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Abstract 
 
This paper describes the Hyper-Threading Technology architecture, and discusses the micro 

architecture details of Intel's structure. Hyper-Threading Technology is an important addition to 

Intel’s enterprise product line and has been integrated into a wide variety of products. Intel 

provides Hyper-Threading (HT) in processors based on its Pentium and more recent processor die. 

HT enables two threads to execute on each core in order to hide latencies related to data access. 

These two threads can execute simultaneously, filling unused stages in the functional unit pipelines. 

To aid better understanding of HT related issues, we look at Performance Monitoring Unit (PMU) 

data (instructions retired; un-halted core cycles; L2 and L3 cache hits and misses; vector and 

scalar floating-point operations, etc.). We then use the PM data to make deduction on a new metric 

of efficiency in order to quantify processor resource utilization and make comparisons of that 

utilization between single-threading (ST) and HT modes. We also study performance gain using 

unhalted core cycles, code efficiency of using vector units of the processor, and the impact of HT 

mode on various shared resources like L2 and L3 cache. Results using four full-scale, production-

quality scientific applications from computational fluid dynamics indicate that HT generally 

improves processor resource utilization efficiency, but does not necessarily translate into overall 

application performance gain. 

 

Key words:  Hyper-Threading, core circles, code efficiency, processor resource utitilization,  

         applications performance. 

 

_______________________________________________________________________________ 

 

Introduction     
     Intel’s Hyper-Threading Technology 
brings the concept of simultaneous multi-
threading to the Intel Architecture. Hyper-
Threading Technology makes a single 
physical processor appear as two logical 
processors; the physical execution resources 
are shared and the architecture state is 
duplicated for the two logical processors. 
From a software or architecture perspective, 
this means operating systems and user 
programs can schedule processes or threads to 
logical processors as they would on multiple 
physical processors. From a micro-
architecture perspective, this means that 
instructions from both logical processors will 

persist and execute simultaneously on shared 
execution resources. 
     Hyper-threading is Intel's trademarked 
term for its simultaneous multithreading 
implementation in their Pentium 4, Atom, 
Core i7, and certain Xeon CPUs and more 
recent processors. Hyper-threading (officially 
termed Hyper-Threading Technology or HTT) 
is an Intel-proprietary technology used to 
improve parallelization of computations 
(doing multiple tasks at once) performed on 
PC microprocessors [10],[11]. A processor 
with hyper-threading enabled is treated by the 
operating system as two processors instead of 
one. This means that only one processor is 
physically present but the operating system 
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sees two virtual processors, and shares the 
workload between them. Hyper-threading 
requires both operating system and CPU 
support for efficient usage; conventional 
multiprocessor support is not enough, and 
may actually decrease performance if the 
Operating System is not sufficiently aware of 
the distinction between a physical core and a 
HTT-enabled core. For example, Intel does 
not recommend that hyper-threading be 
enabled under Windows 2000, even though 
the operating system supports multiple CPUs 
(but is not HTT-compliant). 
     So in simple term, Hyper-threading is 
using one physical processor but logically 
dividing it into two so that it gives the user the 
benefit of two processors with only using the 
resources equivalent to almost one. This is 
achieved by sharing, partitioning and 
duplicating the various resources almost into 
two processors. Used by the latest Pentium 
processors, which are Hyper Thread enabled, 
in layman's terms, it allows you to use more 
than two applications at the same time without 
slowing down processing speed. Hyper-
threading was intended to solve an issue with 
a waste of potential resources in the CPU. It 
does not change the physical resources (the 
CPU cores) but more resources can be 
potentially tapped into by allowing two 
threads to be processed by the same execution 
resource simultaneously -with each physical 
core being an execution resource. When 
hyper-threading is enabled it doubles the 
number of logical processors presented by the 
BIOS. For example, a 2 socket, 8 core system 
with 16 cores total now presents 32 cores to 
the virtual hardware. Therefore the CPU 
scheduler can make efficient use of hyper-
threading and generally it should be enabled. 
The number of logical processors now 
doubles, providing a performance benefit in 
the range of 10-15% in most virtual sphere 
environments (depending on 
workload/applications, processors speed and 
memory capacity) [9]. 
 

Parallel Computing  

     Multithreading computers have hardware 
support to efficiently execute multiple 
threads. These are distinguished from 
multiprocessing systems (such as multi-core 

systems) in that the threads have to share the 
resources of single core: the computing units, 
the CPU caches and the translation lookaside 
buffer (TLB). While multiprocessing systems 
include multiple complete processing units, 
multithreading aims to increase utilization of 
a single core by leveraging thread-level as 
well as instruction-level parallelism. As the 
two techniques are complementary, they are 
sometimes combined in systems with multiple 
multithreading CPUs and in CPUs with 
multiple multithreading cores.[2] Multi-
threading is when various processes are time 
sliced such that it gives the user the 
impression that all the programs are being run 
at the same time. This is what happens on 
your computer regularly 
     Multithreading refers to the general task of 
running more than one thread of execution 
within an operating system. Multithreading is 
more generically called "multiprocessing", 
which can include multiple system processes 
(a simple example on Windows would be, 
e.g., running Internet Explorer and Microsoft 
Word at the same time), or it can consist of 
one process that has multiple threads within it. 
Multithreading is a software 
concept.[1],[6],[7] Practically any Turing-
complete CPU can perform multithreading, 
even if the computer only has one CPU core 
and that core does not support hyper-
threading. In order to support multiprocessing, 
the CPU will interleave execution of different 
threads of execution, by executing one, then 
another, then another, where the operating 
system will divide up the time available into 
"slices" and give a roughly equal amount of 
time to each thread (the time doesn't have to 
be equal, but that's typically how it's done 
unless a process requests a higher priority). 
 

