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Abstract 

 
In power systems optimization, the stochastic environmental/economic dispatch 
problem consists of simultaneously minimizing the fuel cost of generation and NOx 
emission to environment considering decision variables, power system loads and 
objective functions as stochastic.  This stochastic approach represents a more 
realistic model since acquired data are subject to inaccuracies from measuring and 
forecasting of input data and  changes of unit performance during the period 
between measuring and operation.  The Non-Dominated Sorting Genetic 
Algorithm (NSGA-II) is used to generate the set of non-dominated solutions of the 
multi-objective problem formulated by a chance-constrained programming 
technique.  Latin Hypercube Sampling is used to yield more precise estimates of 
these stochastic variables.  The decision maker or power system operator may have 
imprecise or fuzzy goals for each objective function.  In order to help the operator 
in selecting an operating point from the obtained set of Pareto-optimal solutions, 
fuzzy logic theory is applied to each objective function to obtain a fuzzy 
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membership function.  The best non-dominated solution can be found when the 
normalized sum of membership function values for all objectives is highest.  This 
paper analyzes the changes in the best compromise solutions obtained from the 
evolutionary algorithm for coefficient of variation of 0.05, 0.1 and 0.2 under 
system reliability of 68.3% and 95.5% respectively.  Simulation results are 
presented for the standard IEEE 30-bus test system. 

 
 
Keywords: Power Systems, Environmental/Economic Dispatch, Multi-

Objective Optimization, Evolutionary Algorithms, Fuzzy Logic.  
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1. I"TRODUCTIO" 

 
Economic dispatch aims at minimizing the fuel cost for power generation while 
environmental dispatch minimizes the emissions of fossil-fuel power plants.  The 
multiobjective economic/environmental dispatch considers both problems 
simultaneously and attempts to find the set of compromise solutions since the two 
objectives, fuel cost and emission are conflicting.  Classical techniques such as 
goal programming (Nanda 1988), epsilon-constraint method (Dhillon 1994) have 
been employed to solve the multiobjective optimisation problem.  More recently, 
evolutionary algorithms such as NSGA (Abido 2003a), NPGA (Abido 2003b), 
SPEA (Abido 2003c) and NSGA-II (Ah King & Rughooputh 2003, Ah King et al. 
2005) have been applied successfully to the deterministic problem.  However, in 
real-world situations, data used in the optimization methods are subjected to 
inaccuracies and uncertainties due to inaccuracies in the process of measuring and 
forecasting of input data and changes of unit performance during the period 
between measuring and operation (Parti et al. 1983).  Thus, it becomes imperative 
to consider these uncertainties for a more realistic solution.  The problem therefore 
is known as the stochastic multiobjective environmental/economic dispatch 
problem.  The stochastic problem has been solved using the weighted minimax 
technique (Dhillon et al. 1993), weighted sum technique (Dhillon et al. 1995), 
interactive fuzzy satisfying method (Bath et al. 2004) and NSGA-II (Ah King et al. 
2006).  More recently, the problem at hand was solved by a modified particle 
swarm optimization algorithm (Wang & Singh 2008).  In this paper, the problem is 
formulated by a chance-constrained programming technique and solved by NSGA-
II with Latin Hypercube Sampling which is used to yield more precise estimates of 
the stochastic variables.  The decision maker or power system operator may have 
imprecise or fuzzy goals for each objective function.  In order to help the operator 
in selecting an operating point from the obtained set of Pareto-optimal solutions, 
fuzzy logic theory is applied to each objective function to obtain a fuzzy 
membership function.  Using the IEEE 30-bus system, this paper analyzes the 
changes in the best compromise solutions obtained from the evolutionary algorithm 
for coefficient of variation of 0.05, 0.1 and 0.2 under system reliability of 68.3% 
and 95.5% respectively. 
 
 

2. DETERMI"ISTIC MULTIOBJECTIVE 

E"VIRO"ME"TAL/ECO"OMIC DISPATCH 

 
The environmental/economic dispatch involves the simultaneous optimization of 
fuel cost and emission objectives which are conflicting ones.  The deterministic 
problem is formulated as described below. 
 
