

 

Keywords:  multi-machine power system stability, AVR system, power system stabilizer, PID 

controller, particle swarm optimization, genetic algorithm. 
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1. INTRODUCTION 

 

A stable voltage level is crucial in a power system. Insulation, security, economy and quality 

of service are some of the factors that put upper and lower bounds to voltage levels.  In 

modern power systems, there exist various mechanisms on the different networks (that is, the 

generation, transmission and distribution networks) to control the voltage level.  In this work, 

the voltage profile at generators’ terminal after a major disturbance is of concern.  Other 

types of voltage control mechanisms include changing taps of transformers and shunt/series 

capacitor compensation. 

 

Steady-state frequency is also needed in a power system.  One major reason for this is that at 

some consumers’ place, the production line is synchronized to the power line.  Constant 

frequency is also necessary for parallel operation of generators and proper functioning of 

other equipment which have stringent frequency specifications like some protective relays. 

 

The major cause of variations in voltage levels and operating frequency is the ever-changing 

active and reactive power demand.  As a consequence, the power input to generators must be 

changed to match the demand in order to prevent undesirable frequency change.  Also, the 

excitation of generators must be continuously regulated to match the reactive power demand 

with reactive power generation; otherwise, the voltages at various system buses may go out 

of the prescribed limits. 

 

Many methods have been proposed for tuning PID (Proportional, Integral and Derivative) 

controllers and for the design of PSS blocks, both in sequential and simultaneous ways for 

multi-machine system.  The most popular methods of tuning PID controllers are probably the 

Ziegler-Nichols methods.  It remains, however, tedious to obtain an optimal (or even near-

optimal) solution with these methods for a multi-machine system.  Some methods for 

designing PSS in a multi-machine system were presented in (Abido 2002) and (Chen & Hsu 

1987).  These methods are limited due to the linearization and simplification involved. And 

they are often limited to linear controllers.  This is what has motivated the use of PSO for this 

optimization problem, since it can be quite easily extended to more complex controllers and 

more comprehensive system models.  Some recent approaches using intelligent techniques 

applied to multi-machine AVR control and PSS designs include genetic algorithms, fuzzy 

systems, neural and neuro-fuzzy systems and more recently particle swarm optimization. 

 

Minimum phase control loop method and genetic algorithm (GA) have been proposed for 

off-line tuning of PSS in a multi-machine power system (Hongesombut et al. 2002).  The 

PSS parameter problem was converted to an optimization problem and solved using micro-

GA and Hierarchical GA was used for automatically identifying the PSS locations.  In (Park 

et al. 2005), the dual heuristic programming optimization algorithm was applied for the 

design of two local nonlinear optimal neuro-controllers on a practical multi-machine power 

system.  One neuro-controller was designed to replace the conventional linear controllers: 

automatic voltage regulator and speed-governor for a synchronous generator.  The other was 

an external neuro-controller for the series capacitive reactance compensator, flexible ac 

transmission systems device. 

 



Robert T F Ah King, Harry C S Rughooputh & Hervin K.Shewtahul 

 

 16 

Elshafei et al. (2005) proposed a power system stabilizer based on adaptive fuzzy systems.  

The proposed controller was a fuzzy-logic-based stabilizer that has the capability to 

adaptively tune its rule-base on line.  The change in the fuzzy rule base was done using a 

variable-structure direct adaptive control algorithm to achieve the pre-defined control 

objectives.  A robust artificially intelligent adaptive neuro-fuzzy power system stabiliser 

(ANF PSS) design for damping electromechanical modes of oscillations and enhancing 

power system synchronous stability was presented in (Barton 2004).  The power system was 

decomposed into separate subsystems; each subsystem consisting of one machine and the 

local ANF PSS was associated with each subsystem where the local feedback controllers 

relied only on information particular to their subsystem and the input signals were the speed, 

power angle and real power output. 