Super-threading 

     Super-threading allows threads from 
different processes to be executed at the same 
time unlike Multi-threading where every 
process has a time slot during which, thread 
from only one process will be executed. But 
every time, if for example, there are four 
instructions issued to the processor. They will 
all be from the same process. Hyper-threading 
takes it a step further. It allows threads from 
different processes to be issued at the same 
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time, in turn, utilizing the waste cycles of the 
processor. Super-threading is a multithreading 
approach that weaves together the execution 
of different threads on a single processor 
without truly executing them at the same time. 
This qualifies it as time-sliced or temporal 
multithreading rather than simultaneous 
multithreading. It is motivated by the 
observation that the processor is occasionally 
left idle while executing an instruction from 
one thread. Super-threading seeks to make use 
of unused processor cycles by applying them 
to the execution of an instruction from another 
thread 
 

Understanding Hyper-Threading 

Technology 
     Current trends in microprocessor design 
have made high resource utilization a key 
requirement for achieving good performance. 
This means that while deeper pipelines have 
led to 3 GHz processors, each new generation 
of micro-architecture technology comes with 
increased memory latency and a decrease in 
relative memory speed. This results in the 
processor spending a significant amount of 
time waiting for the memory system to fetch 
data. This “memory wall” problem continues 
to remain a major shortcoming and as a result, 
sustained performance of most real-world 
applications is less than 10% of peak. Over 
the years, a number of multithreading 
techniques have been employed to hide this 
memory latency. One approach is 
simultaneous multi-threading (SMT), which 
exposes more parallelism to the processor by 
fetching and retiring instructions from 
multiple instruction streams, thereby 
increasing processor utilization. Simultaneous 
multi-threading requires only some extra 
hardware instead of replicating the entire 
core.[6] Price and performance benefits make 
it a common design choice as, laid out in 
Intel’s Nehalem micro-architecture, where it 
is called Hyper-Threading (HT). As is the 
case with other forms of on-chip parallelism, 
such as multiple cores and instruction-level 
parallelism,[8],[9] Simultaneous multi-
threading uses resource sharing to make the 
parallel implementation economical. With 
Simultaneous multi-threading, this sharing has 
the potential for improving utilization of 

resources such as that of the floating-point 
unit through the hiding of latency in the 
memory hierarchy. When one thread is 
waiting for a load instruction to complete, the 
core can execute instructions from another 
thread without stalling.  
  
Review of and related work 

     Intel introduced Simultaneous multi-
threading (SMT), which it called Hyper-
Threading (HT), into its product line in 2002 
with new models of their Pentium 4 
processors curtailing the use Co-Maths 
processor [10],[11],[4]. The advantage of HT 
is its ability to better utilize processor 
resources and to hide memory latency. There 
have been a few efforts studying the 
effectiveness of Hyper-Threading on 
application performance. Boisseau et al. 
conducted a performance evaluation of 
Hyper-Threading on a Dell 2650 dual 
processor-server based on Pentium 4 using 
matrix multiplication and a 256-particle 
molecular dynamics benchmark written in 
OpenMP [13]. Haung et al. characterized the 
performance of Java applications using 
Pentium 4 processors with Hyper-Threading 
[25]. Blackburn et al. studied the performance 
of garbage collection in Hyper-Threading 
mode by using some of the Pentium 4 
performance counters [21]. A key finding of 
these investigations was that the Pentium 4’s 
implementation of Hyper-Threading was not 
very advantageous, as the processor had very 
limited memory bandwidth and issued only 
two instructions per cycle. 
     After that, Hyper-Threading was extended 
to processors that use Intel’s Nehalem micro-
architecture [9]. In these processors, memory 
bandwidth was enhanced significantly by 
overcoming the front-side bus memory 
bandwidth problem and by increasing 
instruction issuance from two to four per 
cycle. Saini et al. conducted a performance 
evaluation of Hyper-Threading on small 
numbers of Nehalem nodes using NPB [23]. 
Results showed that for one node, Hyper-
Threading provided a slight advantage only 
for LU. BT, SP, MG, and LU achieved the 
greatest benefit from Hyper-Threading at 4 
nodes: factors of 1.54, 1.43, 1.14, and 1.14, 
respectively, while FT did not achieve any 



 

 
West African Journal of Industrial & Academic Research   Vol.15 No.1   December 2015                 55   

 
benefit independent of the number of nodes. 
Later on Saini et al. extended their work on 
Hyper-Threading to measure the relative 
efficiency E of the processor in terms of cycle 
per instruction using the formula 
 

E = 100*(2*CPIST / CPIHT) – 100   (1) 

 

where CPIST and CPIHT are cycle per 
instruction in ST and HT modes respectively 
[23]. 
      