Fuel Cost Objective. The classical economic dispatch problem of finding the 
optimal combination of power generation, which minimizes the total fuel cost 
while satisfying the total required demand can be mathematically stated as follows 
(Yokoyama et al. 1988): 
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where C is total fuel cost ($/hr), ai, bi, ci: are fuel cost coefficients of generator i, 
PGi: is power generated in per unit (p.u.) by generator i, and n is number of 
generators. 
NOx Emission Objective. The minimum emission dispatch optimizes the above 
classical economic dispatch including NOx emission objective, which can be 
modeled using second order polynomial functions (Yokoyama et al. 1988): 
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The optimization problem is bounded by the following constraints: 
Power balance constraint. The total power generated must supply the total load 
demand and the transmission losses. 
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where PD is total load demand (p.u.), and PL is transmission losses (p.u.). 
The transmission losses is given by 
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where �  is number of buses, 
ijr  is series resistance connecting buses i and j, iV  is 

voltage magnitude at bus i, iδ  is voltage angle at bus i, iP  is real power injection at 

bus i, and iQ  is reactive power injection at bus i. 

Maximum and minimum limits of power generation. The power generated PGi by 
each generator is constrained between its minimum and maximum limits, i.e., 

PGimin ≤ PGi ≤ PGimax                                                             (5) 

where PGimin is minimum power generated, and PGimax is maximum power 
generated. 

 
3. STOCHASTIC E"VIRO"ME"TAL/ECO"OMIC DISPATCH 

 
Previous stochastic approaches involved the inclusion of deviational (recourse) 
costs to account for mismatch between scheduled output and actual demand in the 
formulation of the objective function (Bunn & Paschentis 1986), and conversion of 
stochastic models into their deterministic equivalents by taking their expected 
values and formulating the problem as the minimization of cost and emission plus 
additional objective for the expected deviation between generator outputs and load 
demand (unsatisfied load demand) (Dhillon et al. 1993; 1995; Bath et al. 2004).  
The approach adopted in this paper is based on the reliability concept and 
simulations are performed to test the reliability of the stochastic system under 
different problem formulations.  Decision variables PGi (i = 1,…,6) are assumed to 

be normally distributed with Mean PGi and Standard Deviation (SD) σi = CV PGi. 

, where CV is the coefficient of variation (CV is chosen as 0.05, 0.1 or 0.2 of the 
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mean).  For each solution PGi (i = 2,…,6), 100 random instantiates having Mean 

PGi and SD σi are created within kσi (where k is chosen as 1 or 2).  A good 

measure of system performance in the case of stochastic systems is its reliability 
(Deb & Chakroborty 1998).  We define reliability R as: 

m

n
R i=                                                                                   (6) 

where in  is the number of instantiates satisfying a required criterion (here the 

number of instantiates falling in the range of power generated by generator 1G  or 

slack generator) and m  is the number of instantiates. 

An additional constraint is thus included in the optimization problem: 

β≥R                                                                                     (7) 

where β is the required reliability which is 68.3% (with k = 1) or 95.5% (with k = 

2), i.e. P(PG1min ≤ PG1 ≤ PG1max).  Thus, Reliability R is calculated according to the 
number of cases for which PG1 is found to be within PG1min and PG1max. 

In the stochastic approach, the objective functions are now reformulated as follows 
using the chance-constrained programming technique (Rao 1996): 

 Min. CkCf σ+=1                                                   (8) 

Min. EkEf σ+=2  

 
subject to the following constraints: 

0
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PGimin ≤ PGi ≤ PGimax 

P(PGimin ≤ PGi ≤ PGimax) ≥ βi,         i = 1, 2,…, n. 
 

where C , E , Cσ  and Eσ  are the Expected Fuel Cost, Expected NOx emission, SD 

of Fuel Cost and SD of NOx emission respectively. 
Note that PG1 is calculated from the loadflow program and this satisfies implicitly 
the power balance constraint (Equation (3)).  For i = 2,…, n, we choose PGi within 

PGimin and PGimax, thereby making the P(PGimin ≤ PGi ≤ PGimax) = 1.  With the chosen 

PGi (i = 2,…, n) we then compute the equality constraint and calculate P(PG1min ≤ 

PG1 ≤ PG1max) by using a Monte-Carlo method in which m instantiates of PG2 to PGn 

are used to compute PG1 and the number of events in  satisfying PG1min ≤ PG1 ≤ 

PG1max is counted. 

The probability is then computed by using P(PG1min ≤ PG1 ≤ PG1max) = 
m

ni . 