 

The problem of simultaneous and coordinated tuning of stabilizers parameters and automatic 

voltage regulators gains in multi-machine power systems was considered in (El-Zonkoly 

2006).  This problem was formulated as an optimization problem and solved using particle 

swarm optimization technique.  The objective of the parameters optimization was formulated 

as nonlinear problem with constraints to represent the allowable region of the system 

parameters.  More recently, a craziness based particle swarm optimization and binary coded 

genetic algorithm were used to obtain the optimal PID gains (Mukherjee & Ghoshal 2007).  

For on-line off-nominal system parameters Sugeno fuzzy logic (SFL) was applied to get on-

line terminal voltage response.  SFL was used to extrapolate the nominal optimal gains in 

order to determine off-nominal optimal gains. 

 

Recently, many artificial intelligence (AI) techniques have been applied to power system 

design and control.  These methods have proven to be very promising.  PSO is one such 

method and is based on swarm intelligence (Chatterjee et al. 2009, Zamani et al. 2009).  PSO 

was introduced in 1995 by Eberhart R. and Kennedy J. (Eberhart & Kennedy 1995).  The 

technique tries to implement the social and cognitive behavior of individuals in a flock, such 

as fish schooling or locust swarms.  The algorithm used is very simple and, thus, computer 

efficient. 

 

This paper deals with the application of PSO technique aiming to find the optimal values of 

the proportional, integral and differential gains and time constants for a PID controller 

installed on the generators. 

 

The paper overview is as follows: 

In section 2, the particle swarm optimization algorithm is presented.  In section 3, the PID 

Control Scheme is explained together with the search-space parameters while section 4 

presents the simulation results.  Section 5 concludes the paper outlining the advantages of the 

method. 

 

2. PARTICLE SWARM OPTIMIZATION (PSO) 
 

Figure 1 shows the diagram of the AVR system used for the generators (including a PSS 

block) (Anderson & Fouad 1993).  The sensors’ model is approximated to first order transfer 
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functions as described in (Saadat 1999).  The lead network block is, in fact, two lead 

compensators in cascade, as denoted by the following expression 1. 

s

s

s

s

4

3

2

1

1

1

1

1

τ

τ

τ

τ

+

+

+

+
    … (1) 

The reset block has the following transfer function (2): 
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Figure 1: AVR system (Anderson & Fouad 1993) 

 

In this section, we shall review the PSO method detailed in (Parsopoulos & Vrahatis 2002) 

and applied in section 3 for designing the PID controller of Fig.1. 

 

PSO works by using a population of particles each of which travels through a search-space 

(usually bounded).  Each particle’s motion is affected by the flock’s (social) and its own 

(cognition) experience.  A particle represents a possible solution, which is evaluated with an 

objective function.  The particle remembers the best solution (position in the search-space) it 

has been through (cognition) and the best solution of the entire flock (social).  In addition to 

that, there are random variations in the velocity of each particle which allow a more thorough 

exploration of the search-space.  Recent research (Eberhart & Shi, 1998) has shown that PSO 

works better by concentrating on global search at the start and emphasizing on local 

exploration at the end of the search (Parsopoulos & Vrahatis 2002).  PSO offers many 

advantages over conventional methods for optimization. 

 

a) Each particle is evaluated using an objective function.  Hence, PSO can easily deal 

with very complex (and even non-differentiable) system of equations, where many 

conventional methods, such as gradient-based techniques, will fail.  Moreover, many 
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of the approximations needed by traditional methods can be dropped when using 

PSO. 

b) Since there is a population of particles flying around the workspace, each carrying 

individual searches, there exist a sort of parallel search which decreases the risk 

getting trapped in local optima.  

c) Initialisation is not of capital importance in PSO, unlike many other traditional 

methods. 

d) PSO provides the flexibility of balancing between global and local exploration, which 

enhances the search results.  This feature helps PSO to, sometimes, outperform other 

AI techniques (such as genetic algorithms). 

 

The PSO algorithm is based on particles flying around the search-space.  Mathematically, the 

particle is a vector of dimension m, where m is the number of parameters to be optimized.  