      In the study focus was on the Westmere-

EP Xeon processor, which is based on the 
Nehalem micro-architecture. The 
contributions of the  paper are as follows: • 
We present efficiency, a new performance 
metric in terms of instruction per cycle to 
quantify the utilization of the processor, by 
collecting PMU data in both ST and HT 
modes using a range of core counts. It  
analyse the PMU data to identify the factors 
that influence the performance of the codes, in 
particular focusing on the impact of shared 
resources, such as execution units and 
memory hierarchy, when executing in Hyper-
Threading mode.[12] 
  

Hyper-threading in Nehalem Micro-

architecture 

     Hyper-Threading (HT) allows instructions 
from multiple threads to run on the same core. 
When one thread stalls, a second thread is 
allowed to proceed. To support Hyper-
Threading, the Nehalem micro-architecture 
has several advantages over the Pentium 4. 
Firstly, the newer design has much more 
memory bandwidth and larger caches, giving 
it the ability to get data to the core faster. 
Secondly, Nehalem is a much wider 
architecture than Pentium 4. It supports two 
threads per core, presenting the abstraction of 
two independent logical cores. The physical 
core contains a mixture of resources, some of 
which are shared between threads [11]: • 
replicated resources for each thread, such as 

register state, return stack buffer (RSB), and 
the instruction queue; • partitioned resources 

tagged by the thread number, such as load 
buffer, store buffer, and reorder buffer; • 
shared resources, such as L1, L2, and L3 
cache; and • shared resources unaware of the 

presence of threads, such as execution units. 
      The RSB (return stack buffer) is an 
improved branch target prediction 
mechanism. Each thread has a dedicated RSB 
to avoid any cross-contamination. Such 
replicated resources should not have an 
impact on Hyper-Threading performance. 
Partitioned resources are statically allocated 
between the threads and reduce the resources 
available to each thread. However there is no 
competition for these resources. On the other 
hand, the two threads do compete for shared 
resources and the performance depends on the 
dynamic behaviour of the threads. Some of 
the shared resources are unaware of Hyper-
Threading. For example, the scheduling of 
instructions to execution units is independent 
of threads, but there are limits on the number 
of instructions from each thread that can be 
queued. Figure 1 is a schematic description of 
Hyper-Threading for the Nehalem micro-
architecture. In the diagram, the rows depict 
each of the Westmere-EP processor’s six 
execution units— two floating-point units 
(FP0 and FP1), one load unit (LD0), one store 
unit (ST0), one load address unit (LA0), and 
one branch unit (BR0). It is a sixteen-stage 
pipeline. Each box represents a single micro-
operation running on an execution unit. 
     Figure 1(a) shows the ST mode (no HT) in 
a core where the core is executing only one 
thread (Thread 0 shown in green) and white 
space denotes unfilled stages in the pipeline. 
The peak execution bandwidth of the 
Nehalem micro-architecture is four micro-
operations per cycle. Often ST does not utilize 
the execution units optimally and operates at 
less than peak bandwidth, as indicated by the 
large number of idle (white) execution units. 
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Figure 1. Hyper threading on the sixteen-stage pipeline Nehalem architecture with six 

execution units. 
 
     Figure 1(b) shows the HT feature in one of 
the processor cores. This core in HT mode 
executes the micro-operations, from both 
threads (Thread 0 and Thread 1 shown in 
green and blue, respectively). This 
arrangement can operate closer to peak 
bandwidth, as indicated by the smaller 
number of idle (white) execution units. In HT 
mode, the processor can utilize execution 
units more efficiently.  
 

Computing Platform 

     The study on Computing Platform was 
conducted using NASA’s Pleiades 
supercomputer, and SGI Altix ICE 8400EX 
system located at NASA Ames Research 
Centre. Pleiades comprises of 10,752 nodes 
interconnected with an InfiniBand (IB) 
network in a hypercube topology. The nodes 
are based on three different Intel Xeon 
processors: Harpertown, Nehalem-EP, and 
Westmere-EP. In the study, they  used the 
Westmere-EP based nodes [12]. This subset 
of Pleiades is interconnected via 4X Quad 
Data Rate (QDR) IB switches. As shown in 
Figure 2, the Westmere-EP based nodes have 
two Xeon X5670 processors, each with six 
cores. Each processor is clocked at 2.93 GHz, 

with a peak performance of 70.32 Gflop/s. 
The total peak performance of the node is 
therefore 140.64Gflop/s. Each Westmere-EP 
processor has two parts: “core” and “un-core”. 
The core part consists of six cores with per-
core L1 and L2 caches. The un-core part has a 
shared L3 cache, an integrated memory 
controller, and Quick Path Interconnect (QPI). 
Each core has 64 KB of L1 cache (32 KB data 
and 32 KB instruction) and 256 KB of L2 
cache. All six cores share 12 MB of L3 cache. 
The on-chip memory controller supports three 
DDR3 channels running at 1333 MHz, with a 
peak memory bandwidth per socket of 32 
GB/s (and twice that per node). Each 
processor has two QPI links: one connects the 
two processors of a node to form a non-
uniform-memory access (NUMA) 
architecture, while the other connects to the 
I/O hub. Each QPI link runs at 6.4 GT/s (“T” 
for transactions), at which rate 2 bytes can be 
transferred in each direction, for an aggregate 
of 25.6 GB/s. HT was enabled on each 
processor for our experiments. Pleiades 
utilizes SUSE Linux Enterprise Server 
(SLES) based on the 2.6.32 Linux kernel and 
SGI overlays as its operating system and has a 
Lustre file system for I/O.[12] 
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Figure 2. Configuration of an Intel Westmere-EP node. 

  

Experimental Setup and Performance 

Analysis 

     Software optimization based on 
performance analysis of large existing 
applications, in most cases, reduces to 
optimizing the code generation by the 
compiler and optimizing the memory access. 
This paper will focus on this approach. 
Optimizing the code generation by the 
compiler requires inspection of the assembler 
of the time consuming parts of the application 
and verifying that the compiler generated a 
reasonable code stream. Optimizing the 
memory access is a complex issue involving 
the bandwidth and latency capabilities of the 
platform, hardware and software prefetching 
efficiencies and the virtual address layout of 
the heavily accessed variables. The memory 
access is where the non-uniform memory 
access nature of the Intel® Core™ i7 
processor based platforms becomes an issue. 
     Performance analysis illuminates how the 
existing invocation of an algorithm executes. 
It allows a software developer to improve the 
performance of that invocation. It does not 
offer much insight about how to change an 
algorithm, as that really requires a better 
understanding of the problem being solved 
rather than the performance of the existing 
solution. That being said, the performance 
gains that can be achieved on a large existing 

code base can regularly exceed a factor of 2, 
(particularly in HPC) which is certainly worth 
the comparatively small effort required. 
 

