
U�IVERSITY OF MAURITIUS RESEARCH JOUR�AL – Volume 15 – 2009

University of Mauritius, Réduit, Mauritius

Research Week 2008

315

MiPSCom: A �ovel Content-Based

Publish/Subscribe Communication Model

for Wireless Sensor �etworks

Kavi K. Khedo *

Faculty of Engineering,

University of Mauritius

Email: k.khedo@uom.ac.mu

R. K. Subramanian
University of Mauritius

Email: rks@uom.ac.mu

Paper Accepted on 11 August 2009

Abstract

Due to extreme resource constraints and lack of suitable programming abstractions,
programming sensor networks remains a complex and tedious process. Dealing
with sensor devices in large numbers, which are error prone and limited in terms of
energy, memory and processing power, introduces a burden on application
development. Well adapted to the loosely coupled nature of distributed interaction
in large-scale applications, the publish/subscribe communication paradigm has
recently received increasing attention in the domain of wireless sensor networks. In
this paper we propose a well-defined content-based publish/subscribe service,
MiPSCom, that allows the application designer to adapt the service by choosing
appropriate communication protocol components for subscription and notification.
A major design goal of the proposed communication model is to give the
application designer a simple and flexible means to select protocol components and
data attributes according to his needs, and to give him more fine-grained control
over the publish/subscribe service through a number of extension components. The
flexibility of MiPSCom to support different sensor node platforms, communication
protocols and interaction patterns has been demonstrated experimentally. The
experimental results show that our approach exports significant performance
tradeoffs to the application in an easy-to-use fashion, and the communication
model is general and flexible enough to support different interaction patterns and
the execution time overhead is acceptable.

Keywords: Publish/Subscribe Paradigm, Sensor Networks, Communication

Model, Subscription, Notification

*For correspondences and reprints

K. K. Khedo & R. K. Subramanian

 316

1. I�TRODUCTIO�

The continuous miniaturization of hardware components and the evolution of
wireless communication technologies have stimulated the development and use of
wireless sensor networks (WSNs) in the monitoring of physical environments.
Consequently, the emerging field of sensor networks offers an unprecedented
opportunity for a wide spectrum of applications (Levis et al. 2008). However, due
to extreme resource constraints and lack of suitable programming abstractions,
programming sensor networks becomes a complex and tedious process. Indeed,
wireless sensor networks are ad-hoc self-organizing untethered networks of smart
sensors characterized by severe energy resource constraints. Dealing with sensor
devices in large numbers, which are error prone and limited in terms of energy,
memory and processing power, introduces a burden on application development.
Moreover, the distribution of nodes and their shared communication medium call
for multi-hop routing algorithms and distributed coordination (Sun et al. 2008).

WSN applications need to continuously collect and integrate data generated from a
large and physically dispersed contingent of sensor nodes. In this scenario, there
are a large number of devices exchanging data, whilst some information sources
and sinks may not be present in the network at the same time. Therefore, the
request/response communication is not adequate to satisfy this requirement.
Moreover, as energy is a scarce resource, unnecessary information requests should
be avoided. In addition, the communication between applications in WSNs is
essentially based on events, which suggests that the traditional request/response
approach (synchronous) is not appropriate. In most applications, data transmission
is triggered when either an event occurs or the sink node generates a query.

An appealing way to organize cooperation is to employ an event-driven style of
interaction by exploiting publish/subscribe (Eugster et al. 2003): producers publish
notifications, while consumers selectively subscribe to notifications, for example,
using topic-based or content-based filters (Costa et al. 2005). Publish/subscribe,
discussed in section 2, ideally fits the targeted setting because, usually, neither
producers nor consumers do address their counterparts explicitly. This leads to a
loosely and dynamic coupling of components allowing for more fault resistance
than if an explicit addressing of individual nodes was used.

In this paper we propose MiPSCom, MiSense Content-based Publish/Subscribe
Communication Model which is based on an enhanced published/subscribed
scheme. We present the design, implementation and evaluation of a flexible
communication model that provides a well-defined content-based publish/subscribe
service and allows the application designer to adapt the service by making
orthogonal choices about the communication components for subscription and
notification delivery, the supported data attributes, and a set of service extension
components. This allows the decoupling between the publish/subscribe core and
the communication protocols. The communication model uses an attribute-based
naming scheme augmented with metadata containing soft requirements for the
publishers and run-time control information for the service extension components.
It supports different addressing schemes and interaction patterns. Initial results

MiPSCom: A �ovel Content-Based Publish/Subscribe Communication Model for Wireless

Sensor �etworks

 317

show that our approach provides good performance in terms of high delivery and
low overhead, and is resilient to changes in connectivity, therefore making it
amenable to our target deployment scenario.