 
The procedure used in this stochastic method is described as follows: 

For each feasible solution )n,...,j(PGj 2=  obtained by �SGA-II, 

Create m instantiates )n,...,j,,...,i(P
)i(

Gj 21001 ==  by perturbing 

each GjP as �( jP , σj) and σj = CV jP . (m is chosen as 100) 
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Count the number of instantiates ni for which 

],[ max1min1
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G PPP ∈  

Calculate 
m

n
R i=  

Calculate Expected Cost C , Expected �Ox E , SD of Cost Cσ and SD 

of �Ox Eσ   

 
In the above procedure, only the power generations PGi (i=2,…,n) are perturbed as 
for case S1 considered below.  The procedure is modified accordingly for the two 
other cases considered.  Case S2 involves the perturbations of power generations 
PGi (i=2,…,n) and system loads PLoadi (i=1,…,21) while case S3 considers the 
perturbations of power generations PGi (i=2,…,n), system loads PLoadi (i=1,…,21) 
as well as the fuel cost (ai, bi and ci, i=1,…,6) and emission coefficients (a�i, b�i, 
c�i, d�i and e�i, i=1,…,6). 
A constrained Monte Carlo sampling scheme: Latin hypercube sampling (LHS) 
developed by McKay, Conover and Beckman (McKay et al. 1979) has been 
adopted to yield more precise estimates of variables for the m instantiates as 
opposed to the work presented in (Ah King et al. 2005).  This method selects n 
different values from each k variables X1, X2, …, Xk by dividing the range of each 
variable into n nonoverlapping intervals on the basis of equal probability.  One 
value from each interval is selected at random according to the probability density 
in the interval.  For variable X1, n values are thus obtained and are paired in a 
random manner (no correlation) or according to some correlation coefficient with 
the n values of X2. 
 

4. BEST COMPROMISE SOLUTIO" 

 
The algorithm described in the previous section generates the non-dominated set of 
solutions known as the Pareto-optimal solutions.  The decision maker (power 
system operator) may have imprecise or fuzzy goals for each objective function.  
To aid the operator in selecting an operating point from the obtained set of Pareto-
optimal solutions, fuzzy logic theory is applied to each objective functions to 
obtain a fuzzy membership function 

if
µ as follows (Dhillon et al. 1993): 













≥

<<
−

−
≤

=

max
ii

max
ii

min
imin

i
max

i

i
max

i

min
ii

f

ff

fff
ff

ff

ff

i

0

1

µ                           (10) 

 
The best non-dominated solution can be found when eqn. (11) is a maximum 
where the normalized sum of membership function values for all objectives is 
highest. 
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where M is the number of non-dominated solutions. 

 
5. SIMULATIO" RESULTS 

 
5.1 Comparison with MOPSO 

 
To assess the quality of the solutions obtained in the proposed method, the results 
are compared with those of a previous work on the same problem.  A recent 
approach based on a stochastic formulation similar to Dhillon et al. 1993, 1995 but 
solved using a modified particle swarm optimization algorithm (Multi-Objective 
Particle Swarm Optimization MOPSO) has been proposed by Wang & Singh 2008.  
Simulations were performed on the standard IEEE 30-bus 6-generator test system 
(Fig. 1) with transmission losses calculated using loss coefficients as in (Wang & 
Singh 2008). 
 
In this case, the transmission losses is given by 

 

∑∑
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                                                              (12) 

where �  is number of buses, ijB .is the loss coefficients instead of Equation (4). 

 
Note that PG1 is still a slack variable and this satisfies implicitly the power balance 
constraint (Equation (3)).  In the stochastic procedure, the perturbations of power 
generations PGi (i=2,…,n) and the fuel cost (ai, bi and ci, i=1,…,6) and emission 
coefficients (a�i, b�i, c�i, i=1,…,6) are considered since emission coefficients d�i 
and e�i were not taken into account in (Wang & Singh 2008).  Coefficients of 
variation CV and correlation coefficients were taken as 0.1 and 1.0, respectively.  
The required reliability was taken as 68.3% (i.e. k = 1). 
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Fig. 1: Single-line diagram of IEEE 30-bus test system (Abido, 2003c). 

 
The proposed algorithm was run with a population size of 100 for 500 generations 
with crossover probability of 0.9, mutation probability of 0.2.  Fig. 2 shows the 

plot of 2f  against 1f .  It should be noted that both objectives include the mean 

and standard deviation of fuel cost and emission respectively.  The deterministic 
plot for the two objectives is also shown for comparison.  As observed from both 
plots, the proposed algorithm achieves very good diversity.  As far as convergence 
is concerned, the minimum values of objectives obtained (see Table 1) confirms 
the efficacy of the proposed method. 
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Fig. 2. f2 vs. f1 

 
The expected (mean) values of the fuel cost and emission objectives are shown in 
Fig. 3.  It can be observed that some solutions are dominated (see Fig. 3(a)) due the 
formulation of the proposed method (each objective being minimized is the sum of 
expected value and standard deviation of its expected value).  The non-dominated 
solutions extracted from the obtained solutions of Fig. 3(a) are shown in Fig. 3(b).  
It is interesting to note that the distribution of solutions obtained by the proposed 
method shows nevertheless good diversity. 