Basic Intel® Core™ i7 Processor and 

Intel® Xeon™ 5500 

Processor Architecture and Performance 

Analysis 

     Performance analysis on a micro 
architecture is the experimental investigation 
of the micro architecture’s response to a given 
instruction and data stream. As such, a 
reasonable understanding of the micro 
architecture is required to understand what is 
actually being measured with the performance 
events that are available. Here we cover the 
basics of the Intel® Core™ i7 processor and 
Intel® Xeon™ 5500 processor architecture. It 
is not meant to be complete but merely the 
briefest of introductions. For more details 
please consult the Software Developers 
Programming Optimization Guide.[22] 
     The Intel® Core™ i7 Processor and Intel® 
Xeon™ 5500 processors are multi core, 
Intel® Hyper-Threading Technology (HT) 
enabled designs. Each socket has one to eight 
cores, which share a last level cache (L3 
CACHE), a local integrated memory 
controller and an Intel® QuickPath 
interconnect. Thus a 2 socket platform with 
quad core sockets might be drawn as: 
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Figure 3 Memory Sub System 

      
     What follows here is a brief description of 
the experimental setup for collecting and 
analysing the data based on the hardware 
performance. Note that each core is quite 
similar to that of the Intel® Core™2 
processor. The pipelines are rather similar 
except that the Intel® Core™ i7 core and 
pipeline supports Intel® Hyper- Threading 
Technology (HT), allowing the hardware to 
interleave instructions of two threads during 
execution to maximize utilization of the 
core’s resources. The Intel® Hyper-Threading 
Technology (HT) can be enabled or disabled 
through a bios setting. Each core has a 32KB 
data and instruction cache, a 256 KB unified 
mid-level cache and 2 level DTLB system of 
64 and 512 entries. There is a single, 32 entry 
large page DTLB. The cores in a socket share 
an inclusive last level cache.[11] The 
inclusive aspect of this cache is an important 
issue and in the usual DP configuration the 
shared, inclusive last level cache is 8MB and 
16 wav associative. The cache coherency 
protocol messages, between the multiple 
sockets, are exchanged over the Intel® 
QuickPath Interconnects. The inclusive L3 
CACHE allow this protocol to be extremely 
fast, with the latency to the L3 CACHE of the 

adjacent socket being even less than the 
latency to the local memory. One of the main 
virtues of the integrated memory controller is 
the separation of the cache coherency traffic 
and the memory access traffic. This enables 
an enormous increase in memory access 
bandwidth and results in a non-uniform 
memory access. The latency to the memory 
DIMMS attached to a remote socket is 
considerably longer than to the local DIMMS. 
A second advantage is that the memory 
control logic can run at processor frequencies 
and thereby reduce the latency. The 
development of a reasonably hierarchical 
structure and usage of the performance events 
will require a fairly detailed knowledge of 
exactly how the components of Intel® Core™ 
i7 processor execute an application’s stream 
of instructions and delivers the required data. 
What follows is a minimal introduction to 
these components.[3],[5] 
 

Core Out of Order Pipeline 

     The basic analysis methodology starts with 
an accounting of the cycle usage for 
execution. The out of order execution can be 
considered from the perspective of a simple 
block diagram as shown below: 

                      
Figure 4 Block Diagram of Out of Order Execution 
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After instructions are decoded into the 
executable micro operations they are assigned 
their required resources. They can only be 
issued to the downstream stages when there 
are sufficient free resources. This would 
include (among other requirements): 
1) space in the Reservation Station (RS), 
where the micro operations wait until their 
inputs are available 
2) space in the Reorder Buffer, where the 
micro operations wait until they can be retired 
3) sufficient load and store buffers in the case 
of memory related micro operations (loads 
and stores) 
 

     Retirement and write back of state to 
visible registers is only done for instructions 
and micro operations that are on the correct 
execution path. Instructions and micro 
operations of incorrectly predicted paths are 
flushed upon identification of the error in 
prediction and the correct paths are then 
processed. Retirement of the correct execution 
path instructions can proceed when two 
conditions are satisfied 
1) The micro operations associated with the 
instruction to be retired have completed, 
allowing the retirement of the entire 
instruction, or in the case of instructions that 
generate very large number of micro 
operations, enough to fill the retirement 
window 
2) Older instructions and their micro 
operations of correctly predicted paths have 
retired The mechanics of following these 
requirements ensures that the visible state is 
always consistent with in-order execution of 
the instructions. The core of this design is that 
if the oldest instruction is blocked, for 
instance waiting for the arrival of data from 
memory, younger independent instructions 
and micro operations, whose inputs are 
available, can be dispatched to the execution 

units and warehoused in the ROB upon 
completion. They will then retire when all the 
older work has completed.  
     The terms “issued”, “dispatched”, 
“executed” and “retired” have very precise 
meanings as to where in this sequence they 
occur and are used in the event names to help 
document what is being measured. 