2. THE PUBLISH/SUBSCRIBE PARADIGM

The increasingly popular publish/subscribe paradigm allows processes to exchange
information without explicit knowledge about any particular destination address
where producers or consumers can be found. This is founded on the principle that
producers simply make information available and consumers place a standing
request for information by issuing subscriptions. The notification service is then
responsible for making information flow from a producer (publisher) to one or
more interested consumers (subscribers). A publish/subscribe notification service
provides asynchronous communication, it naturally decouples producers and
consumers, makes them anonymous to each other, and allows a dynamic number of
publishers and subscribers. The loose coupling of producers and consumers is the
prime advantage of publish/subscribe systems. This makes publish/subscribe a key
technology for information dissemination in wireless sensor networks.

The reification of an event in a publish/subscribe system is a notification. It
represents the data describing the observed happening. A notification is created by
the observer of the event. The content of a notification usually is application-
dependent and may just indicate the plain occurrence, but it can also carry
additional information describing the circumstances of the event. On the transport
level described here, notifications are forwarded by messages, which basically are
containers for data on the network level. They carry data between the endpoints of
the underlying communication mechanism.

The clients of an event-based system act as producers and/or consumers of
notifications. Producers emit notifications whenever an event occurs. A producer
does not necessarily have to publish every single event. In general, producers are
components that are self-contained. Hence, the course of action taken after an
event’s occurrence is up to the internal computation done within the producer.

K. K. Khedo & R. K. Subramanian

 318

Figure 1: Event-Based Interaction

Whenever a notification is generated the producer “simply” publishes it into the
notification service. The producer is not aware of the (potential) recipients of its
notifications. This mode of decoupling in space is one of the major advantages of
publish/subscribe systems. After publishing a notification the notification service is
responsible for distributing notifications reliably to any subscriber that issued a
matching subscription as shown in figure 1. On the other end of the communication
relationship the consumers or subscribers are placed. They issue a standing request
for certain notifications. Once they receive such notifications via the notification
service, they react to them, accordingly. They, too, are oblivious to the issuer of the
notification. Thus, interaction is inherently data-driven. Not knowing the actual
communication peer, they issue a description of the data they want to receive. This
description is called a subscription. Different classes of subscriptions are
introduced in the next subsection. It must be noted that a component can act both,
as consumer and also as producer of notifications. No exclusive separation of roles
is assumed.

2.1 Subscriptions and Filters

A subscription describes and represents the interest for a certain set of
notifications. Consumers register their interest by submitting subscriptions to the
notification service, which evaluates the subscriptions on behalf of the consumers.
The intended semantics is to filter out all unwanted information and only let
information pass that exactly matches a subscription. Thus, subscriptions are
commonly implemented as filters in the notification service. In particular, filters
constitute an evaluation function that tests “incoming” notifications. Thereby, the
function’s range is restricted to boolean values, i.e., either a notification matches a
subscription (true) or not (false). In general, a subscription function may specify
more constraints on message delivery than a pure filter function on a message’s

�etwork Layer, e.g., TCP/IP

Communication Mechanism

(RPC, Multicast, Pub/Sub, Gossip, etc..)

�otification

Service

�otification

Service

Event

Notification

Producers Consumers

Notification
Event-Based
Interaction

MiPSCom: A �ovel Content-Based Publish/Subscribe Communication Model for Wireless

Sensor �etworks

 319

content. It also might include meta-data. This can be exploited for the specification
of additional data influencing the delivery decision.

2.1.1 Filter Models

Obviously, the expressiveness of a subscription is dependent on the specification
language used. In distributed notification services, essentially five filter models are
distinguished: channels, subjects, types, content-based, and concept-based.

Channels. Channels are the simplest form of subscribing to sets of notifications. In
the channel-based model (OMG 2000), a producer has to select a named channel
into which a notification is then published. For selecting certain notifications the
client wants to receive, it only can select a channel. Any information published on
this channel is delivered to the client; independent of the concrete interest of the
client.

Subject-based addressing. Subject-based addressing uses string matching for
notification selection (Oki et al. 1993). Every notification is part of a hierarchy of
subjects. I.e., every notification is annotated with a character string, describing the
position relative to the hierarchy this data item belongs to.

Type-based selection. Type-based selection uses similar path expressions and sub-
type inclusion tests to select notifications (Eugster et al. 2001). With multiple
inheritance, the subject tree is extended to type lattices that allows for different
rooted paths to the same node. Often, type checking is complemented with content-
based filters to improve selectivity.

Content-based filtering. Content-based filtering is the most general scheme of
notification selection (Muhl, 2001). Where other approaches use distinct
addressing schemes for notification selection (e.g., strings for subject
specification), content-based addressing uses the complete content of a message as
possible selection criteria. Boolean expressions evaluate the whole content of
notifications, where the data model of the notifications and the expressiveness of
the predicates determine the filter selectivity.

