

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 52

Performance Evaluation of Hyper Threading Technology

Architecture Using Microsoft Operating System Platform

1
 Okonta O.E., 2 Ajani D,

3
 Owolabi A.A, 4

Imiere E.E.,
5
 Uzomah L.

1,2,3,5 Department Of Computer Science Federal College Of Education (T), Asaba,
4 Department Of Physics Federal College Of Education (T), Asaba

Okeyokonta@Yahoo.Com, Ajanidele@Gmail.Com, Abudulhakimowolabi@Gmail.Com,
Emmaedekinimiere@Gmail.Com, , Lawrenceuzomah@Rocketmail.Com

Abstract

This paper describes the Hyper-Threading Technology architecture, and discusses the micro

architecture details of Intel's structure. Hyper-Threading Technology is an important addition to

Intel’s enterprise product line and has been integrated into a wide variety of products. Intel

provides Hyper-Threading (HT) in processors based on its Pentium and more recent processor die.

HT enables two threads to execute on each core in order to hide latencies related to data access.

These two threads can execute simultaneously, filling unused stages in the functional unit pipelines.

To aid better understanding of HT related issues, we look at Performance Monitoring Unit (PMU)

data (instructions retired; un-halted core cycles; L2 and L3 cache hits and misses; vector and

scalar floating-point operations, etc.). We then use the PM data to make deduction on a new metric

of efficiency in order to quantify processor resource utilization and make comparisons of that

utilization between single-threading (ST) and HT modes. We also study performance gain using

unhalted core cycles, code efficiency of using vector units of the processor, and the impact of HT

mode on various shared resources like L2 and L3 cache. Results using four full-scale, production-

quality scientific applications from computational fluid dynamics indicate that HT generally

improves processor resource utilization efficiency, but does not necessarily translate into overall

application performance gain.

Key words: Hyper-Threading, core circles, code efficiency, processor resource utitilization,

 applications performance.

Introduction
 Intel’s Hyper-Threading Technology
brings the concept of simultaneous multi-
threading to the Intel Architecture. Hyper-
Threading Technology makes a single
physical processor appear as two logical
processors; the physical execution resources
are shared and the architecture state is
duplicated for the two logical processors.
From a software or architecture perspective,
this means operating systems and user
programs can schedule processes or threads to
logical processors as they would on multiple
physical processors. From a micro-
architecture perspective, this means that
instructions from both logical processors will

persist and execute simultaneously on shared
execution resources.
 Hyper-threading is Intel's trademarked
term for its simultaneous multithreading
implementation in their Pentium 4, Atom,
Core i7, and certain Xeon CPUs and more
recent processors. Hyper-threading (officially
termed Hyper-Threading Technology or HTT)
is an Intel-proprietary technology used to
improve parallelization of computations
(doing multiple tasks at once) performed on
PC microprocessors [10],[11]. A processor
with hyper-threading enabled is treated by the
operating system as two processors instead of
one. This means that only one processor is
physically present but the operating system

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 53

sees two virtual processors, and shares the
workload between them. Hyper-threading
requires both operating system and CPU
support for efficient usage; conventional
multiprocessor support is not enough, and
may actually decrease performance if the
Operating System is not sufficiently aware of
the distinction between a physical core and a
HTT-enabled core. For example, Intel does
not recommend that hyper-threading be
enabled under Windows 2000, even though
the operating system supports multiple CPUs
(but is not HTT-compliant).
 So in simple term, Hyper-threading is
using one physical processor but logically
dividing it into two so that it gives the user the
benefit of two processors with only using the
resources equivalent to almost one. This is
achieved by sharing, partitioning and
duplicating the various resources almost into
two processors. Used by the latest Pentium
processors, which are Hyper Thread enabled,
in layman's terms, it allows you to use more
than two applications at the same time without
slowing down processing speed. Hyper-
threading was intended to solve an issue with
a waste of potential resources in the CPU. It
does not change the physical resources (the
CPU cores) but more resources can be
potentially tapped into by allowing two
threads to be processed by the same execution
resource simultaneously -with each physical
core being an execution resource. When
hyper-threading is enabled it doubles the
number of logical processors presented by the
BIOS. For example, a 2 socket, 8 core system
with 16 cores total now presents 32 cores to
the virtual hardware. Therefore the CPU
scheduler can make efficient use of hyper-
threading and generally it should be enabled.
The number of logical processors now
doubles, providing a performance benefit in
the range of 10-15% in most virtual sphere
environments (depending on
workload/applications, processors speed and
memory capacity) [9].

Parallel Computing

 Multithreading computers have hardware
support to efficiently execute multiple
threads. These are distinguished from
multiprocessing systems (such as multi-core

systems) in that the threads have to share the
resources of single core: the computing units,
the CPU caches and the translation lookaside
buffer (TLB). While multiprocessing systems
include multiple complete processing units,
multithreading aims to increase utilization of
a single core by leveraging thread-level as
well as instruction-level parallelism. As the
two techniques are complementary, they are
sometimes combined in systems with multiple
multithreading CPUs and in CPUs with
multiple multithreading cores.[2] Multi-
threading is when various processes are time
sliced such that it gives the user the
impression that all the programs are being run
at the same time. This is what happens on
your computer regularly
 Multithreading refers to the general task of
running more than one thread of execution
within an operating system. Multithreading is
more generically called "multiprocessing",
which can include multiple system processes
(a simple example on Windows would be,
e.g., running Internet Explorer and Microsoft
Word at the same time), or it can consist of
one process that has multiple threads within it.
Multithreading is a software
concept.[1],[6],[7] Practically any Turing-
complete CPU can perform multithreading,
even if the computer only has one CPU core
and that core does not support hyper-
threading. In order to support multiprocessing,
the CPU will interleave execution of different
threads of execution, by executing one, then
another, then another, where the operating
system will divide up the time available into
"slices" and give a roughly equal amount of
time to each thread (the time doesn't have to
be equal, but that's typically how it's done
unless a process requests a higher priority).