     In the Intel® Core™ i7 Processor, the 
reservation station has 36 entries which are 
shared between the Hyper-threads when that 
mode is enabled in the bios, with some entries 
reserved for each thread to avoid locking. If 
not, all 36 could be available to the single 
running thread, making restarting a blocked 
thread inefficient. There are 128 positions in 
the reorder buffer, which are again divided if 
Hyper-threads are enabled or entirely 
available to the single thread if Hyper-threads 
is not enabled. As on Core™2 processors, the 
RS dispatches the micro operations to one of 
6 dispatch ports where they are consumed by 
the execution units. This implies that on any 
cycle between 0 and 6 micro operations can 
be dispatched for execution. 
     The hardware branch prediction requests 
the bytes of instructions for the predicted code 
paths from the 32KB L1 instruction cache at a 
maximum bandwidth of 16 bytes/cycle. 
Instructions fetches are always 16 byte 
aligned, so if a hot code path starts on the 15th 
byte, the FE will only receive 1 byte on that 
cycle. This can aggravate instruction 
bandwidth issues. The instructions are 
referenced by virtual address and translated to 
physical address with the help of a 128 entry 
instruction translation lookaside buffer 
(ITLB). The x86 instructions are decoded into 
the processors micro operations by the 
pipeline front end. Four instructions can be 
decoded and issued per cycle. If the branch 
prediction hardware wrongly predicts the 
execution path, the micro operations from the 
incorrect path which are in the instruction 
pipeline are simply removed where they are, 
without stalling execution. This reduces the 
cost of branch wrong predictions. Thus the 
“cost” associated with such wrong predictions 
is only the wasted work associated with any 
of the incorrect path micro operations that 
actually got dispatched and executed and any 
cycles that are idle while the correct path 
instructions are located, decoded and inserted 
into the execution pipeline. 
 

Core Memory Subsystem 

     In applications working with large data 
footprints, memory access operations can 
dominate the application’s performance. 
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Consequently a great deal of effort goes into 
the design and instrumentation of the data 
delivery subsystem. Data is organized as a 
contiguous string of bytes and is transferred 
around the memory subsystem in cache lines 
of 64 bytes. 
     Generally, load operations copy 
contiguous subsets of the cache lines to 
registers, while store operations copy the 
contents of registers back into the local copies 
of the cache lines. SSE streaming stores are an 
exception as they create local copies of cache 
lines which are then used to overwrite the 
versions in memory, thus are slightly 
different. The local copies of the lines that are 
accessed in this way are kept in the 32KB L1 
data cache. The access latency to this cache is 
4 cycles. While the program references data 
through virtual addresses, the hardware 
identifies the cache lines by the physical 
addresses. The translation between these two 
mappings is maintained by the operating 
system in the form of translation tables. These 
tables list the translations of the standard 4KB 
aligned address ranges called pages. They also 
handle any large pages that the application 
might have allocated. When a translation is 
used it is kept in the data translation lookaside 
buffers (DTLBs) for future reuse, as all load 
and store operations require such a translation 
to access the data caches. Programs reference 
virtual addresses but access the cache lines in 
the caches through the physical addresses. 
     As mentioned earlier, there is a multi-level 
TLB system in each core for the 4KB pages. 
The level 1 caches have TLBs of 64 and 128 
entries respectively for the data and 
instruction caches. There is a shared 512 entry 
second level TLB. There is a 32 entry DTLB 
for the large 2/4MB pages should the 
application allocate and access any large 
pages. There are 7 large page ITLB entries per 
HT. When a translation entry cannot be found 
in the DTLBs the hardware page walker 
(HPW) works with the OS translation data 
structures to retrieve the needed translation 
and updates the DTLBs. The hardware page 
walker begins its search in the cache for the 
table entry and then can continue searching in 
memory if the page containing the entry 
required is not found. Cache line coherency in 
a multi core multi socket system must be 

maintained to ensure that the correct values 
for the data variables can be retrieved. This 
has traditionally been done through the use of 
a 4 value state for each copy of each cache 
line. The four state (MESI) cache line 
protocol allows for a coherent use of data in a 
multi-core, multi-socket platform. A line that 
is only read can be shared and the cache line 
access protocol supports this by allowing 
multiple copies of the cache line to coexist in 
the multiple cores. Under these conditions, the 
multiple copies of the cache line would be in 
what is called a Shared state (S). A cache line 
can be put in an Exclusive state (E) in 
response to a “read for ownership” (RFO) in 
order to store a value. All instructions 
containing a lock prefix will result in a (RFO) 
since they always result in a write to the cache 
line. The F0 lock prefix will be present in the 
opcode or is implied by the exchange and 
complex exchange instructions when a 
memory access is one of the operands. The 
exclusive state ensures exclusive access of the 
line. Once one of the copies is modified the 
cache line’s state is changed to Modified (M). 
     Then change of state is propagated to the 
other cores, whose copies are changed to the 
Invalid state (I). With the introduction of the 
Intel® QuickPath Interconnect protocol the 4 
MESI states are supplemented with a fifth, 
Forward (F) state, for lines forwarded from on 
socket to another. When a cache line, required 
by a data access instruction, cannot be found 
in the L1 data cache it must be retrieved from 
a higher level and longer latency component 
of the memory access subsystem. Such a 
cache miss results in an invalid state being set 
for the cache line. This mechanism can be 
used to count cache misses. The L1D miss 
creates an entry in the 16 element super queue 
and allocates a line fill buffer. If the line is 
found in the 256KB mid-level cache (MLC, 
also referred to as L2), it is transferred to the 
L1 data cache and the data access instruction 
can be serviced. The load latency from the L2 
CACHE is 10 cycles, resulting in a 
performance penalty of around 6 cycles, the 
difference of the effective L2 CACHE and 
L1D latencies. If the line is not found in the 
L2 CACHE, then it must be retrieved from the 
un-core. When all the line fill buffers are in 
use, the data access operations in the load and 