Concept-based filtering. Concept-based filtering (Cilia et al. 2003) is another
general scheme of notification selection and an extension to content-based filtering.
In this approach, filtering has to be done on a level where semantic translations
have to be performed in order to identify matching filter/notification pairs.
Semantic translations usually employ meta-data and are based on ontologies.
Hence, concept-based filtering introduces much flexibility on the one hand, but
limits its applicability to domains where well-defined ontologies exist.

2.2 Event �otification Service

Because publish/subscribe is intended to decouple producers and consumers of
information a mediator between the participants is needed. An event notification
service, or notification service for short, can implement this role. In event-based

K. K. Khedo & R. K. Subramanian

 320

systems, the notification service alone is responsible for message delivery from
publishers to subscribers.

 Description

publish(�) Publishes event observations into the event system.

subscribe(Sub) Subscribes to certain information.

unsubscribe(Sub) Unsubscribes to certain information.

notify(�) Notifies a client about the arrival of a notification N
matching a previously issued subscription Sub

Figure 2: The publish/subscribe interface of an event notification service

The notification service offers a simple, yet sufficient, publish/subscribe interface
for clients. Only the publish, subscribe, unsubscribe, and notify calls are needed
(Figure 2). Messages get into the notification service by a publish call of an
attached client and publisher. The notification service then tests the newly arrived
notification against all subscriptions which are currently active in the system.
Active subscriptions are issued by some consumers, stating their interest by issuing
a standing request, using the subscribe call. The notification service then adds a
new subscription to the set of active subscriptions. Whenever the test of a
notification against an active subscription is positive, the notification eventually is
delivered to a subscriber. Delivery is done by calling the notify call of a registered
client.

3. RELATED WORKS

The problem of providing an effective abstraction representing the sensor network
services has been the focus of several prior works. The proposed solutions have
ranged from database inspired approaches, tuple space approaches to event based
approaches and service discovery based approaches. Below is a discussion of each
of the approaches.

3.1 Database-Inspired Approaches

The database-inspired approach allows a simple, declarative style of querying at
the application level. Examples of solutions that adopt this approach are COUGAR
(Bonnet et al. 2001) and TinyDB (Madden et al. 2005). Some of the work in this
area has been on pure sensor database systems, which essentially provide a
distributed database solution appropriate for resource-constrained sensor networks,
focusing on efficient query routing and processing. The COUGAR and TinyDB
sensor database systems are designed for use by relatively simple data collection
applications, such as environmental monitoring applications. The main forms of
data processing they support within the network are selection and aggregation
based on arithmetic functions such as summation and averaging. To some extent,

MiPSCom: A �ovel Content-Based Publish/Subscribe Communication Model for Wireless

Sensor �etworks

 321

both are concerned with power conservation, providing query processing strategies
that aim to conserve resources. A key limitation of sensor database systems is the
assumption that sensor nodes are largely homogeneous. Sensor nodes must agree in
advance on the data types/relations that will be used at every node.

3.2 Tuple Space Approaches

The database approaches described in the previous section provide a form of
“shared memory” model, in which queries can be submitted to the sensor network
as if the data was stored in a centralised repository. A similar approach, but with a
different query paradigm, is provided by the TinyLIME middleware (Curino et al.
2005). TinyLIME is based on the tuple space shared memory model made popular
by Linda (Gelernter 1985). TinyLIME is designed for environments in which
clients typically only need to query data from local sensors. It does not provide
multi-hop propagation of data through the sensor network - the only way clients
can obtain data from a remote location is by obtaining it from other clients in that
location. The design of TinyLIME assumes that sensor nodes are sparsely
distributed, while clients move around, accessing local resources.

3.3 Event-Based Approaches

Advocates of event-based and publish/subscribe middleware have long argued that
they are appropriate in systems in which mobility and failures are common, as they
support strong decoupling of event producers and subscribers. Yoneki and Bacon
(2005, p.366) have produced a reasonably sophisticated set of event operators for
describing event patterns in sensor networks. The main distinction between the
event description language and the subscription languages used in previous
publish/subscribe systems is that it supports not only standard operators, including
conjunction, disjunction, negation, concatenation and iteration, but also spatial and
temporal restrictions. A crucial limitation of this solution is the complexity that is
necessarily involved in implementing it. Some work on handling uncertainty of
events in sensor networks has been done by Li et al. (2004, p.351) in their work on
DSWare (Data Service Middleware). They introduce the notion of confidence
when looking at event correlations. For a compound event made up of several sub-
events, they propose using a confidence function to determine the likelihood of the
compound event, according to how many of the sub-events have occurred. In
contrast, the Mires middleware (Souto et al. 2006) is a more pragmatic
publish/subscribe solution that has been designed and implemented to run on
TinyOS (Berkeley, 2006). TinyOS provides built-in support for event handling and
a message-oriented communication paradigm (Active Messages), both of which,
Souto et al. argue, provide a strong basis for implementing a publish/subscribe
middleware. Mires provides an architecture that allows: sensor nodes to advertise
the types of sensor data they can provide; client applications to select from the
advertised services; and sensor nodes to publish their data to clients in accordance
with their subscriptions.