Super-threading

 Super-threading allows threads from
different processes to be executed at the same
time unlike Multi-threading where every
process has a time slot during which, thread
from only one process will be executed. But
every time, if for example, there are four
instructions issued to the processor. They will
all be from the same process. Hyper-threading
takes it a step further. It allows threads from
different processes to be issued at the same

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 54

time, in turn, utilizing the waste cycles of the
processor. Super-threading is a multithreading
approach that weaves together the execution
of different threads on a single processor
without truly executing them at the same time.
This qualifies it as time-sliced or temporal
multithreading rather than simultaneous
multithreading. It is motivated by the
observation that the processor is occasionally
left idle while executing an instruction from
one thread. Super-threading seeks to make use
of unused processor cycles by applying them
to the execution of an instruction from another
thread

Understanding Hyper-Threading

Technology
 Current trends in microprocessor design
have made high resource utilization a key
requirement for achieving good performance.
This means that while deeper pipelines have
led to 3 GHz processors, each new generation
of micro-architecture technology comes with
increased memory latency and a decrease in
relative memory speed. This results in the
processor spending a significant amount of
time waiting for the memory system to fetch
data. This “memory wall” problem continues
to remain a major shortcoming and as a result,
sustained performance of most real-world
applications is less than 10% of peak. Over
the years, a number of multithreading
techniques have been employed to hide this
memory latency. One approach is
simultaneous multi-threading (SMT), which
exposes more parallelism to the processor by
fetching and retiring instructions from
multiple instruction streams, thereby
increasing processor utilization. Simultaneous
multi-threading requires only some extra
hardware instead of replicating the entire
core.[6] Price and performance benefits make
it a common design choice as, laid out in
Intel’s Nehalem micro-architecture, where it
is called Hyper-Threading (HT). As is the
case with other forms of on-chip parallelism,
such as multiple cores and instruction-level
parallelism,[8],[9] Simultaneous multi-
threading uses resource sharing to make the
parallel implementation economical. With
Simultaneous multi-threading, this sharing has
the potential for improving utilization of

resources such as that of the floating-point
unit through the hiding of latency in the
memory hierarchy. When one thread is
waiting for a load instruction to complete, the
core can execute instructions from another
thread without stalling.

Review of and related work

 Intel introduced Simultaneous multi-
threading (SMT), which it called Hyper-
Threading (HT), into its product line in 2002
with new models of their Pentium 4
processors curtailing the use Co-Maths
processor [10],[11],[4]. The advantage of HT
is its ability to better utilize processor
resources and to hide memory latency. There
have been a few efforts studying the
effectiveness of Hyper-Threading on
application performance. Boisseau et al.
conducted a performance evaluation of
Hyper-Threading on a Dell 2650 dual
processor-server based on Pentium 4 using
matrix multiplication and a 256-particle
molecular dynamics benchmark written in
OpenMP [13]. Haung et al. characterized the
performance of Java applications using
Pentium 4 processors with Hyper-Threading
[25]. Blackburn et al. studied the performance
of garbage collection in Hyper-Threading
mode by using some of the Pentium 4
performance counters [21]. A key finding of
these investigations was that the Pentium 4’s
implementation of Hyper-Threading was not
very advantageous, as the processor had very
limited memory bandwidth and issued only
two instructions per cycle.
 After that, Hyper-Threading was extended
to processors that use Intel’s Nehalem micro-
architecture [9]. In these processors, memory
bandwidth was enhanced significantly by
overcoming the front-side bus memory
bandwidth problem and by increasing
instruction issuance from two to four per
cycle. Saini et al. conducted a performance
evaluation of Hyper-Threading on small
numbers of Nehalem nodes using NPB [23].
Results showed that for one node, Hyper-
Threading provided a slight advantage only
for LU. BT, SP, MG, and LU achieved the
greatest benefit from Hyper-Threading at 4
nodes: factors of 1.54, 1.43, 1.14, and 1.14,
respectively, while FT did not achieve any

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 55

benefit independent of the number of nodes.
Later on Saini et al. extended their work on
Hyper-Threading to measure the relative
efficiency E of the processor in terms of cycle
per instruction using the formula

E = 100*(2*CPIST / CPIHT) – 100 (1)

where CPIST and CPIHT are cycle per
instruction in ST and HT modes respectively
[23].

 In the study focus was on the Westmere-

EP Xeon processor, which is based on the
Nehalem micro-architecture. The
contributions of the paper are as follows: •
We present efficiency, a new performance
metric in terms of instruction per cycle to
quantify the utilization of the processor, by
collecting PMU data in both ST and HT
modes using a range of core counts. It
analyse the PMU data to identify the factors
that influence the performance of the codes, in
particular focusing on the impact of shared
resources, such as execution units and
memory hierarchy, when executing in Hyper-
Threading mode.[12]

Hyper-threading in Nehalem Micro-

architecture

 Hyper-Threading (HT) allows instructions
from multiple threads to run on the same core.
When one thread stalls, a second thread is
allowed to proceed. To support Hyper-
Threading, the Nehalem micro-architecture
has several advantages over the Pentium 4.
Firstly, the newer design has much more
memory bandwidth and larger caches, giving
it the ability to get data to the core faster.
Secondly, Nehalem is a much wider
architecture than Pentium 4. It supports two
threads per core, presenting the abstraction of
two independent logical cores. The physical
core contains a mixture of resources, some of
which are shared between threads [11]: •
replicated resources for each thread, such as

register state, return stack buffer (RSB), and
the instruction queue; • partitioned resources

tagged by the thread number, such as load
buffer, store buffer, and reorder buffer; •
shared resources, such as L1, L2, and L3
cache; and • shared resources unaware of the