This vector is a candidate solution to the problem.  Particle i is thus denoted as: 

( ) ( ) ( ) ( ),1 ,2 ,, , , , 1, 2, ,i i i i mP t p t p t p t i n = = K K  … (3) 

where, the p’s are the optimized parameters, 

         t is the time index (iteration number), and, 

         n is the number of particles. 

 

The velocity of a particle is defined as the change in position of the particle over iteration.  It 

is thus a vector of dimension m, denoted as: 

( ) ( ) ( ) ( )[ ] mitvtvtvtV miiii ,,2,1,,,, ,2,1, KK ==  … (4) 

 

The algorithm used for the implementation of PSO for this work is given in equations (5), (6) 

and (7) stated in (Parsopoulos & Vrahatis 2002). 
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where,  

n number of particles in the swarm, 

m number of optimized parameters, 

t time index (iteration number), 

vi,j
(t) 

component of the velocity of the i
th

 particle with respect to the j
th 

dimension at iteration t, 

pi,j
(t)

 position of the i
th

 particle in the j
th 

dimension at iteration t, 

w
(t) 

inertia weight factor at iteration t, 

c1 constant governing the cognitive behavior of each particle, 

c2 constant governing the social behavior of the group, 



Optimisation of AVR Parameters of a Multimachine Power System Using Particle Swarm 

Optimisation  

 19 

rand a random number from the standard uniform distribution, 
( )

,

t

i j
pbest  a vector of dimension m representing the best position visited by particle i 

as at iteration t, 

gbest j
(t)

 a vector of dimension m representing the global best position visited by 

the swarm as at iteration t, 

a inertia weight’s decrement 

wmax maximum inertia weight’s value 

 

The constants c1 and c2 determine the behavior of the individual particles in the swarm.  A 

high value of c1 (or small value of c2) results in an “individualistic” behavior, which 

decreases the chances of finding the global optima.  Nevertheless, a low value of c1 (or large 

value of c2) will result in all the particles behaving almost similarly, which diminishes the 

parallel search feature.  Another constant known as the neighborhood constant is sometimes 

included.  The neighborhood constant models the attraction to the best solution in the 

“neighborhood” of the particle. 

 

The velocity of each particle is bounded as, 

max

)(

,min j

t

jij VvV ≤≤  

By bounding the velocity, the resolution of the search is set. Usually, 

maxmin VV −= .     … (8) 

Thus small value of Vmax gives high resolution. It, however, increases the convergence time 

and it can also cause the particles to stick to local optima. 

 

3. PID CONTROL SCHEME 
 

The PID controller has three adjustable parameters, which are the proportional gain (kp), 

integral gain (ki) and derivative gain (kd).  The PSS has four parameters to be optimized: k0, 

k1, τ1 and τ3. k0 is the gain of the speed offset signal and k1 is the gain of the power offset 

signal.  Each individual are defined as a vector of dimension seven. 

p = [kp , ki , kd , k0 , k1 , τ1 , τ3] 

 

The search-space is, thus, of dimension seven.  The boundaries of the search-space were 

defined as follows. 

500 ≤≤ pk , 

200 ≤≤ dk , 

200 ≤≤ ik , 

1500 0 ≤≤ k , 

1500 1 ≤≤ k , 

20 1 ≤≤τ , 

20 3 ≤≤τ . 
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The generator speeds are then set to a random value from a normal distribution with mean 

equal to the synchronous speed and variance equal to ζ/(inertia constant).  The action of the 

AVR systems and the power system is then simulated over 10 seconds.  The simulation 

algorithms are based on the work from (Kusic 1986, Stagg & El-Abiad 1968, deMello & 

Concordia 1969).  The response is evaluated in the time domain using an objective function, 

defined below.  ζ is a constant, which was set to 30 for the New England power system. 
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where  N is the number of generators present. 

 

As outlined in (Chen & Hsu 1987), a compromise must be set between the voltage profile 

and the frequency deviation.  This can be done by varying β, which is a weight constant.  For 

the New England 10-generator 39-bus system, β was set to 0.0005.  Moreover, a condition is 

inserted in the objective function, which assigns a large performance value (a penalty) if the 

voltage deviation exceeds 6% 1.5 seconds after the occurrence of the fault.  This condition 

simulates the power systems’ restrictions on voltage level.  In the optimization, any 

individual giving fluctuations of more than 6% was thus rejected.  