K. K. Khedo & R. K. Subramanian

 322

3.4 Service Discovery Based Approaches

The MiLAN middleware (Heinzelman et al. 2004) is builds on existing networking
and service discovery protocols, using a plug-in mechanism to incorporate arbitrary
protocols. Applications specify their sensing requirements to the middleware
through a standard API, in terms of graphs describing sensor quality of service
(QoS) and state-based variable requirements. Variables are the means used by
applications to describe the types of sensor data they require. The use of a state-
based variable graph means that applications can specify which subset of the
variables is required in each application state (and with what QoS). One
shortcoming is that MiLAN relies on existing service discovery protocols, most of
which are not suitable for use in resource-poor sensor networks. This includes the
two service discovery protocols mentioned by Heinzelman et al., SDP and SLP.
MiLAN appears to target a different class of sensor network (i.e., one that is richer
in resources and closer to traditional heterogeneous distributed systems) than the
previously described solutions.

4. MIPSCOM ARCHITECTURAL MODEL

In this section we discussed the core decomposition of MiPSCom, MiSense
Content-based Publish/Subscribe Communication Model, the proposed
communication which is based on an enhanced published/subscribed scheme
shown in figure 3 below.

Enhanced Publish/Subscribe API

Subscriber:

Subscribe([C] [M])
Unsubscribe()
Notify([A] [M])

Publisher:

Publish([A] [M] , push)
Listener([C] [M])

Matching:

Matching([C] , [A])

Figure 3: The enhanced publish/subscribe API that is provided by communication model. A square

bracket represents a set of constraints (C), metadata (M) or attributevalue pairs (A).

Figure 4 shows the decomposition of the communication model. The
Publish/Subscribe service is distributed and the figure represents an instance of the
model on one sensor node. A publish/subscribe application is divided into a
variable number of Publisher and Subscriber components. A Publisher component
can listen for subscriptions, collect data and publish notifications and Subscriber
components can issue subscriptions and receive matching notifications. The Broker
component provides the publish/subscribe service to the application, it manages the
subscription table and it can apply the matching algorithm to filter out notifications
that do not match a registered subscription.

MiPSCom: A �ovel Content-Based Publish/Subscribe Communication Model for Wireless

Sensor �etworks

 323

Application

Publish/Subscribe

System

�etwork Layer

Protocols

Figure 4: The MiPSCom Architecture

The data (“events") that subscribers can subscribe to and publishers can publish are
encapsulated in Attribute components. In addition to a data collection interface, an
Attribute component must provide a matching interface that compares two of its
data items based on an attribute-specific operator. The motivation is twofold: First,
an Attribute component represents functionality that Publisher components should
be able to reuse and access independent of the specific attribute properties (data
type, metric, etc.). Secondly, matching operators are usually attribute dependent:
for example, when sensor readings are affected by hardware-related jitter, the
operator “=" should not be interpreted as the exact equality of two values. To
increase modularity and keep the core matching algorithm decoupled, this
information should be provided by the particular Attribute component. Within the
network, all attributes and operators are represented by integral identifiers.
Attribute identifiers are globally unique, while operator identifiers are unique
within the scope of a particular attribute. The AttributeCollector component
structures access to the attributes: it maps a request based on the attribute/operator
identifier to an actual Attribute component that is registered at compile time (but
could even be added at runtime by dynamic over the air code updates).

In MiPSCom, the proposed communication model, the publisher publishes its
interface (Listener), including the events it will notify. A subscriber registers

interest in events indicating, where appropriate, constraints on the event
parameters. The publisher notifies the subscriber of event occurrences that match
the subscriber's registration. The broker service acts as a mediator between the
publisher and the subscriber decoupling the subscriber and the publisher in space,
flow and time, undertaking event filtering and event storage and, at the same time,
providing services such as message buffering and message forwarding to
disconnected subscribers. In MiPSCom subscribers register their interest in events

Subscribers Publishers

Broker

Service Ext

Attributes

Subscription

Delivery Protocol
�otification Delivery

Protocol

K. K. Khedo & R. K. Subramanian

 324

by typically calling a Subscribe() operation on the event service without knowing
the publishers of these events. A symmetric operation Unsubscribe() terminates a
subscription. To generate an event, a publisher calls a �otify() operation on the
event service. The event service directs the call to all relevant subscribers so that
every subscriber receives a notification for every event conforming to its
registration.