presence of threads, such as execution units.
 The RSB (return stack buffer) is an
improved branch target prediction
mechanism. Each thread has a dedicated RSB
to avoid any cross-contamination. Such
replicated resources should not have an
impact on Hyper-Threading performance.
Partitioned resources are statically allocated
between the threads and reduce the resources
available to each thread. However there is no
competition for these resources. On the other
hand, the two threads do compete for shared
resources and the performance depends on the
dynamic behaviour of the threads. Some of
the shared resources are unaware of Hyper-
Threading. For example, the scheduling of
instructions to execution units is independent
of threads, but there are limits on the number
of instructions from each thread that can be
queued. Figure 1 is a schematic description of
Hyper-Threading for the Nehalem micro-
architecture. In the diagram, the rows depict
each of the Westmere-EP processor’s six
execution units— two floating-point units
(FP0 and FP1), one load unit (LD0), one store
unit (ST0), one load address unit (LA0), and
one branch unit (BR0). It is a sixteen-stage
pipeline. Each box represents a single micro-
operation running on an execution unit.
 Figure 1(a) shows the ST mode (no HT) in
a core where the core is executing only one
thread (Thread 0 shown in green) and white
space denotes unfilled stages in the pipeline.
The peak execution bandwidth of the
Nehalem micro-architecture is four micro-
operations per cycle. Often ST does not utilize
the execution units optimally and operates at
less than peak bandwidth, as indicated by the
large number of idle (white) execution units.

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 56

Figure 1. Hyper threading on the sixteen-stage pipeline Nehalem architecture with six

execution units.

 Figure 1(b) shows the HT feature in one of
the processor cores. This core in HT mode
executes the micro-operations, from both
threads (Thread 0 and Thread 1 shown in
green and blue, respectively). This
arrangement can operate closer to peak
bandwidth, as indicated by the smaller
number of idle (white) execution units. In HT
mode, the processor can utilize execution
units more efficiently.

Computing Platform

 The study on Computing Platform was
conducted using NASA’s Pleiades
supercomputer, and SGI Altix ICE 8400EX
system located at NASA Ames Research
Centre. Pleiades comprises of 10,752 nodes
interconnected with an InfiniBand (IB)
network in a hypercube topology. The nodes
are based on three different Intel Xeon
processors: Harpertown, Nehalem-EP, and
Westmere-EP. In the study, they used the
Westmere-EP based nodes [12]. This subset
of Pleiades is interconnected via 4X Quad
Data Rate (QDR) IB switches. As shown in
Figure 2, the Westmere-EP based nodes have
two Xeon X5670 processors, each with six
cores. Each processor is clocked at 2.93 GHz,

with a peak performance of 70.32 Gflop/s.
The total peak performance of the node is
therefore 140.64Gflop/s. Each Westmere-EP
processor has two parts: “core” and “un-core”.
The core part consists of six cores with per-
core L1 and L2 caches. The un-core part has a
shared L3 cache, an integrated memory
controller, and Quick Path Interconnect (QPI).
Each core has 64 KB of L1 cache (32 KB data
and 32 KB instruction) and 256 KB of L2
cache. All six cores share 12 MB of L3 cache.
The on-chip memory controller supports three
DDR3 channels running at 1333 MHz, with a
peak memory bandwidth per socket of 32
GB/s (and twice that per node). Each
processor has two QPI links: one connects the
two processors of a node to form a non-
uniform-memory access (NUMA)
architecture, while the other connects to the
I/O hub. Each QPI link runs at 6.4 GT/s (“T”
for transactions), at which rate 2 bytes can be
transferred in each direction, for an aggregate
of 25.6 GB/s. HT was enabled on each
processor for our experiments. Pleiades
utilizes SUSE Linux Enterprise Server
(SLES) based on the 2.6.32 Linux kernel and
SGI overlays as its operating system and has a
Lustre file system for I/O.[12]

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 57

Figure 2. Configuration of an Intel Westmere-EP node.

Experimental Setup and Performance

Analysis

 Software optimization based on
performance analysis of large existing
applications, in most cases, reduces to
optimizing the code generation by the
compiler and optimizing the memory access.
This paper will focus on this approach.
Optimizing the code generation by the
compiler requires inspection of the assembler
of the time consuming parts of the application
and verifying that the compiler generated a
reasonable code stream. Optimizing the
memory access is a complex issue involving
the bandwidth and latency capabilities of the
platform, hardware and software prefetching
efficiencies and the virtual address layout of
the heavily accessed variables. The memory
access is where the non-uniform memory
access nature of the Intel® Core™ i7
processor based platforms becomes an issue.
 Performance analysis illuminates how the
existing invocation of an algorithm executes.
It allows a software developer to improve the
performance of that invocation. It does not
offer much insight about how to change an
algorithm, as that really requires a better
understanding of the problem being solved
rather than the performance of the existing
solution. That being said, the performance
gains that can be achieved on a large existing

code base can regularly exceed a factor of 2,
(particularly in HPC) which is certainly worth
the comparatively small effort required.

Basic Intel® Core™ i7 Processor and

Intel® Xeon™ 5500

Processor Architecture and Performance

Analysis

 Performance analysis on a micro
architecture is the experimental investigation
of the micro architecture’s response to a given
instruction and data stream. As such, a
reasonable understanding of the micro
architecture is required to understand what is
actually being measured with the performance
events that are available. Here we cover the
basics of the Intel® Core™ i7 processor and
Intel® Xeon™ 5500 processor architecture. It
is not meant to be complete but merely the
briefest of introductions. For more details
please consult the Software Developers
Programming Optimization Guide.[22]
 The Intel® Core™ i7 Processor and Intel®
Xeon™ 5500 processors are multi core,
Intel® Hyper-Threading Technology (HT)
enabled designs. Each socket has one to eight
cores, which share a last level cache (L3
CACHE), a local integrated memory
controller and an Intel® QuickPath
interconnect. Thus a 2 socket platform with
quad core sockets might be drawn as:

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 58

Figure 3 Memory Sub System

 What follows here is a brief description of
the experimental setup for collecting and
analysing the data based on the hardware
performance. Note that each core is quite
similar to that of the Intel® Core™2
processor. The pipelines are rather similar
except that the Intel® Core™ i7 core and
pipeline supports Intel® Hyper- Threading
Technology (HT), allowing the hardware to
interleave instructions of two threads during
execution to maximize utilization of the
core’s resources. The Intel® Hyper-Threading
Technology (HT) can be enabled or disabled
through a bios setting. Each core has a 32KB
data and instruction cache, a 256 KB unified
mid-level cache and 2 level DTLB system of
64 and 512 entries. There is a single, 32 entry
large page DTLB. The cores in a socket share
an inclusive last level cache.[11] The
inclusive aspect of this cache is an important
issue and in the usual DP configuration the
shared, inclusive last level cache is 8MB and
16 wav associative. The cache coherency
protocol messages, between the multiple
sockets, are exchanged over the Intel®
QuickPath Interconnects. The inclusive L3
CACHE allow this protocol to be extremely
fast, with the latency to the L3 CACHE of the

adjacent socket being even less than the
latency to the local memory. One of the main
virtues of the integrated memory controller is
the separation of the cache coherency traffic
and the memory access traffic. This enables
an enormous increase in memory access
bandwidth and results in a non-uniform
memory access. The latency to the memory
DIMMS attached to a remote socket is
considerably longer than to the local DIMMS.
A second advantage is that the memory
control logic can run at processor frequencies
and thereby reduce the latency. The
development of a reasonably hierarchical
structure and usage of the performance events
will require a fairly detailed knowledge of
exactly how the components of Intel® Core™
i7 processor execute an application’s stream
of instructions and delivers the required data.
What follows is a minimal introduction to
these components.[3],[5]

Core Out of Order Pipeline

 The basic analysis methodology starts with
an accounting of the cycle usage for
execution. The out of order execution can be
considered from the perspective of a simple
block diagram as shown below:

Figure 4 Block Diagram of Out of Order Execution

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 59

After instructions are decoded into the
executable micro operations they are assigned
their required resources. They can only be
issued to the downstream stages when there
are sufficient free resources. This would
include (among other requirements):
1) space in the Reservation Station (RS),
where the micro operations wait until their
inputs are available
2) space in the Reorder Buffer, where the
micro operations wait until they can be retired
3) sufficient load and store buffers in the case
of memory related micro operations (loads
and stores)

 Retirement and write back of state to
visible registers is only done for instructions
and micro operations that are on the correct
execution path. Instructions and micro
operations of incorrectly predicted paths are
flushed upon identification of the error in
prediction and the correct paths are then
processed. Retirement of the correct execution
path instructions can proceed when two
conditions are satisfied
1) The micro operations associated with the
instruction to be retired have completed,
allowing the retirement of the entire
instruction, or in the case of instructions that
generate very large number of micro
operations, enough to fill the retirement
window
2) Older instructions and their micro
operations of correctly predicted paths have
retired The mechanics of following these
requirements ensures that the visible state is
always consistent with in-order execution of
the instructions. The core of this design is that
if the oldest instruction is blocked, for
instance waiting for the arrival of data from
memory, younger independent instructions
and micro operations, whose inputs are
available, can be dispatched to the execution

units and warehoused in the ROB upon
completion. They will then retire when all the
older work has completed.
 The terms “issued”, “dispatched”,
“executed” and “retired” have very precise
meanings as to where in this sequence they
occur and are used in the event names to help
document what is being measured.

 In the Intel® Core™ i7 Processor, the
reservation station has 36 entries which are
shared between the Hyper-threads when that
mode is enabled in the bios, with some entries
reserved for each thread to avoid locking. If
not, all 36 could be available to the single
running thread, making restarting a blocked
thread inefficient. There are 128 positions in
the reorder buffer, which are again divided if
Hyper-threads are enabled or entirely
available to the single thread if Hyper-threads
is not enabled. As on Core™2 processors, the
RS dispatches the micro operations to one of
6 dispatch ports where they are consumed by
the execution units. This implies that on any
cycle between 0 and 6 micro operations can
be dispatched for execution.
 The hardware branch prediction requests
the bytes of instructions for the predicted code
paths from the 32KB L1 instruction cache at a
maximum bandwidth of 16 bytes/cycle.
Instructions fetches are always 16 byte
aligned, so if a hot code path starts on the 15th
byte, the FE will only receive 1 byte on that
cycle. This can aggravate instruction
bandwidth issues. The instructions are
referenced by virtual address and translated to
physical address with the help of a 128 entry
instruction translation lookaside buffer
(ITLB). The x86 instructions are decoded into
the processors micro operations by the
pipeline front end. Four instructions can be
decoded and issued per cycle. If the branch
prediction hardware wrongly predicts the
execution path, the micro operations from the
incorrect path which are in the instruction
pipeline are simply removed where they are,
without stalling execution. This reduces the
cost of branch wrong predictions. Thus the
“cost” associated with such wrong predictions
is only the wasted work associated with any
of the incorrect path micro operations that
actually got dispatched and executed and any
cycles that are idle while the correct path
instructions are located, decoded and inserted
into the execution pipeline.

Core Memory Subsystem

 In applications working with large data
footprints, memory access operations can
dominate the application’s performance.