 
(a) With dominated solutions           (b) Without dominated solutions 

Fig. 3. Solutions obtained by proposed method 

 
Table 1 compares the minimum fuel cost obtained by the proposed method and that 
obtained by MOPSO (Wang & Singh 2008).  It is observed that the proposed 
method achieves a lower minimum fuel cost compared to MOPSO both for the 
deterministic and stochastic models considered.  An increase in fuel cost of 1.01% 
is found for the proposed model compared to 1.46% for MOPSO from 
deterministic to stochastic models.  If the system is operated for a year, there is a 
significant increase in fuel cost of $53,550 for the proposed model if uncertainties 
are considered. 
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 Deterministic model Stochastic model 

Generators/objectives MOPSO 
(Wang & 
Singh 
2008) 

Proposed 
method 

MOPSO 
(Wang & 
Singh 
2008) 

Proposed 
method 

)( 11 GG PP  0.0921 0.1135 0.1621 0.2612 

)( 22 GG PP  0.2894 0.2930 0.2659 0.2809 

)( 33 GG PP  0.5567 0.5784 0.6744 0.5363 

)( 44 GG PP  1.0362 0.9924 1.0079 0.9468 

)( 55 GG PP  0.5072 0.5250 0.4048 0.4951 

)( 66 GG PP  0.3770 0.3549 0.3419 0.3400 

Minimum fuel cost 
($/hr) 

605.735 605.427 614.571 611.540 

Emission (ton/hr) 0.2064 0.2043 0.2065 0.2008 

 
 
Table 2 compares the minimum emission obtained by the proposed method and 
that obtained by MOPSO (Wang & Singh 2008).  It is observed that the proposed 
method compares equally in the minimum emission obtained in the deterministic 
model.  However, a higher minimum emission (0.81% larger than the deterministic 
value) is obtained for the proposed stochastic model compared to MOPSO 
(0.32%).  Based on the obtained result, there is a significant increase in emission of 
13.14 tons if the system is operated for a year according to the proposed model 
under uncertainties. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Minimum fuel cost for deterministic and stochastic models 
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 Deterministic model Stochastic model 

Generators/objectives MOPSO 
(Wang & 
Singh 
2008) 

Proposed 
method 

MOPSO 
(Wang & 
Singh 
2008) 

Proposed 
method 

)( 11 GG PP  0.4125 0.3957 0.4142 0.4130 

)( 22 GG PP  0.5104 0.4953 0.4707 0.4751 

)( 33 GG PP  0.4964 0.5111 0.4983 0.5138 

)( 44 GG PP  0.4543 0.4617 0.4671 0.4948 

)( 55 GG PP  0.5023 0.5066 0.5081 0.4960 

)( 66 GG PP  0.5018 0.4980 0.5154 0.4764 

Minimum emission 
(ton/hr) 

0.1860 0.1860 0.1866 0.1875 

Fuel cost ($/hr) 645.300 640.898 649.658 641.160 

 
 
It is observed that the minimum values of the objectives obtained by the proposed 
method are better than MOPSO for the deterministic model while comparable 
results are achieved in the stochastic model and this confirms the validity of the 
method as well as the quality of solutions obtained. 
 
5.2 Best Compromise Solutions 

 
Simulations were performed on the standard IEEE 30-bus 6-generator test system 
(Abido, 2003a, 2003b, 2003c, Ah King 2005).  LHS was used both without 
correlation and with correlation to test the system under 5%, 10% and 20% 
variations of the variables (CV = 0.05, 0.1 and 0.2 respectively).  The uncorrelated 
cases have zero correlation coefficient while a correlation coefficient of 0.9 has 
been assumed for all correlated cases.  For each case, 11 independent runs for 2000 
generations were performed using NSGA-II algorithm (Deb et al. 2002). 
 
For the deterministic problem, the nondominated solutions out of the 11 runs is 
shown in Fig. 5 together with the best compromise solution calculated using eqn. 
(11).  Table 3 gives the fuel cost, NOx emission and power generation of each unit 
for the best compromise solution. 

 

Fuel Cost 
($/hr) 

NOx 
Emission 
(ton/hr) 

PG1 

(p.u.) 
PG2 

(p.u.) 
PG3 

(p.u.) 
PG4 

(p.u.) 
PG5 

(p.u.) 
PG6 

(p.u.) 

616.382202 0.200969 0.2621 0.3756 0.5432 0.6997 0.5610 0.4230 

 

Table 2: Minimum emission for deterministic and stochastic models 

Table 3: Best compromise solution 
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5.2.1 Case S1: Stochastic power generation 

 
The multiobjective optimization problem is formulated as described above with 
fixed total system load PD = 2.834 p.u.  Thus, power generated PGi are random 

variables.   
 