 

 
West African Journal of Industrial & Academic Research   Vol.15 No.1   December 2015                 61   

 
store buffers cannot be processed. They are 
thus queued up in the load and store buffers. 
When all the load or store buffers are 
occupied, the front end is inhibited from 
issuing micro operations to the RS and OOO 
engine. This is the same mechanism as used in 
Core™2 processors to maintain pipeline 
consistency. 
     The Intel® Core™ i7 processor has a 4 
component hardware pre-fetcher very similar 
to that of the Core™ processors. Two 
components associated with the L2 CACHE 
and two components associated with the L1 
data cache. The 2 components of L2 CACHE 
hardware pre-fetcher are similar to those in 
the Pentium™ 4 and Core™ processors. 
There is a “streaming” component that looks 
for multiple accesses in a local address 
window as a trigger and an “adjacency” 
component that causes 2 lines to be fetched 
instead of one with each triggering of the 
“streaming” component. The L1 data cache 
pre fetcher is similar to the L1 data cache pre-
fetcher familiar from the Core™ processors. It 
has another “streaming” component (which 
was usually disabled in the bios’ for the 
Core™ processors) and a “stride” or “IP” 
component that detected constant stride 
accesses at individual instruction pointers. 
The Intel® Core™ i7 processor has various 
improvements in the details of the hardware 
pattern identifications used in the pre-fetchers. 
 

Normal Memory Subsystem 

     The normal or “un-core” is essentially a 
shared last level cache (L3 CACHE), a 

memory access chipset (Northbridge) , and a 
socket interconnection interface integrated 
into the multi-processor package. Cache line 
access requests (i.e. L2 Cache misses, un-
cacheable loads and stores) from the cores are 
serviced and the multi socket cache line 
coherency is maintained with the other 
sockets and the I/O Hub. 
     There are five basic configurations of the 
Intel® Core™ i7 processor un-core. 
1. Intel® Xeon™ 550 processor has a 3 
channel integrated memory controller (IMC), 
2 Intel® QuickPath Interconnects to support 
up to a DP configuration and an 8 MB L3 
CACHE. This is the main focus of this 
document 
2. Intel® Core™ i7 processor-HEDT (High 
End Desk Top) has a 3 channel IMC, 1 Intel® 
QuickPath Interconnect to access the chipset 
and an 8 MB L3 CACHE. This is for UP 
configurations 
3. A quad core mainstream configuration with 
a 2 channel IMC, integrated PCI-e and an 
8MB L3 CACHE 
4. A dual core mainstream configuration 
where the memory access is through an off 
die chipset to enable support of more memory 
DIMM formats equipped with a 4MB L3 
CACHE 
5. The 8-core implementation based on the 
Nehalem microarchitecture will be the MP 
configuration.  
 

Intel® Xeon™ 5500 Processor 

     IA block diagram of the Intel® Xeon™ 
5500 processor package is shown below 

                              
Figure 5 block diagram of the Intel® Xeon™ 5500 processor 



 

 
West African Journal of Industrial & Academic Research   Vol.15 No.1   December 2015                 62   

 
 
 
     Cache line requests from the cores or from 
a remote package or the I/O Hub are handled 
by the Intel® Xeon™ 5500 processor Un-
core’s Global Queue (GQ). The GQ contains 
3 request queues for this purpose. One for 
writes with 16 entries and one of 12 entries 
for off package requests delivered by the 
Intel® QuickPath Interconnect and one of 32 
entries for load requests from the cores. On 
receiving a cache-line request from one of the 
cores, the GQ first checks the Last Level 
Cache (L3 CACHE) to see if the line is on the 
package. As the L3 CACHE is inclusive, the 
answer can be quickly ascertained. If the line 
is in the L3 CACHE and was owned by the 
requesting core it can be returned to the core 
from the L3 CACHE directly. If the line is 
being used by multiple cores, the GQ will 
snoop the other cores to see if there is a 
modified copy. If so the L3 CACHE is 
updated and the line is sent to the requesting 
core. In the event of an L3 CACHE miss the 
GQ must send out requests for the line. Since 
the cache-line could be in the other package, a 
request through the Intel® QuickPath 
Interconnect (Intel QPI) to the remote L3 
CACHE must be made. As each Intel® 
Core™ i7 processor package has its own local 
integrated memory controller the GQ must 
identify the “home” location of the requested 
cache-line from the physical address. If the 
address identifies home as being on the local 
package, then the GQ makes a simultaneous 
request C3 C1 GQ (Global Queue ) IMC 
(Integrated Memory Controller) LLC Last 

level Cache QI (Intel® QuickPath 
Interconnect Controller ) Link Physical CSI 
6.4 GH 1 .4-2 .3 G / C0 C2 QHL (QP Home 
Logic ) PC (Power Control Unit ) CRA 
(Control Register Access Bus Controller ) 
GCL (PLL Farm) Figure 3 12 to the local 
memory controller, the Integrated memory 
controller (IMC). If home is identified as 
belonging to the remote package, the request 
sent by the QPI will also be used to access the 
remote IMC.[15],[16] 
 

 

Core Performance Monitoring Unit (PMU) 

     Each core has its own PMU. They have 3 
fixed counters and 4 general counters for each 
Hyper-Thread. If Hyper Thread is disabled in 
the bios only one set of counters is available. 
All then core monitoring events count on a 
per thread basis with one exception that will 
be discussed. The PMIs are raised on a per 
logical core or Hyper Thread basis when 
Hyper Thread is enabled. There is a 
significant expansion of the PEBS events with 
respect to Intel® Core™2 processors. This 
will be discussed in detail. The Last Branch 
Record (LBR) has been expanded to hold 16 
source/target pairs for the last 16 taken branch 
instructions. 
 