 

A MATLAB program was written to perform the optimization process.  The procedure 

adopted for the search can be broken down into the following steps: 

Step 1: The search-space was defined and a population of 10 random individuals was 

initialized. 

Step 2: Constants c1 is set to 1.5 and c2 is set to 0.8. w (inertia weight constant) = 0.9 and a 

=0.01.  Vmax is set to [kp/2, ki/2, kd/2, k0/2, k1/2, τ1/2, τ3/2] and the number of iteration 

is set to 100.  These parameters were found to be most effective after several runs of 

the optimization process. 

Step 3: Each particle is evaluated with the objective function, and pbestj and gbest are 

updated. 

Step 4: The velocity of each particle is updated using equation (5). 

Step 5: The position of each particle is adjusted according to their velocities as follows, 
)1(

,

)(

,

)1(

,

++ += t

ji

t

ji

t

ji vpp ,    … (10) 

and limited by the following inequalities, 

max

)(

,0 i

t

ji Kp ≤≤ ,    … (11) 

where Kimax =[kpmax , kimax , kdmax , k0max, k1max, τ1max, τ3max] 

 

Step 6: Inertia weight constant is updated and the iteration number is increased.  If maximum 

is not reached, step (3) is repeated else step (7) is executed. 

Step 7: The latest gbest gives the best set of parameters found. 
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4. RESULTS 
 

The optimization process was run for the New England power system shown in Figure 2.  

The US-Canadian link is modeled as a constant excitation generator (generator 1).  Since an 

objective function was already defined, a Genetic Algorithm (GA) (Chipperfield et al. 1994) 

was also used to optimize the system, as a comparison.  The same number of function 

evaluations was used for the GA for the comparison.  The GA used generalized rank-based 

fitness assignment, stochastic universal sampling for selection, real-value mutation and 

discrete recombination (Chipperfield et al. 1994). 
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Figure 2: New England power system 

 

All parameters of the PID controller and the PSS were initially set at random numbers within 

the boundaries stated earlier (same as in Anderson & Fouad 1993).  A set of ten 

independent runs was made for both PSO and GA and the results of the performance values 

(eqn. (9)) obtained are presented in Table 1. 

 

Table 1: Performance of PSO and GA on ten independent runs 
 

Run Number PSO GA 

1 0.01113 0.01345 

2 0.01358 0.01229 

3 0.01259 0.01310 
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4 0.01482 0.01295 

5 0.01588 0.01274 

6 0.01287 0.01673 

7 0.01246 0.01248 

8 0.01299 0.01610 

9 0.01301 0.01297 

10 0.01256 0.01301 

Minimum 0.01113 0.01229 

Maximum 0.01588 0.01673 

Mean 0.01319 0.01358 

Standard Deviation 0.00132 0.00153 

 

By inspecting the values given by PSO and GA: 

00132.001319.0 ±=±= deviationstandardmeaneperformanc
PSO

 

00153.001358.0 ±=±= deviationstandardmeaneperformanc
GA

 

we find that theses ranges are very close to each other, hence if we define  

00060.001451.001511.0max,max,max =−=−=∆ GAPSO eperformanceperformanceperformanc  

and 

00082.001287.001205.0min,min,min −=−=−=∆ GAPSO eperformanceperformanceperformanc

. 

These differences are very small to judge which one of PSO or GA is better.  Hence, we can 

say that PSO and GA performance are very close on this particular problem. 

 

Tables 2 and 3 give the best parameters obtained by PSO and GA respectively.  It is to be 

noted that both PSO and GA converge to a value of zero for K1 in all runs.  These results may 

suggest that it is advisable to set the power offset signal gain to zero for a more stable 

system.  Moreover, only the PSO algorithm converges to a value of zero for kd in all runs.  

The implication is that the system gives best performance when kd is zero according to PSO.  

In practice, it is well established that kd causes a system to be less stable. 