Figs. 4(a) and 2(b) shows the best nondominated solutions out of 11 runs together 
with the best compromise solution for CV=0.05, 0.1 and 0.2 with k=1 for LHS 
without correlation and LHS with correlation, respectively.  Table 4 gives the 
percentage change in cost, emission and power generation for best compromise 
solution for the three coefficients of variation considered for the two cases 
respectively. 

 

 
(a) LHS without correlation          (b) LHS with correlation 
 

Fig. 4: Best nondominated solutions and best compromise solutions for Case S1 with k=1. 

 
 

CV Cost Emission PG1 PG2 PG3 PG4 PG5 PG6 

0.05 0.06 -0.06 -2.36 1.80 2.90 -0.60 -4.90 3.53 

0.1 0.43 -0.52 5.38 -0.20 3.90 -6.15 0.46 1.18 

0.2 0.78 -0.18 -1.81 7.93 2.54 -6.61 -5.43 8.81 

 
 
 
 

CV Cost Emission PG1 PG2 PG3 PG4 PG5 PG6 

0.05 0.13 0.07 -2.24 -0.08 8.49 -2.64 -2.78 -1.73 

0.1 0.43 0.52 0.03 1.83 3.75 -1.00 -6.07 3.11 

0.2 2.09 1.46 14.92 -2.15 1.61 -9.94 0.25 6.58 

 
 

Table 4(a): Percentage change in cost, emission and power generation for best 

compromise solution of Case S1 with k=1 for LHS without correlation. 

Table 4(b): Percentage change in cost, emission and power generation for best 

compromise solution of Case S1 with k=1 for LHS with correlation. 
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It can be observed from Fig. 4 that stochastic variables causes the nondominated 
front to shift up and right thus increasing both cost and emission values.  The shift 
is more pronounced for correlated stochastic variables as can be verified from the 
graphs.  This means that larger increase of cost and emission is expected with 
correlated stochastic variables. 
From Table 4(a), it can be deduced that the cost is expected to increase and 
emission is expected to decrease for uncorrelated stochastic variables.  For the 
largest variation (CV=0.2) in the stochastic variables considered, an increase of 
0.78% (4.797 $/hr) in cost and a decrease of 0.18% (0.00035 ton/hr) in emission 
are expected for the uncorrelated case.  However, from Table 4(b), both cost and 
emission are expected to increase with correlated stochastic variables.  Increases of 
2.09% (12.896 $/hr) and 1.46% (0.00293 ton/hr) are expected in cost and emission 
respectively for the correlated case.  In terms of power generation, an increase of 
8.81% (0.0373 p.u.) for unit 6 is observed for the uncorrelated case whereas the 
corresponding increase is 14.92% (0.0391 p.u.) for unit 1 for the correlated case. 
 
Figs. 5(a) and 5(b) show the results obtained for Case S1 with k=2 and Table 3 
gives the percentage change in cost, emission and power generation for best 
compromise solution. 

 

 
(a) LHS without correlation      (b) LHS with correlation 

 

Fig. 5 Best nondominated solutions and best compromise solutions for Case S1 with k=2. 

 
 

CV Cost Emission PG1 PG2 PG3 PG4 PG5 PG6 

0.05 0.09 0.07 -1.46 0.63 2.50 -1.41 0.85 -1.77 

0.1 0.79 -0.52 1.05 4.04 1.25 -8.69 -0.01 8.42 

0.2 3.07 -0.93 33.87 15.64 1.57 -23.73 -7.22 11.81 

 
 
 

Table 5(a): Percentage change in cost, emission and power generation for best compromise 

solution of Case S1 with k=2 for LHS without correlation. 
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CV Cost Emission PG1 PG2 PG3 PG4 PG5 PG6 

0.05 0.14 0.67 -7.47 3.27 4.70 0.43 -3.69 -0.30 

0.1 1.23 3.23 43.34 -17.22 -8.97 13.07 -18.86 4.07 

0.2 

5.93 29.84 16.52 -86.42 -30.22 114.36 -42.07 -22.30 

8.40 9.51 129.75 -86.65 -7.13 -14.48 2.55 27.32 

 
 
 
 