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 60

Consequently a great deal of effort goes into
the design and instrumentation of the data
delivery subsystem. Data is organized as a
contiguous string of bytes and is transferred
around the memory subsystem in cache lines
of 64 bytes.
 Generally, load operations copy
contiguous subsets of the cache lines to
registers, while store operations copy the
contents of registers back into the local copies
of the cache lines. SSE streaming stores are an
exception as they create local copies of cache
lines which are then used to overwrite the
versions in memory, thus are slightly
different. The local copies of the lines that are
accessed in this way are kept in the 32KB L1
data cache. The access latency to this cache is
4 cycles. While the program references data
through virtual addresses, the hardware
identifies the cache lines by the physical
addresses. The translation between these two
mappings is maintained by the operating
system in the form of translation tables. These
tables list the translations of the standard 4KB
aligned address ranges called pages. They also
handle any large pages that the application
might have allocated. When a translation is
used it is kept in the data translation lookaside
buffers (DTLBs) for future reuse, as all load
and store operations require such a translation
to access the data caches. Programs reference
virtual addresses but access the cache lines in
the caches through the physical addresses.
 As mentioned earlier, there is a multi-level
TLB system in each core for the 4KB pages.
The level 1 caches have TLBs of 64 and 128
entries respectively for the data and
instruction caches. There is a shared 512 entry
second level TLB. There is a 32 entry DTLB
for the large 2/4MB pages should the
application allocate and access any large
pages. There are 7 large page ITLB entries per
HT. When a translation entry cannot be found
in the DTLBs the hardware page walker
(HPW) works with the OS translation data
structures to retrieve the needed translation
and updates the DTLBs. The hardware page
walker begins its search in the cache for the
table entry and then can continue searching in
memory if the page containing the entry
required is not found. Cache line coherency in
a multi core multi socket system must be

maintained to ensure that the correct values
for the data variables can be retrieved. This
has traditionally been done through the use of
a 4 value state for each copy of each cache
line. The four state (MESI) cache line
protocol allows for a coherent use of data in a
multi-core, multi-socket platform. A line that
is only read can be shared and the cache line
access protocol supports this by allowing
multiple copies of the cache line to coexist in
the multiple cores. Under these conditions, the
multiple copies of the cache line would be in
what is called a Shared state (S). A cache line
can be put in an Exclusive state (E) in
response to a “read for ownership” (RFO) in
order to store a value. All instructions
containing a lock prefix will result in a (RFO)
since they always result in a write to the cache
line. The F0 lock prefix will be present in the
opcode or is implied by the exchange and
complex exchange instructions when a
memory access is one of the operands. The
exclusive state ensures exclusive access of the
line. Once one of the copies is modified the
cache line’s state is changed to Modified (M).
 Then change of state is propagated to the
other cores, whose copies are changed to the
Invalid state (I). With the introduction of the
Intel® QuickPath Interconnect protocol the 4
MESI states are supplemented with a fifth,
Forward (F) state, for lines forwarded from on
socket to another. When a cache line, required
by a data access instruction, cannot be found
in the L1 data cache it must be retrieved from
a higher level and longer latency component
of the memory access subsystem. Such a
cache miss results in an invalid state being set
for the cache line. This mechanism can be
used to count cache misses. The L1D miss
creates an entry in the 16 element super queue
and allocates a line fill buffer. If the line is
found in the 256KB mid-level cache (MLC,
also referred to as L2), it is transferred to the
L1 data cache and the data access instruction
can be serviced. The load latency from the L2
CACHE is 10 cycles, resulting in a
performance penalty of around 6 cycles, the
difference of the effective L2 CACHE and
L1D latencies. If the line is not found in the
L2 CACHE, then it must be retrieved from the
un-core. When all the line fill buffers are in
use, the data access operations in the load and

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 61

store buffers cannot be processed. They are
thus queued up in the load and store buffers.
When all the load or store buffers are
occupied, the front end is inhibited from
issuing micro operations to the RS and OOO
engine. This is the same mechanism as used in
Core™2 processors to maintain pipeline
consistency.
 The Intel® Core™ i7 processor has a 4
component hardware pre-fetcher very similar
to that of the Core™ processors. Two
components associated with the L2 CACHE
and two components associated with the L1
data cache. The 2 components of L2 CACHE
hardware pre-fetcher are similar to those in
the Pentium™ 4 and Core™ processors.
There is a “streaming” component that looks
for multiple accesses in a local address
window as a trigger and an “adjacency”
component that causes 2 lines to be fetched
instead of one with each triggering of the
“streaming” component. The L1 data cache
pre fetcher is similar to the L1 data cache pre-
fetcher familiar from the Core™ processors. It
has another “streaming” component (which
was usually disabled in the bios’ for the
Core™ processors) and a “stride” or “IP”
component that detected constant stride
accesses at individual instruction pointers.
The Intel® Core™ i7 processor has various
improvements in the details of the hardware
pattern identifications used in the pre-fetchers.

Normal Memory Subsystem

 The normal or “un-core” is essentially a
shared last level cache (L3 CACHE), a

memory access chipset (Northbridge) , and a
socket interconnection interface integrated
into the multi-processor package. Cache line
access requests (i.e. L2 Cache misses, un-
cacheable loads and stores) from the cores are
serviced and the multi socket cache line
coherency is maintained with the other
sockets and the I/O Hub.
 There are five basic configurations of the
Intel® Core™ i7 processor un-core.
1. Intel® Xeon™ 550 processor has a 3
channel integrated memory controller (IMC),
2 Intel® QuickPath Interconnects to support
up to a DP configuration and an 8 MB L3
CACHE. This is the main focus of this
document
2. Intel® Core™ i7 processor-HEDT (High
End Desk Top) has a 3 channel IMC, 1 Intel®
QuickPath Interconnect to access the chipset
and an 8 MB L3 CACHE. This is for UP
configurations
3. A quad core mainstream configuration with
a 2 channel IMC, integrated PCI-e and an
8MB L3 CACHE
4. A dual core mainstream configuration
where the memory access is through an off
die chipset to enable support of more memory
DIMM formats equipped with a 4MB L3
CACHE
5. The 8-core implementation based on the
Nehalem microarchitecture will be the MP
configuration.