The key elements in the proposed communication model are the notification
service and the buffer where the messages are queued before they are passed to
subscribers. The notification service takes responsibility to inform the subscribers
when a new message arrives. In this way, it allows the asynchronous
communication as producers and consumers are fully decoupled. This loose
coupling is the prime advantage of this kind of communication in the context of ad-
hoc and pervasive environments such as wireless sensor networks.

5. MIPSCOM �AMI�G SCHEME

To represent subscription and notification content, our model adopts the attribute-
based naming scheme presented in (Carzaniga and Wolf, 2003): a subscriber
expresses its interest in data through a conjunction of constraints over attribute
values. Disjunctive constraints need to be expressed as separate subscriptions. A
constraint is a (attribute, operator, value) tuple and represents a filter on attribute
data, for example (Temperature, >=, 30). Publishers publish data in form of
notifications containing (attribute, value) tuples, for example (Temperature, 32). A
notification matches a subscription if every constraint in the subscription is
satisfied by a (attribute, value) tuple in the notification.

If a subscription consisted only of constraints over attribute values a subscriber
would not be able to explicitly influence the properties of the communication or
sensing process like, for example, the sampling rate. Such control properties are
conceptually different from the data constraints and can usually not be matched by
corresponding (attribute, value) tuples in the notification. We extended the basic
naming scheme by allowing subscribers to include metadata in subscriptions.
Metadata is either exchanged between publisher/subscriber components or plays a
key role in controlling service extensions. It represents control information with
soft semantics and is excluded from the matching process.

Metadata is represented by one or more (attribute, value) pairs, for example
(SamplingRate, 10). Conceptually, it represents a notification that the subscriber
attaches to the subscription. Metadata is specified per subscription and multiple
active subscriptions may have different values for the same metadata attribute.
Since metadata is non-binding a publisher may apply local optimization
techniques: for example, in order to reduce sampling overhead the publisher may
decide to combine two subscriptions that address the same attribute by sampling
only once with an average sampling rate when the rates are similar, or using the
maximal sampling rate when not.

MiPSCom: A �ovel Content-Based Publish/Subscribe Communication Model for Wireless

Sensor �etworks

 325

The modified naming scheme is supported by two extensions of the basic
publish/subscribe service: a “listener" service and a “matching" service. The
“listener" service can be used to inform the application about newly arrived
subscriptions, which it then can inspect to decide whether to start or stop
publishing notifications. The “matching" service may be used by the publisher to
check whether a set of attributes disqualifies it from matching a registered
subscription. If, for example, the first collected attribute violates a constraint,
collecting further data is pointless. When used, these primitives may result in a
tighter coupling between publishers and subscribers than in the traditional model,
but they have the potential to increase the efficiency of the data collection process,
resulting in overall application performance gain.

6. MIPSCOM FLEXIBLE COMMU�ICATIO� MECHA�ISM

The classical content-based publish/subscribe systems have tightly integrated
filtering, routing and forwarding mechanisms (Muhl et al. 2002, Intanagonwiwat
et al. 2003, Hall et al. 2004) resulting in more optimized, but less flexible solutions.
Our model departs from this tradition and decouples the communication
mechanisms from the publish/subscribe core. The core broker component has clean
interfaces towards the external protocol components, thus trading some of the
optimization potential for increased flexibility in selecting the subscription and
notification protocols.

By exposing the choice of the protocols to the application designer, our model
allows the adaptation of the publish/subscribe service to the specific needs of the
application. The type of the communication protocols as well as their energy
consumption are likely to have a huge impact on the overall performance, and the
application designer should be aware of these implications (Heidemann et al. 2003)
to make an optimal selection for the particular application. In contrast to the
integrated solutions that rely on a pure content-based routing and forwarding
mechanisms, the flexibility of our model raises the challenge of interfacing with
communication protocols that support different dissemination patterns like
broadcast, multicast, convergecast, point-to-point, etc., using various addressing
models like address-free, id-centric or geographic addressing.

To support this wide range of communication mechanisms we rely on three
architectural features. First, the core of the model is agnostic to the underlying
addressing model, and all information relevant for operation of the service is
encapsulated in the form of metadata, subscription filters or notification data.
Secondly, the interfaces towards the subscription and notification delivery
components are kept address-free. Finally, all the addressing information for the
communication protocols is provided/consumed by their respective components or
wrappers, while the model provides hooks that facilitate its encapsulation and
tunneling when so required. To illustrate this process, we examine the handling of
the address information on the subscription and notification path separately.