The same trend as in Fig. 4 is observed in Fig. 5with an even larger shift of the 
nondominated fronts.  It should be pointed out that it is harder for the NSGA-II 
algorithm to obtain the nondominated front as CV is increased since a smaller 
number of solutions is found.  Again, cost is expected to increase and emission to 
decrease (except for CV=0.05) for the uncorrelated case.  For the largest variation 
(CV=0.2) in the stochastic variables considered, an increase of 3.07% (18.896 $/hr) 
in cost and a decrease of 0.93% (0.00186 ton/hr) in emission are expected for this 
case.  Similarly, both cost and emission are expected to increase when the 
stochastic variables are correlated.  From Fig. 5(b), it is found that two best 
compromise solutions (the minimum cost and minimum emission solutions) are 
identified for CV=0.2 since the nondominated front obtained is concave.  If the 
minimum cost solution is chosen as the best compromise solution, increases of 
5.93% (36.522 $/hr) and 29.84% (0.05996 $/hr) are expected in cost and emission 
respectively.  If the minimum emission solution is chosen, increases of 8.40% 
(51.777 $/hr) and 9.51% (0.01912 ton/hr) in cost and emission are expected.  In 
terms of power generation, an increase of 33.87% (0.0887 p.u.) for unit 1 is 
observed for the uncorrelated case whereas the corresponding increase is 114.36% 
(0.8002 p.u.) for unit 4 and 129.75% (0.3400 p.u.) for unit 1 for the two best 
compromise solutions of the correlated case. 
 
In general, the changes in cost and emission is expected to be larger for the 
correlated case. 
 

5.2.2 Case S2: Stochastic power generation and system loads 

 
The multiobjective optimization problem is formulated as above but the individual 
loads on the system are treated as stochastic variables.  Thus, power generation and 
system loads are random variables.  Each of 21 loads is normally distributed with 

mean PLi and σi = CV PLi .  Power factor for each load is maintained as at the base 

load, i.e. ratio PLi to QLi is constant. 

 
Figs. 6(a) and 6(b) shows the best nondominated solutions out of 11 runs together 
with the best compromise solution for CV=0.05, 0.1 and 0.2 with k=1 for LHS 
without correlation and LHS with correlation, respectively.  Table 6 gives the 
percentage change in cost, emission and power generation for best compromise 
solution for the three coefficients of variation considered for the two cases 
respectively. 

Table 5(b): Percentage change in cost, emission and power generation for best compromise 

solution of Case S1 with k=2 for LHS with correlation. 
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(a) LHS without correlation   (b) LHS with correlation 

 

Fig. 6: Best nondominated solutions and best compromise solutions for Case S2 with k=1. 

 

CV Cost Emission PG1 PG2 PG3 PG4 PG5 PG6 

0.05 0.32 -0.47 10.72 -3.80 6.11 -4.53 -2.25 -0.90 

0.1 0.30 -0.06 5.82 -4.83 3.88 -2.14 -4.71 5.36 

0.2 1.38 -0.57 11.39 1.44 9.63 -14.40 -1.86 5.13 
 

 
 
 

CV Cost Emission PG1 PG2 PG3 PG4 PG5 PG6 

0.05 0.18 -0.35 11.39 1.44 9.63 -14.40 -1.86 5.13 

0.1 0.27 -0.34 3.06 -0.43 4.04 -3.41 -4.22 4.37 

0.2 0.46 0.04 -0.71 3.21 5.81 -4.84 -2.53 1.23 

 
 
 
 
As in Case S1, considering stochastic system loads in addition to stochastic power 
generation causes the nondominated front to shift slightly up and more to the right.  
For uncorrelated stochastic variables, it is found from Table 6(a) that a 1.38% 
(8.494 $/hr) increase in cost and 0.57% (0.00114 ton/hr) decrease in emission are 
expected for CV=0.2 (20% variation in both power generation and system loads).  
For correlated stochastic variables from Table 6(b), for the same coefficient of 
variation, the expected increase in cost and emission are 0.46% (2.842 $/hr) and 
0.04% (0.00008 ton/hr) respectively.  In terms of power generation, a decrease of 
14.40% (0.1008 p.u.) for unit 4 is observed for the uncorrelated case whereas the 
corresponding increase is 5.81% (0.0315 p.u.) for unit 3 for the correlated case. 
 

Table 6(a): Percentage change in cost, emission and power generation for best compromise 

solution of Case S2 with k=1 for LHS without correlation. 

Table 6(b): Percentage change in cost, emission and power generation for best compromise 

solution of Case S2 with k=1 for LHS with correlation. 
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Figs. 7(a) and 7(b) shows the results obtained for case S2 with k=2 and Table 7 
gives the percentage change in cost, emission and power generation for best 
compromise solution. 

 

 
(a) LHS without correlation   (b) LHS with correlation 

Fig. 7: Best nondominated solutions and best compromise solutions for Case S2 with k=2. 