Intel® Xeon™ 5500 Processor

 IA block diagram of the Intel® Xeon™
5500 processor package is shown below

Figure 5 block diagram of the Intel® Xeon™ 5500 processor

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 62

 Cache line requests from the cores or from
a remote package or the I/O Hub are handled
by the Intel® Xeon™ 5500 processor Un-
core’s Global Queue (GQ). The GQ contains
3 request queues for this purpose. One for
writes with 16 entries and one of 12 entries
for off package requests delivered by the
Intel® QuickPath Interconnect and one of 32
entries for load requests from the cores. On
receiving a cache-line request from one of the
cores, the GQ first checks the Last Level
Cache (L3 CACHE) to see if the line is on the
package. As the L3 CACHE is inclusive, the
answer can be quickly ascertained. If the line
is in the L3 CACHE and was owned by the
requesting core it can be returned to the core
from the L3 CACHE directly. If the line is
being used by multiple cores, the GQ will
snoop the other cores to see if there is a
modified copy. If so the L3 CACHE is
updated and the line is sent to the requesting
core. In the event of an L3 CACHE miss the
GQ must send out requests for the line. Since
the cache-line could be in the other package, a
request through the Intel® QuickPath
Interconnect (Intel QPI) to the remote L3
CACHE must be made. As each Intel®
Core™ i7 processor package has its own local
integrated memory controller the GQ must
identify the “home” location of the requested
cache-line from the physical address. If the
address identifies home as being on the local
package, then the GQ makes a simultaneous
request C3 C1 GQ (Global Queue) IMC
(Integrated Memory Controller) LLC Last

level Cache QI (Intel® QuickPath
Interconnect Controller) Link Physical CSI
6.4 GH 1 .4-2 .3 G / C0 C2 QHL (QP Home
Logic) PC (Power Control Unit) CRA
(Control Register Access Bus Controller)
GCL (PLL Farm) Figure 3 12 to the local
memory controller, the Integrated memory
controller (IMC). If home is identified as
belonging to the remote package, the request
sent by the QPI will also be used to access the
remote IMC.[15],[16]

Core Performance Monitoring Unit (PMU)

 Each core has its own PMU. They have 3
fixed counters and 4 general counters for each
Hyper-Thread. If Hyper Thread is disabled in
the bios only one set of counters is available.
All then core monitoring events count on a
per thread basis with one exception that will
be discussed. The PMIs are raised on a per
logical core or Hyper Thread basis when
Hyper Thread is enabled. There is a
significant expansion of the PEBS events with
respect to Intel® Core™2 processors. This
will be discussed in detail. The Last Branch
Record (LBR) has been expanded to hold 16
source/target pairs for the last 16 taken branch
instructions.

Un-core Performance Monitoring Unit

(PMU)

 The Un-core has its own PMU for
monitoring its activity. It consists of 8 general
counters and one fixed counter. The fixed
counter monitors the un-core frequency,
which is different than the core frequency. In
order for the un-core PMU to generate an
interrupt it must rely on the core PMUs. If an
interrupt on overflow is desired, a bit pattern
of which core PMUs to signal to raise a PMI
must be programmed. As the un-core events
have no knowledge of the core, PID or TID
that ultimately generated the event, the most
reasonable approach to sampling on un-core
events requires sending an interrupt signal to
the entire core PMUs and generating one PMI
per logical core.

Performance

 The Intel Xeon processor family
delivers the highest server system
performance of any IA-32 Intel architecture
processor introduced to date. Initial
benchmark tests show up to a 65%
performance increase on high-end server
applications when compared to the previous-
generation Pentium® III Xeon™ processor on
4-way server platforms. A significant portion
of those gains can be attributed to Hyper-
Threading Technology.

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 63

Figure 6: Performance increases HTT on an Online Transaction

Figure 7 Webserver Benchmark Performance

Microsoft Operating System and

Applications

 A system with processors that use Hyper-
Threading Technology appears to the
operating system and application software as
having twice the number of processors than it
physically has. Operating systems manage
logical processors as they do physical
processors, scheduling runnable tasks or
threads to logical processors. However, for
best performance, the operating system should
implement two optimizations. The first is to
use the HALT instruction if one logical
processor is active and the other is not. HALT
will allow the processor to transition to either
the ST0- or ST1-mode. An operating system
that does not use this optimization would
execute on the idle logical processor a
sequence of instructions that repeatedly
checks for work to do. This so-called “idle
loop” can consume significant execution

resources that could otherwise be used to
make faster progress on the other active
logical processor. The second optimization is
in scheduling software threads to logical
processors. In general, for best performance,
the operating system should schedule threads
to logical processors on different physical
processors before scheduling multiple threads
to the same physical processor. This
optimization allows software threads to use
different physical execution resources when
possible.

Latency Event

 Latency event gives us the best idea for
performance measurement; the Intel® Core™
i7 processor has a “latency event” which is
very similar to the Itanium® Processor
Family Data EAR event. This event samples
loads, recording the number of cycles between
the execution of the instruction and actual

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 64

deliver of the data. If the measured latency is
larger than the minimum latency programmed
into MSR 0x3f6, bits 15:0, then the counter is
incremented. Counter overflow arms the
PEBS (Precise Event Based Sampling)
mechanism and on the next event satisfying
the latency threshold, the measured latency,
the virtual or linear address and the data
source are copied into 3 additional registers in
the PEBS (Precise Event Based Sampling)
buffer. Because the virtual address is captured
into a known location, the sampling driver
could also execute a virtual to physical
translation and capture the physical address.
The physical address identifies the Non
Uniform Memory Architecture home location
and in principle allows an analysis of the
details of the cache occupancies.