 

Table 2: Parameters obtained by PSO 

 

Generator 1 2 3 4 5 6 7 8 9 10 

kp 0.1203 0.1548 0.11151 0.12321 0.8143 0.11219 0.77566 0.1208 0.76398 0.21568 

ki 0.1077 0.1357 0.001 0.001 0.001 0.001 0.0135 0.1227 0.001 0.001 

kd 0 0 0 0 0 0 0 0 0 0 

K0 34.276 45.809 23.4765 21.0603 35.63 48.5948 46.8033 28.9452 55.3822 98.8966 

K1 0 0 0 0 0 0 0 0 0 0 

Τ1 0.9808 0.6963 0.787 0.9198 0.3348 0.5401 0.3685 0.9741 1.738 1.1114 

Τ3 0.9756 0.6515 0.7618 0.6042 0.3311 0.9233 0.2253 0.9947 1.2992 0.9356 
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Table 3: Parameters obtained by GA 

 

Generator 1 2 3 4 5 6 7 8 9 10 

kp 0.5 5.9869 0.6314 0.6216 0.5807 3.8934 31.8357 8.2631 8.4071 6.5763 

ki 0.4839 6.006 4.3181 0.3846 1.7606 0.8704 1.9796 0.1851 0.2696 6.5229 

kd 0.2221 8.6838 6.1548 5.695 1.5485 0.0354 1.6131 0.0289 0.4887 0.0022 

K0 0.1 150 149.9878 146.8611 0.1244 149.9756 149.9756 149.9756 150.0244 150.366 

K1 0 0 0 0 0 0 0 0 0 0 

Τ1 1.5573 1.6828 0.3233 1.3695 1.3747 0.4124 1.1166 1.0111 1.1621 1.1405 

Τ3 1.2362 1.0328 0.9154 1.1624 0.5569 1.6237 0.2998 0.7157 1.4739 1.3397 

 

The optimized system was then tested with different disturbances and system conditions. 

Figures 3 to 9 show the response of the system.  The responses for a classical machine 

represented as a constant voltage source behind its transient reactance (no controller in this 

case) are also shown. 
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Figure 3: Speed of generator 6 following a 6-cycle 3-phase fault near bus 36 
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Figure 4: Speed of generator 7 following a 6-cycle 3-phase fault near bus 36 

0  1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)

v
o
lt
a
g
e
 i
n
 p

u

Classical

PSO

GA

 
Figure 5: voltage at bus 36 following a 6-cycle 3-phase fault near bus 36 
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Figure 6: Speed of generator 7 following a 6-cycle 3-phase fault near bus 16 cleared by 

opening line 16-17 
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Figure 7: Voltage at bus 16 following a 6-cycle 3-phase fault near bus 16 cleared by 

opening line 16-17 
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Figure 8: Speed of generator 7 following a 6-cycle 3-phase fault near bus 36 with 

loading increased by 25% 
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Figure 9: Voltage at bus 36 following a 6-cycle 3-phase fault near bus 36 with loading 

increased by 25% 
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As observed from the responses, PSO and GA give comparable results for the particular set 

of disturbances considered.  Oscillations are sustained for the classical machine 

representation whereas the PSO optimized AVR and GA optimized AVR achieve good 

damping characteristics in both generator speed and voltage profiles. 

 

5. CONCLUSIONS 
 

This paper has presented methods for optimizing AVR system of a multi-machine power 

system using AI techniques.  The proposed methods have been applied successfully to 

conventional controllers (PID and lead networks).  The methods presented take into account 

some real-life constraints such as the boundaries imposed on the voltage levels.  The 

designed system has been tested against a number of disturbances and under different system 

configurations.  

 

Satisfactory performance of the optimized power system network is noted.  The AI methods 

used provide a simple solution to solving a non-linear and discontinuous system, compared to 

classical methods, which involves more advanced mathematics.  The fine tuning of the 

different optimization parameters of PSO and GA is one of the future works.  

 

The main advantage of this method is that it can be extended to more complex controllers 

and more comprehensive system models. 
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