 

CV Cost Emission PG1 PG2 PG3 PG4 PG5 PG6 

0.05 0.02 0.32 -3.42 2.39 2.81 0.30 -0.82 -3.15 

0.1 0.94 -0.18 21.32 -9.91 2.77 -6.26 -3.24 6.59 

0.2 4.96 -0.06 47.97 18.22 21.90 -37.35 -17.99 11.01 

 
 
 
 

CV Cost Emission PG1 PG2 PG3 PG4 PG5 PG6 

0.05 0.23 -0.33 2.60 2.41 7.56 -3.91 -4.48 -1.38 

0.1 0.73 -0.67 16.63 -2.61 8.35 -8.38 -4.54 0.79 

0.2 1.55 0.04 22.51 -4.30 5.91 -12.69 2.69 -0.63 

 
 
 
 
A larger shift to the right of the nondominated solutions is observed from Fig. 7 
compared to Fig. 6.  Relatively larger changes are expected for the uncorrelated 
case with 4.96% (30.592 $/hr) increase in cost and 0.06% (0.00011 ton/hr) 
decrease in emission compared to increases of 1.55% (9.564 $/hr) and 0.04% 
(0.00009 ton/hr) in both cost and emission respectively for the correlated case for 
the largest variation (CV=0.2) in the stochastic variables considered.  In terms of 
power generation, an increase of 47.97% (0.1257 p.u.) for unit 1 is observed for the 
uncorrelated case whereas the corresponding increase is 22.51% (0.0590 p.u.) for 
unit 1 for the correlated case. 
 

Table 7(a): Percentage change in cost, emission and power generation for best compromise 

solution of Case S2 with k=2 for LHS without correlation. 

 

Table 7(b): Percentage change in cost, emission and power generation for best compromise 

solution of Case S2 with k=2 for LHS with correlation. 

 



Best Compromise Solutions for Stochastic Multi-Objective Environmental/Economic 

Dispatch of Power Systems using Evolutionary Chance-Constrained �onlinear 

Programming and Latin Hypercube Sampling 

 507 

In general, the expected increase in cost is larger for the uncorrelated case as 
opposed to case S1. 
 

5.2.3 Case S3: Stochastic power generation, system loads, fuel cost and 

emission coefficients 

 
This case is similar to Case S2 but in addition the fuel cost and NOx emission 
coefficients are considered as stochastic variables with mean as deterministic 
values and standard deviation as CV = 0.05, 0.1 and 0.2 of their respective means. 
 
Figs. 8(a) and 8(b) shows the best nondominated solutions out of 11 runs together 
with the best compromise solution for CV=0.05, 0.1 and 0.2 with k=2 for LHS 
without correlation and LHS with correlation, respectively.  Table 8 gives the 
percentage change in cost, emission and power generation for best compromise 
solution for the three coefficients of variation considered for the two cases 
respectively. 

 

 
(a) LHS without correlation   (b) LHS with correlation 
 

Fig. 8: Best nondominated solutions and best compromise solutions for Case S3 with k=1. 

 
 
 

CV Cost Emission PG1 PG2 PG3 PG4 PG5 PG6 

0.05 -0.08 0.40 -14.91 4.84 8.17 -0.62 -3.81 0.21 

0.1 0.31 0.07 -7.48 -3.70 2.63 -4.33 1.25 9.94 

0.2 1.30 0.06 -5.60 15.73 4.60 -11.68 -1.06 4.01 

 
 
 
 
 
 
 

Table 8(a): Percentage change in cost, emission and power generation for best compromise 

solution of Case S3 with k=1 for LHS without correlation. 
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CV Cost Emission PG1 PG2 PG3 PG4 PG5 PG6 

0.05 0.35 -0.53 -0.61 3.02 7.48 -5.64 -3.90 2.26 

0.1 0.41 0.08 -5.11 -2.77 8.77 -4.14 -0.19 1.11 

0.2 1.45 0.63 -4.49 -0.90 8.58 -4.78 -0.76 1.10 

 
 
 
 
With three set of parameters (power generation, system loads and cost/emission 
coefficients) considered as stochastic variables, a much larger shift of the 
nondominated solutions is observed compared with previous cases with k=1.  
Slightly larger increase in expected cost and emission for the correlated is observed 
from Table 8.  With 20% variation of the stochastic variables, increase of 1.30% 
(8.023 $/hr) and 0.06% (0.00013 ton/hr) for cost and emission are expected for the 
uncorrelated case while the corresponding values for the correlated case are 1.45% 
(8.963 $/hr) and 0.63% (0.00126 ton/hr) respectively.  In terms of power 
generation, an increase of 15.73% (0.0591 p.u.) for unit 2 is observed for the 
uncorrelated case whereas the corresponding increase is 8.58% (0.0466 p.u.) for 
unit 3 for the correlated case. 
 