Precise Execution Events

 There are a wide variety of precise events
monitoring other instructions than load and
store instructions. Of particular note are the
precise branch events that have been added.
All branches, near calls and conditional
branches can all be counted with precise
events, for both retired and wrongly predicted
(and retired) branches of the type selected.
For these events, the PEBS (Precise Event
Based Sampling) buffer will contain the target
of the branch. If the Last Branch Record
(LBR) is also captured then the location of the
branch instruction can also be determined
when the branch is taken the IP value in the
PEBS (Precise Event Based Sampling) buffer
will also appear as the last target in the LBR.
If the branch was not taken (conditional
branches only) then it won’t and the branch
that was not taken and retired is the
instruction before the IP in the PEBS (Precise
Event Based Sampling) buffer In the case of
near calls retired, this means that Event Based
Sampling (EBS) can be used to collect
accurate function call counts. As this is the
primary measurement for driving the decision
to inline a function, this is an important
improvement. In order to measure call counts,
you must sample on calls. Any other trigger
introduces a bias that cannot be guaranteed to
be corrected properly.

The precise branch events are shown in the
table below:
Table 1
Event Name Description unmask Event
BR_INST_RETIRED.CONDITIONAL
Retired conditional branch instructions 01 C4
BR_INST_RETIRED.NEAR_CALL Retired
near call instructions 02
BR_INST_RETIRED.ALL_BRANCHES
Retired branch instructions 04

Shadowing

 There is one source of sampling bias
associated with precise events. It is due to the
time delay between the PMU (Performance
Monitoring Unit) counter overflow and the
arming of the PEBS (Precise Event Based
Sampling) hardware. During this period
events cannot be detected due to the timing
shadow. To illustrate the effect consider a
function call chain where a long duration
function, fn, which calls a chain of 3 very
short duration functions, fn1 calling fn2 which
calls fn3, followed by a long duration function
fn4. If the durations of fn1, fn2 and fn3 are
less than the shadow period the distribution of
PEBS (Precise Event Based Sampling)
sampled calls will be severely distorted.
1) If the overflow occurs on the call to fn, the
PEBS (Precise Event Based Sampling)
mechanism is armed by the time the call to
fn1 is executed and samples will be taken
showing the call to fn1 from fn.
2) If the overflow occurs due to the call to
fn1, fn2 or fn3 however, the PEBS
mechanism will not be armed until execution
is in the body of fn4. Thus the calls to fn2, fn3
and fn4 cannot appear as PEBS sampled calls

Summary

 The general rule that was used here is that
we did not provide more VIRTUAL CPUs
than the number of PHYISCAL cores the
Server been used for testing has. In our
scenario here, there are 32 logical processors
presented due to hyper-threading, but only 16
physical cores. If we had provisioned more
than 16 Virtual CPUs to the Machine it means
that execution resources will now be shared
for the Machine. Now there are some
exceptions here (test your workloads!), but is
it generally recommended not to exceed the

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 65

number of physical cores for this reason.
Measuring the bandwidth for an individual
core is complicated on Intel® Core™ i7
processors. And so that was left out
 In order not go too deep here, we just
concluded that non uniform memory
architecture NUMA is a technology designed
to assign affinity between CPUs and memory
banks in order to optimize memory access
times. Virtual non uniform memory
architecture (vNUMA) was introduced to
allow this technology to be extended down to
guest virtual machines. The bottom line here
is that the mix of virtual sockets and virtual
cores assigned matters. As this article shows,
processing latency can be increased if these
settings are not optimal. First you’ll want to
make sure that hot-CPU add is disabled as this
disables virtual NUMA in any virtual machine
and then you’ll want to make sure that your
allocation of virtual sockets and virtual cores
matches the underlying physical architecture
or you could be adding some processing
latency to your Machine.
 Note there’s a setting in firmware called
Prefer HT. but it basically changes the
preferences in Virtual NUMA. There’s no
universal answer here as it will vary from
application to application, but this setting is a
trade- off between additional compute cycles
and more efficient access to processor cache
and memory via virtual NUMA. If your
application needs faster memory access more
than it needs compute cycles, you may want
to experiment with this setting.

Observations

 It actually turned out that all of our settings
used for test were optimal and the Operating
System used throughout is Microsoft
Windows. We had one virtual CPU socket
with 16 cores – matching the 16 physical
cores on the Server and virtual NUMA
enabled. If you are using a Windows guest
you can download Coreinfo.exe from Sys-
internals and get more detail on how virtual
NUMA is configured within your Machine.
But that still did not answer the question –
why is the Main CPU at 80% when the host is
at 41% given 16 physical cores (main host)
and 16 virtual cores ? Is it possible that not all
the cores are being used? Without breaking

down the math, the number of MHz
consumed by the Machine divided by the
capacity of the host does align with the CORE
UTIL% metric.
 One thing we could not figure out about
this whole thing is why the host shows LESS
MHz utilized. There should be no averaging
here just raw MHz consumed – so it is
bothering us why the host would show less
consumed than the virtual (not possible in
raw Mhz. what metric do we use to see actual
core utilization without factoring for hyper
threading? We must confess that we are lost
here. Allegedly this metric exists but we
couldn’t find it anywhere: After some trial
and error we did find a CPU Workload %
metric which does appear to focus on the
cores (no hyper-threading):
 Now here’s a question that troubles us. The
default CPU metrics in vSphere count all the
logical cores but look at the peak above. If we
looked at the default CPU graph, we think
was at 74% when the physical cores were
actually at 88%. We can see how averaging
across all logical cores can provide a better
view of utilization, but it seems to us that the
Workload metric (physical cores only)
provides a better value for detecting
shortcomings. A system with processors that
use Hyper-Threading Technology appears to
the operating system and application software
as having twice the number of processors than
it physically has. Operating systems manage
logical processors as they do physical
Processor Execution Resources

Conclusion

 Intel’s Hyper-Threading Technology
brings the concept of simultaneous multi-
threading to the Intel Architecture. This is a
significant new technology direction for
Intel’s future processors. It will become
increasingly important going forward as it
adds a new technique for obtaining additional
performance for lower transistor and power
costs. The first implementation of Hyper-
Threading Technology was done on the
Intel Xeon processor MP. In this
implementation there are two logical
processors on each physical processor. The
logical processors have their own independent
architecture state, but they share nearly all the

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 66

physical execution and hardware resources of
the processor. The goal was to implement the
technology at minimum cost while ensuring
forward progress on logical processors, even
if the other is stalled, and to deliver full
performance even when there is only one
active logical processor. These goals were
achieved through efficient logical processor
selection algorithms and the creative
partitioning and recombining algorithms of
many key resources. Measured performance
on the Intel Xeon processor MP with Hyper-

Threading Technology shows performance
gains of up to 30% on common server
application benchmarks for this technology.
The potential for Hyper-Threading
Technology is tremendous; our current
implementation has only just begun to tap into
this potential. Hyper-Threading Technology is
expected to be viable from mobile processors
to servers; its introduction into market
segments other than servers is only gated by
the availability and prevalence of threaded
applications and workloads in those markets

.