Un-core Performance Monitoring Unit 

(PMU) 

     The Un-core has its own PMU for 
monitoring its activity. It consists of 8 general 
counters and one fixed counter. The fixed 
counter monitors the un-core frequency, 
which is different than the core frequency. In 
order for the un-core PMU to generate an 
interrupt it must rely on the core PMUs. If an 
interrupt on overflow is desired, a bit pattern 
of which core PMUs to signal to raise a PMI 
must be programmed. As the un-core events 
have no knowledge of the core, PID or TID 
that ultimately generated the event, the most 
reasonable approach to sampling on un-core 
events requires sending an interrupt signal to 
the entire core PMUs and generating one PMI 
per logical core. 
 

Performance 

     The Intel Xeon processor family 
delivers the highest server system 
performance of any IA-32 Intel architecture 
processor introduced to date. Initial 
benchmark tests show up to a 65% 
performance increase on high-end server 
applications when compared to the previous-
generation Pentium® III Xeon™ processor on 
4-way server platforms. A significant portion 
of those gains can be attributed to Hyper-
Threading Technology. 
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Figure 6: Performance increases HTT on an Online Transaction 

 

                                     
Figure 7 Webserver Benchmark Performance 

 

Microsoft Operating System and 

Applications 

     A system with processors that use Hyper-
Threading Technology appears to the 
operating system and application software as 
having twice the number of processors than it 
physically has. Operating systems manage 
logical processors as they do physical 
processors, scheduling runnable tasks or 
threads to logical processors. However, for 
best performance, the operating system should 
implement two optimizations. The first is to 
use the HALT instruction if one logical 
processor is active and the other is not. HALT 
will allow the processor to transition to either 
the ST0- or ST1-mode. An operating system 
that does not use this optimization would 
execute on the idle logical processor a 
sequence of instructions that repeatedly 
checks for work to do. This so-called “idle 
loop” can consume significant execution 

resources that could otherwise be used to 
make faster progress on the other active 
logical processor. The second optimization is 
in scheduling software threads to logical 
processors. In general, for best performance, 
the operating system should schedule threads 
to logical processors on different physical 
processors before scheduling multiple threads 
to the same physical processor. This 
optimization allows software threads to use 
different physical execution resources when 
possible. 
 

Latency Event 

     Latency event gives us the best idea for 
performance measurement; the Intel® Core™ 
i7 processor has a “latency event” which is 
very similar to the Itanium® Processor 
Family Data EAR event. This event samples 
loads, recording the number of cycles between 
the execution of the instruction and actual 
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deliver of the data. If the measured latency is 
larger than the minimum latency programmed 
into MSR 0x3f6, bits 15:0, then the counter is 
incremented. Counter overflow arms the 
PEBS (Precise Event Based Sampling) 
mechanism and on the next event satisfying 
the latency threshold, the measured latency, 
the virtual or linear address and the data 
source are copied into 3 additional registers in 
the PEBS (Precise Event Based Sampling) 
buffer. Because the virtual address is captured 
into a known location, the sampling driver 
could also execute a virtual to physical 
translation and capture the physical address. 
The physical address identifies the Non 
Uniform Memory Architecture home location 
and in principle allows an analysis of the 
details of the cache occupancies. 
 

Precise Execution Events 

     There are a wide variety of precise events 
monitoring other instructions than load and 
store instructions. Of particular note are the 
precise branch events that have been added. 
All branches, near calls and conditional 
branches can all be counted with precise 
events, for both retired and  wrongly predicted 
(and retired) branches of the type selected. 
For these events, the PEBS (Precise Event 
Based Sampling) buffer will contain the target 
of the branch. If the Last Branch Record 
(LBR) is also captured then the location of the 
branch instruction can also be determined 
when the branch is taken the IP value in the 
PEBS (Precise Event Based Sampling) buffer 
will also appear as the last target in the LBR. 
If the branch was not taken (conditional 
branches only) then it won’t and the branch 
that was not taken and retired is the 
instruction before the IP in the PEBS (Precise 
Event Based Sampling) buffer In the case of 
near calls retired, this means that Event Based 
Sampling (EBS) can be used to collect 
accurate function call counts. As this is the 
primary measurement for driving the decision 
to inline a function, this is an important 
improvement. In order to measure call counts, 
you must sample on calls. Any other trigger 
introduces a bias that cannot be guaranteed to 
be corrected properly. 
 

The precise branch events are shown in the 
table below: 
Table 1 
Event Name Description unmask Event 
BR_INST_RETIRED.CONDITIONAL 
Retired conditional branch instructions 01 C4 
BR_INST_RETIRED.NEAR_CALL Retired 
near call instructions 02 
BR_INST_RETIRED.ALL_BRANCHES 
Retired branch instructions 04 
 