K. K. Khedo & R. K. Subramanian

 326

7. MIPSCOM EVALUATIO�

In this section the results of the evaluation of the proposed approach is described.
For the evaluation, it will be inappropriate to compare MiPSCom with other
monolithic publish/subscribe frameworks because the overall performance of the
communication models is dominated by the underlying protocols and not the
architectural features, there is currently no TinyOS implementation of a monolithic
publish/subscribe framework that would facilitate direct comparison, and even if
such an implementation was available, the comparison results would be vulnerable
to differences in the invested optimization effort. Instead, the evaluation scenarios
in this section are focused on demonstrating the flexibility and versatility of the
design. To this end, we have developed a reference implementation of the MiPCom
architecture model using the TinyOS (Berkeley, 2006) execution environment. The
development of the reference implementation and its evaluation will allow us to
demonstrate that the general design can be implemented under the specific
constraints of a target domain.

Starting with a simple data collection application scenario we present experimental
results which show that the choice of dissemination protocols can exhibit
considerable performance tradeoffs. To demonstrate the tradeoffs that MiPSCom
exposes to the application designer through protocol selection we contrast two
subscription delivery protocols: a plain flooding protocol (every node that hears a
subscription broadcasts it to all its neighbours once) and an epidemic broadcast
protocol. The latter lets nodes continuously broadcast status information about the
subscriptions they have received. Whenever a node hears an older subscription
than its own, it broadcasts an update to its neighbours. In contrast to the flooding
protocol, which ends its operation after a short time, the epidemic dissemination
protocol remains active.

We created a simple application with one subscriber and the rest of the nodes used
as publishers. In our first measurement we disseminated the subscription via plain
flooding. In the second, we used the epidemic dissemination protocol. The
modification is done by changing a single line of the application configuration. For
notification delivery in both measurements we use the Collection Tree Protocol
(CTP) performing best-effort, multihop delivery of notifications to the sink of the
tree (subscriber). Both measurements lasted 90 minutes and were made with 85
publisher nodes and one subscriber (used as base station, bridging to/from a PC).
At time t0 a subscription was injected asking for notifications to be published with
a rate of one notification per minute by each publisher. After 30 minutes, at time t1,
one third of the publisher nodes (randomly chosen) were shut down and 30 minutes
later, at time t2, they were powered up again. Nodes that were shut down lost all
state including subscription table entries.

Figure 5 shows the percentage of active publishers over time. We define active
publisher as a node that has registered a subscription and published at least one
notification. At time t1 the number of active publishers decreases by about 30% due
to our active power management. The difference between the protocols becomes
visible at time t2 when these nodes are powered up again: the epidemic

MiPSCom: A �ovel Content-Based Publish/Subscribe Communication Model for Wireless

Sensor �etworks

 327

Dissemination protocol quickly manages to spread the subscription to the
recovered nodes, while the flooding protocol cannot (the subscription was injected
only once at time t0).

Figure 5: �umber of active publisher nodes.

Figure 6 shows the changes in notification throughput perceived by the subscriber.
We define notification throughput as the number of distinct notifications that arrive
at the subscriber in a fixed time window of one minute. The curves almost match
the number of active publishers and indicate a very good delivery ratio of CTP.

Figure 6: �otification Throughput

We let all nodes periodically output status information about the number of
different messages they had sent over the wireless channel. This information

K. K. Khedo & R. K. Subramanian

 328

allowed us to derive the traffic for subscription delivery as depicted in Figure 7.
The figure visualizes the tradeoff between the protocols: the flooding protocol
generates one message for each node in the network at the time the subscription is
injected. The Dissemination protocol generates more messages, but is able to
update the rebooted publishers at time t2. Finally, our setup allowed us to determine
the number of notification messages sent in the network by all nodes over a time
window of one minute – on average 3 messages were sent per notification,
however our setup did not allow us to differentiate between retransmission and
forwarded messages.

Figure 7: Subscription protocol traffic.

Previous work (Heidemann et al. 2003) has shown that the interaction pattern
between publishers and subscribers (“pull" vs. “push") can significantly affect
application performance and should be carefully aligned with the ratio of
publishers to subscribers. We created an application that included two Publisher
components, one for periodic temperature data collection and one for generating
fire alarm messages. We wanted the fire alarm event to quickly propagate to all
rooms of the office building, but periodic measurements to be collected only by a
single subscriber.

We therefore selected a single node to disseminate a subscription which
notifications from the first Publisher component had to match (locally, based on the
“pull" model). Fire alarms, however, were “pushed": whenever the second
Publisher component detected a fire alarm regardless of any registered
subscription, it immediately distributed the notification to all nodes in the network.
The first Publisher component was “wiring" the subscription delivery protocol to
the core and using CTP for notification delivery. The second Publisher component
“wired" the flooding protocol for notification delivery.