References

[1] A. Agarwal, B.H. Lim, D. Kranz and J. Kubiatowicz, “APRIL: A processor Architecture for

Multiprocessing,” in Proceedings of the 17th Annual International Symposium on Computer
Architectures, pages 104-114, May 1990.

[2] A. Quealy, R. Ryder, A. Norris, and N-S. Liu. “National Combustion Code: Parallel
Implementation and Performance,” 38th AIAA Aerospace Sciences Mtg., Reno, Nevada,
Jan. 2000.

[3] B.J. Smith, “Architecture and Applications of the HEP Multiprocessor Computer System,” in
 SPIE Real Time Signal Processing IV, Pages 2 241 - 248, 1981.
 [4] D. Marr, et al., “Hyper-Threading Technology Architecture and Microarchitecture,” Intel

Technology Journal, Volume 06, Issue 01 February 14, 2002.
http://www.intel.com/technology/itj/archive/2002.htm

[5] D. J. C. Johnson, “HP's Mako Processor,” Microprocessor Forum, October 2001, [6]
 http://www.cpus.hp.com/technical_references/mpf_2001.pd

[6] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous Multithreading: Maximizing On-chip
Parallelism,” in 22nd Annual International Symposium on Computer Architecture, June
1995.

[7] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm, “Exploiting choice: Instruction
fetch and issue on an implementable simultaneous multithreading processor,” in 23rd
Annual International Symposium on Computer Architecture, May 1996.

[8] Intel Corporation. “IA-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic
 Architecture,”
[9] Intel® Microarchitecture (Nehalem), www.intel.com/technology/architecture-silicon/next-gen/.
[10] Intel Pentium 4 Processor Extreme Edition Supporting Hyper- Threading Technology,
 http://www.intel.com/products/processor/pentium4htxe/index.htm
[11] Intel Hyper-Threading Technology (Intel HT Technology),
 http://www.intel.com/technology/platform-technology/hyperthreading/
[12] Intel Westmere, http://ark.intel.com/ProductCollection.aspx?codeName=33174
[13] J. Boisseau, K. Milfeld, and C. Guiang. “Exploring the Effects of Hyperthreading on Scientific

Applications,” presented in Technical session number 7B, 45th Cray User Group
Conference, , Columbus, Ohio, May 2003. http://www.cug.org/7-
archives/previous_conferences/2003/CUG2003/pages/1-
program/final_program/20.tuesday.htm

[14] J. M. Tendler, S. Dodson, and S. Fields, “POWER4 System Microarchitecture,” Technical
 White Paper. IBM Server Group, October 2001. Intel Technology Journal Q1, 2002

West African Journal of Industrial & Academic Research Vol.15 No.1 December 2015 67

[15] L. A. Barroso et. al., “Piranha: A Scalable Architecture Based on Single-Chip
 Multiprocessing,” in Proceedings of the 27th Annual International Symposium on
 Computer Architecture, Pages 282 - 293, June 2000.
[16] L. Hammond, B. Nayfeh, and K. Olukotun, “A Single-Chip Multiprocessor,” Computer, 30(9),
 79 - 85, September 1997.
[17] M. Fillo, S. Keckler, W. Dally, N. Carter, A. Chang, Y. Gurevich, and W. Lee, “The M-

Machine Multicomputer,” in 28th Annual International Symposium on Microarchitecture,
Nov. 1995.

[18] OVERFLOW: http://aaac.larc.nasa.gov/~buning/
[19] PAPI 4.1.1 Release, http://icl.cs.utk.edu/papi/news/news.html?id=203 [14] D. J. Mavriplis, M.

J. Aftosmis, and M. Berger. “High Resolution Aerospace Applications using the NASA
Columbia Supercomputer,” Proc. ACM/IEEE SC05, Seattle, Washington, Nov. 2005.

[20] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter, and B. Smith, “The TERA
 Computer System,” in International Conference on Supercomputing, Pages 1 - 6, June 1990.
[21] S. Blackburn, P. Cheng, and K. McKinley. “Myths and Realities: The Performance Impact
 of Garbage Collection,” Proc. SIGMETRICS ’04, June 2004.
[22] Software Developers Programming Optimization Guide. Developer’s Manual, Volume 3:
 System Programming Guide,” Order number 245472, 2001
 http://developer.intel.com/design/Pentium4/manuals.
 [23] S. Saini, A. Naraikin, R. Biswas, D. Barkai, and T. Sandstrom, “Early Performance Evaluation

 of a Nehalem Cluster Using Scientific and Engineering Applications,” Proc. ACM/IEEE
SC09, Portland, Oregon, Nov. 2009.

[26] S. Saini, P. Mehrotra, K. Taylor, M. Aftosmis, and R. Biswas, “Performance Analysis of CFD
Application Cart3D Using MPInside and Performance Monitor Unit Data on Nehalem and
Westmere Based Supercomputers,” 13th IEEE Intl. Conf. on High Performance Computing
and Communications, Banff, Canada, Sep. 2011.

[25]W. Huang, J. Lin, Z. Zhang, and J. M. Chang. “Performance Characterization of Java
Applications on SMT Processors,” International Symp. on Performance Analysis of Systems
and Software (ISPASS), March 2005,