Shadowing 

     There is one source of sampling bias 
associated with precise events. It is due to the 
time delay between the PMU (Performance 
Monitoring Unit) counter overflow and the 
arming of the PEBS (Precise Event Based 
Sampling) hardware. During this period 
events cannot be detected due to the timing 
shadow. To illustrate the effect consider a 
function call chain where a long duration 
function, fn, which calls a chain of 3 very 
short duration functions, fn1 calling fn2 which 
calls fn3, followed by a long duration function 
fn4. If the durations of fn1, fn2 and fn3 are 
less than the shadow period the distribution of 
PEBS (Precise Event Based Sampling) 
sampled calls will be severely distorted. 
1) If the overflow occurs on the call to fn, the 
PEBS (Precise Event Based Sampling) 
mechanism is armed by the time the call to 
fn1 is executed and samples will be taken 
showing the call to fn1 from fn. 
2) If the overflow occurs due to the call to 
fn1, fn2 or fn3 however, the PEBS 
mechanism will not be armed until execution 
is in the body of fn4. Thus the calls to fn2, fn3 
and fn4 cannot appear as PEBS sampled calls  
 

Summary 

     The general rule that was used here is that 
we did not provide more VIRTUAL CPUs 
than the number of PHYISCAL cores the 
Server been used for testing has. In our 
scenario here, there are 32 logical processors 
presented due to hyper-threading, but only 16 
physical cores. If we had provisioned more 
than 16 Virtual CPUs to the Machine it means 
that execution resources will now be shared 
for the Machine. Now there are some 
exceptions here (test your workloads!), but is 
it generally recommended not to exceed the 
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number of physical cores for this reason. 
Measuring the bandwidth for an individual 
core is complicated on Intel® Core™ i7 
processors. And so that was left out 
     In order not go too deep here, we just 
concluded that  non uniform memory 
architecture NUMA is a technology designed 
to assign affinity between CPUs and memory 
banks in order to optimize memory access 
times.  Virtual non uniform memory 
architecture (vNUMA) was introduced to 
allow this technology to be extended down to 
guest virtual machines. The bottom line here 
is that the mix of virtual sockets and virtual 
cores assigned matters. As this article shows, 
processing latency can be increased if these 
settings are not optimal. First you’ll want to 
make sure that hot-CPU add is disabled as this 
disables virtual NUMA in any virtual machine 
and then you’ll want to make sure that your 
allocation of virtual sockets and virtual cores 
matches the underlying physical architecture 
or you could be adding some processing 
latency to your Machine.  
     Note there’s a setting in firmware called 
Prefer HT. but it basically changes the 
preferences in Virtual NUMA. There’s no 
universal answer here as it will vary from 
application to application, but this setting is a 
trade- off between additional compute cycles 
and more efficient access to processor cache 
and memory via virtual NUMA. If your 
application needs faster memory access more 
than it needs compute cycles, you may want 
to experiment with this setting. 
 

Observations 

     It actually turned out that all of our settings 
used for test were optimal and the Operating 
System used throughout is Microsoft 
Windows. We had one virtual CPU socket 
with 16 cores – matching the 16 physical 
cores on the Server and virtual NUMA 
enabled. If you are using a Windows guest 
you can download Coreinfo.exe from Sys-
internals and get more detail on how virtual 
NUMA is configured within your Machine. 
But that still did not answer the  question – 
why is the Main CPU at 80% when the host is 
at 41% given 16 physical cores ( main host) 
and 16 virtual cores ? Is it possible that not all 
the cores are being used?   Without breaking 

down the math, the number of MHz 
consumed by the Machine divided by the 
capacity of the host does align with the CORE 
UTIL% metric. 
    One thing we could not figure out about 
this whole thing is why the host shows LESS 
MHz utilized. There should be no averaging 
here just raw MHz consumed – so it is 
bothering us why the host would show less 
consumed than the virtual  (not possible in 
raw Mhz. what metric do we use to see actual 
core utilization without factoring for hyper 
threading? We must confess that we are lost 
here. Allegedly this metric exists but we 
couldn’t find it anywhere: After some trial 
and error we did find a CPU Workload % 
metric which does appear to focus on the 
cores (no hyper-threading): 
    Now here’s a question that troubles us. The 
default CPU metrics in vSphere count all the 
logical cores but look at the peak above. If we 
looked at the default CPU graph, we  think  
was at 74% when the physical cores were 
actually at 88%. We can see how averaging 
across all logical cores can provide a better 
view of utilization, but it seems to us that the 
Workload metric (physical cores only) 
provides a better value for detecting 
shortcomings. A system with processors that 
use Hyper-Threading Technology appears to 
the operating system and application software 
as having twice the number of processors than 
it physically has. Operating systems manage 
logical processors as they do physical 
Processor Execution Resources 
 

Conclusion 

     Intel’s Hyper-Threading Technology 
brings the concept of simultaneous multi-
threading to the Intel Architecture. This is a 
significant new technology direction for 
Intel’s future processors. It will become 
increasingly important going forward as it 
adds a new technique for obtaining additional 
performance for lower transistor and power 
costs. The first implementation of Hyper-
Threading Technology was done on the 
Intel Xeon processor MP. In this 
implementation there are two logical 
processors on each physical processor. The 
logical processors have their own independent 
architecture state, but they share nearly all the 
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physical execution and hardware resources of 
the processor. The goal was to implement the 
technology at minimum cost while ensuring 
forward progress on logical processors, even 
if the other is stalled, and to deliver full 
performance even when there is only one 
active logical processor. These goals were 
achieved through efficient logical processor 
selection algorithms and the creative 
partitioning and recombining algorithms of 
many key resources. Measured performance 
on the Intel Xeon processor MP with Hyper-

Threading Technology shows performance 
gains of up to 30% on common server 
application benchmarks for this technology. 
The potential for Hyper-Threading 
Technology is tremendous; our current 
implementation has only just begun to tap into 
this potential. Hyper-Threading Technology is 
expected to be viable from mobile processors 
to servers; its introduction into market 
segments other than servers is only gated by 
the availability and prevalence of threaded 
applications and workloads in those markets

. 
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