MiPSCom: A �ovel Content-Based Publish/Subscribe Communication Model for Wireless

Sensor �etworks

 329

Figure 8 shows a trace of the communication rates collected over 20 minutes on 85
nodes. It represents the total number of packets sent by all nodes for a fixed time
window of one minute. One subscription for periodic data collection is issued at
the start of the measurement using the TinyOS Dissemination protocol, 10 minutes
later we simulate a fire alarm, by sending a serial packet to one of the publisher
nodes (randomly chosen). This node then started a flood of notification messages.
The increase in traffic is visible by a small spike, however it is almost masked by
the high level of CTP “pull" traffic.

Figure 8: Push and Pull Interaction

The above results show that our approach exports significant performance tradeoffs
to the application in an easy-to-use fashion, and the communication model is
general and flexible enough to support different interaction patterns and the
execution time overhead is acceptable.

8. LIMITATIO�S A�D FUTURE WORKS

The overhead introduced by our publish/subscribe system in terms of energy spent
has been monitored for the scenario described in figure 8. It is observed, from
figure 9, that the energy overhead is high in the first 2 minutes of the process and
then there is a constant and low energy overhead for the remaining time. The
energy overhead is attributed to the additional metadata and control information
exchanged. The benefits of increased flexibility and more fine-grained control over
the publish/subscribe service through a number of extension components outweigh
the energy overhead introduced by the system.

K. K. Khedo & R. K. Subramanian

 330

Figure 9: Energy overhead of MiPSCom

The MiPSCom communication model has many points of possible optimizations
and further performance evaluations are required. We would like to implement a
real-world working system as proof-of-concept application. Specifically, we will
develop a testbed that can monitor the environment, for example, with respect to
chemical pollutants – a possible application is the monitoring of garbage dump
sites; this application will demonstrate our communication model and algorithms in
different contexts. The availability of a real implementation will give us the
opportunity to detect open problems, which do not appear in artificial simulated
scenarios. By further real world studies we will be able to get further insights in the
performance of MiPSCom. This will enable a more direct assessment of MiPSCom
performance in real-world applications. We would also like to investigate the
covering and advertisements optimizations further.

9. CO�CLUSIO�

Publish/subscribe is a widespread communication paradigm for asynchronous
messaging that naturally fits the decoupled nature of wireless sensor networks
systems, allowing simple and effective development of distributed sensor network
applications. A major design goal of the presented content-based publish/subscribe
communication model is to separate out those service sub-tasks which are expected
to have large impact on the resource usage. This decomposition strives to give an
application designer a simple and flexible means to select protocol components and
data attributes according to his needs, and to give him more fine-grained control
over the publish/subscribe service through the concept of extension components.

The flexibility of MiPSCom to support different sensor node platforms,
communication protocols and interaction patterns has been demonstrated
experimentally. MiPSCom can be augmented in order to give the application
designers additional control knobs for trading-off different performance objectives.

MiPSCom: A �ovel Content-Based Publish/Subscribe Communication Model for Wireless

Sensor �etworks

 331

Our experiences with MiPSCom suggest that by careful component decomposition
and interface design, it is indeed possible to achieve a good balance between
efficient resource usage and reusable software design. We observe that publish-
subscribe, a distribution system implementation of the implicit-invocation
architectural style, promotes reuse and extensibility. We have shown in this paper
that publish-subscribe demonstrates some very attractive qualities as a middleware
for wireless sensor networks systems.

REFERE�CES

AKYILDIZ, F., SU, W., SANKARASUBRAMANIAM, Y. AND CAYIRCI, E.

2002. A survey on sensor networks. IEEE Communications Magazine, 40 (8),
102-114.

BERKELEY, U.C., 2006. TinyOS operating system [online]. Available from:

http://www.tinyos.net/ [Accessed 15 August 2008]

BONNET, P., GEHRKE, J. E. AND SESHADRI, P., 2001. Towards sensor

database systems. In 2nd International Conference on Mobile Data

Management (MDM), Lecture Notes in Computer Science, Springer, 3–14.

CARZANIGA, A., WOLF, A.L. 2003. Forwarding in a content-based network. In:

Proc. of ACM SIGCOMM 2003, Karlsruhe, Germany, August 2003.

CILIA, M., BORNHOEVD, C. AND BUCHMANN, P. 2003. CREAM: An

infrastructure for distributed, heterogeneous event-based applications. In
Proceedings of the Intl Conference on on Cooperative Information Systems

(CoopIS’03), Nov 2003.

COSTA, P. AND PICCO, G., 2005. Semi-probabilistic Content-based

Publish/subscribe. In Proc. of the 25th Int. Conf. on Distributed Computing
Systems (ICDCS05), 575–585, Columbus (OH, USA), June 2005. IEEE
Computer Society Press.

CURINO, C., GIANI, M., GIORGETTA, M., GIUSTI, A., MURPHY, A.L. AND

PICCO G.P., 2005. TinyLIME: Bridging mobile and sensor networks through
middleware. In 3rd IEEE International Conference on Pervasive Computing

and Communications (PerCom), IEEE Computer Society, 61–72.