Fig. 9 shows the results obtained for case S3 with k=2 and Table 9 gives the 
percentage changes in cost, emission and power generation for the best 
compromise solution. 

 

 
(a) LHS without correlation   (b) LHS with correlation 

 

Fig. 9: Best nondominated solutions and best compromise solutions for Case S3 with k=2. 

 
 
 
 
 
 

Table 8(a): Percentage change in cost, emission and power generation for best compromise 

solution of Case S3 with k=1 for LHS with correlation. 
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CV Cost Emission PG1 PG2 PG3 PG4 PG5 PG6 

0.05 0.38 -0.35 -0.49 9.57 0.13 -3.54 -3.71 2.36 

0.1 1.83 -1.23 17.64 5.64 9.54 -19.14 -7.07 12.42 

0.2 4.45 0.33 82.29 4.40 -9.15 -26.87 -3.95 6.99 

 
 
 
 

CV Cost Emission PG1 PG2 PG3 PG4 PG5 PG6 

0.05 0.64 -0.69 8.96 -0.04 6.25 -6.95 -2.23 0.60 

0.1 0.96 0.50 7.21 -8.97 4.42 -1.37 -2.19 2.86 

0.2 4.08 1.55 7.31 -3.91 9.33 -10.60 -0.32 4.49 

 
 
 
 
An even larger shift of the nondominated solutions is observed from Fig. 9 
for both cases compared to the previous plots with k=2.  The same observation 
about the larger shift up and right for the correlated can be made again.  However, 
cost and emission are expected to be larger in the uncorrelated case than the 
correlated one.  The increase in cost and emission as observed from Table 9 shows 
that with the largest variation of CV=0.2, there are increases of 4.45% (27.447 
$/hr) and 0.33% (0.00067 ton/hr) in cost and emission respectively and 4.08% 
(25.158 $/hr) and 1.55% (0.00312 ton/hr) in cost and emission respectively for the 
two cases.  In terms of power generation, an increase of 82.29% (0.2157 p.u.) for 
unit 1 is observed for the uncorrelated case whereas the corresponding decrease is 
10.60% (0.0741 p.u.) for unit 4 for the correlated case. 
 
In general, the expected increase in cost is larger in the uncorrelated case as for 
Case S2.  In fact, case S3 is closer to the real-world problem where most of the 
parameters would be expected to be uncertain. 
 
It should be pointed out that all the changes in cost and emission are quoted on a 
per hour basis and consequently the overall impact on the power system operation 
will not be negligible.  Consider for instance a 1% increase in both cost and 
emission, this will correspond to an increase of $ 53,995 and 17.605 ton in annual 
cost and annual emission respectively. 
 
 

6. CO"CLUSIO"S 

 
The stochastic multiobjective environmental/economic dispatch problem has been 
formulated as a chance-constrained nonlinear programming problem and solved by 
NSGA-II.  A comparison with previous work using a modified particle swarm 

Table 9(a): Percentage change in cost, emission and power generation for best compromise 

solution of Case S3 with k=2 for LHS without correlation. 

Table 9(b): Percentage change in cost, emission and power generation for best compromise 

solution of Case S3 with k=2 for LHS with correlation. 
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algorithm revealed the efficacy of the proposed method.  Three cases with the 
following stochastic variables: (i) power generation (Case S1), (ii) power 
generation and system loads (Case S2), and (iii) power generation, system loads 
and cost and emission coefficients (Case S3) have been analyzed.  Latin Hypercube 
Sampling with both uncorrelated and correlated variables with correlation 
coefficient of 0.9 has been considered.  To aid the operator in selecting an 
operating point from the obtained set of Pareto-optimal solutions, fuzzy logic 
theory is applied to each objective functions to obtain a fuzzy membership 
function.  The best non-dominated solution is the compromise solution chosen for 
which the normalized sum of membership function values for all objectives is 
highest.  The best compromise solution for different coefficient of variation of the 
stochastic variables for the three cases considered were identified.  It is found that 
in general, the expected increase in cost of the best compromise solution is larger if 
the stochastic variables are correlated for Case S1.  On the other hand, the expected 
increase in cost is larger if the stochastic variables are uncorrelated for Case S2 and 
Case S3.  In general, the expected increase in fuel cost is less than 5% in most 
scenarios.  As far as the emission changes are concerned, the expected increase or 
decrease in emission is less than 1% in most of the scenarios with the exception of 
the concave front obtained. 
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