EUGSTER, P., FELBER, P., GUERRAOUI, R., AND KERMARREC, A., 2003.

The many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–131.

EUGSTER, P., GUERRAOUI, R. AND DAMM, C. 2001. On objects and events.

In Linda Northrop and John Vlissides, editors, Proceedings of the OOPSLA ’01

Conference on Object Oriented Programming Systems Languages and

Applications, 254–269, Tampa Bay, FL, USA, 2001. ACM Press.

K. K. Khedo & R. K. Subramanian

 332

GELERNTER, D., 1985. Generative communication in Linda. ACM Computing

Surveys, 7(1), 80–112.

HALL, C.P., CARZANIGA, A., ROSE, J., WOLF, A.L. 2004. A content-based

networking protocol for sensor networks. Technical Report CU-CS-979-04,
Department of Computer Science, University of Colorado, August 2004.

HEIDEMANN, J., SILVA, F., ESTRIN, D. 2003. Matching data dissemination

algorithms to application requirements. In: SenSys '03: Proc. of the 1st

international conference on Embedded networked sensor systems, New York,
NY, USA 2003.

HEINZELMAN, W.B., MURPHY, A.L., CARVALHO, H.S. AND PERILLO,

M.A., 2004. Middleware to support sensor network applications. IEEE

�etwork, 18 (1), 6–14.

INTANAGONWIWAT, C., GOVINDAN, R., ESTRIN, D., HEIDEMANN, J.,

SILVA, F. 2003. Directed diffusion for wireless sensor networking. IEEE/ACM

Transactions on �etworking (TO�), 11(1), 2003.

LEVIS, P., BREWER, E., CULLER, D., GAY, D., MADDEN, S., PATEL, N.,

POLASTRE, J., SHENKER, S., SZEWCZYK, R., WOO, A., 2008. The
emergence of a networking primitive in wireless sensor networks.
Communications of the ACM, 51 (7), 99-106, July 2008.

LI, S., LIN, Y., SON, S.H., STANKOVIC, J.A. AND WEI, Y., 2004. Event

detection services using data service middleware in distributed sensor networks.
Telecommunication Systems, 26(2-4), 351–368.

LIU, C.M., LEE, C.H. AND WANG, L.C., 2004. Power-efficient communication

algorithms for wireless mobile sensor networks. In PE-WASU� ’04:

Proceedings of the 1st ACM international workshop on Performance evaluation

of wireless ad hoc, sensor, and ubiquitous networks, 121–122, New York, NY,
USA, 2004. ACM Press.

MADDEN, S., FRANKLIN, M.J., HELLERSTEIN, J.M. AND HONG, W., 2005.

TinyDB: An acquisitional query processing system for sensor networks. ACM

Transactions on Database Systems, 30 (1), 122–173.

MÜHL. G. 2001. Generic constraints for content-based publish/subscribe systems.

In Proc. of CoopIS ’01, volume 2172 of L�CS, 211–225. Springer-Verlag,
2001.

MUHL, G., FIEGE, L. AND BUCHMANN, P. 2002. Filter similarities in content-

based publish/subscribe systems. In H. Schmeck, T. Ungerer, and L. Wolf,
editors, International Conference on Architecture of Computing Systems

(ARCS), 224–238, Karlsruhe, Germany, 2002.

MiPSCom: A �ovel Content-Based Publish/Subscribe Communication Model for Wireless

Sensor �etworks

 333

OBJECT MANAGEMENT GROUP, 2000. CORBA event service specification,
version 1.0. OMG Document formal, 2000-06-15, 2000.

OKI, B., PFLUEGL, M., SIEGEL, A. AND SKEEN, D., 1993. The information

bus— an architecture for extensible distributed systems. In Barbara Liskov,
editor, Proceedings of the 14th Symposium on Operating Systems Principles,
pages 58–68, Asheville, NC, USA, December 1993. ACM Press.

SOUTO, E., GUIM˜ARAES, G., VASCONCELOS, G., VIEIRA, M., ROSA, N.,

FERRAZ, C. AND KELNER, J., 2006. Mires: a publish/subscribe middleware
for sensor networks. Personal and Ubiquitous Computing, 10(1), 37–44.

SUN, B., GAO, S., CHI, R., HUANG F., 2008. Algorithms for balancing energy

consumption in wireless sensor networks. In FOWA�C ’08: Proceeding of the

1st ACM international workshop on Foundations of wireless ad hoc and sensor

networking and computing, 53-60, Hong Kong, China, May 2008.

YONEKI E. AND BACON, J., 2005. Unified semantics for event correlation over

time and space in hybrid network environments. In IFIP International

Conference on Cooperative Information Systems (CoopIS), Lecture Notes in
Computer Science, Springer, 366–384.

